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Abstract

This paper describes the dependability modelling and evaluation of a real complex
system, made of redundant replicated hardware and redundant diverse software. It
takes into account all aspects of their interactions (including correlation between the
diverse software variants) and of the criticality of the several components. Our ap-
proach has been to realise the system model in a structured way. This allows (o
cope with complexity and to focus, where interesting, on specific behaviour for a
more detailed analysis. Furthermore each level may be modelled using different
methodoiogies and its evaluation performed with different tools without the need of
modifying the general structure of the model. In order to validate the most complex
sub-models, we built alternatives using different tools and methodologies; this
proved to be very useful since it allowed to find small bugs and imperfections and
to gain more confidence that the models represented the real system behaviour.
With respect to the real system taken as the example, our analyses allowed to
establish the dependability bottlenecks of the current version and to state targets for
the several sub-components such that the system targets could be reached, thus
providing hints for next releases or modifications of the system and information to
assign targets to the various components of the system.

Key-words: Complex Control Systems, Dependability Evaluation, Markov Models,
Stochastic Activity Networks.
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1. Introduction

Railway station interlocking systems based on microprocessors were developed in all techno-
logically advanced countries and have been used since a few years by those Railway Authorities
wishing to have a good cost/benefit ratio. In Europe and in Japan solid state interlocking sys-
tems were used in passenger transportation networks with medium/large stations and heavy-
medium range traffic; in these applications complex interlocking systems were designed, includ-
ing central and remote peripheral units, with vital data transmission between them [15], [7],
[171, [18], [19], {22], while in the US small systems have been produced since the 80's, usu-
ally applied to freight transportation lines [3], [10] .

The use of computer controlled interlocking systems, in the place of the usual electro-mechani-
cal systems, introduces non trivial problems in their design and analysis. Most difficult are
those parts of the systems delegated to the control of vital functions, where the interactions be-
tween the redundant hardware and the application software have a critical impact on system
safety. These interactions have an impact on medelling complexity since they induce stochastic
dependencies that must be taken into account in modelling the behaviour of components and
their interactions. In the literature several papers exist in the field of dependability analysis [1],
[20], [5], [4], and some basilar papers exist on the approach to dependability evaluation of
combined hardware and software systems [6], (9], [12], [13], [8], but detailed modelling of the
interactions between hardware and software components, in particular for critical systems, and
the influence of the related dependencies has been treated, at our knowledge, only in [11].

The interest of such modelling lies in the support it may provide in the design phase of a com-
plex system, when decisions have to be taken on possible different structures of the system for
matching the dependability requirements imposed by the regulatory authorities. In the design
phase it may be cost beneficial to construct different models for the different architectures and
the several alternatives can be quantitatively evaluated; in this way sensitivity analysis is possi-
ble, to ascertain what are the most important parts of a design on which more resources have to
be spent than on others and to identify, in a statistical manner, the dependability levels of the
several hardware or software components and the trade-offs between them. This type of analy-
sis, made for an already existing system, as it is the case in this paper, is important for an "a
posteriori" dependability evaluation, for pointing out possible design weak points or bottle-
necks, for the late validation of the dependability requirements (this can also be useful in certify-
ing phase) and to provide sound hints for next releases or modifications of the systems.

The contribution of this paper is the modelling of a real complex systems, made of redundant
replicated hardware and redundant diverse software taking into account all aspects of their inter-
actions (including correlation between the diverse software variants) and of the criticality of the
several components. Our approach has been to realise the system model in a structured way.
This allows to cope with complexity and to focus, where interesting, on specific behaviour for a
more detailed analysis. Structuring in different levels separated by well identified interfaces al-
lows to realise cach level with different methodologies and to perform its evaluation with differ-
ent tools without the need of modifying the general structure of the model. Each level has been
subdivided into several sub-levels for a finer analysis of some characteristics. The higher level
of the hierarchy is made of the models for the evaluation of the dependability measures of inter-
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est (in our case, beside the availability, also reliability and safety measures have been assessed).
These models use the values of success or failure probability obtained by the modelling of a
mission, which describes the system behaviour on a period of time. The model of a mission
uses, in its turn, the values obtained by several different models of a single execution and fi-
nally the model of one execution is subdivided into other levels which take into account the
specific behaviour of the components of the system. With this structuring, each level is a sort of
abstract object, whose implementation details are transpareat to the adjacent levels, and there-
fore can be realised and analysed using the most proper tools and methodologies, which can
differ from one level to another. Despite our effort for reducing the complexity of the individual
levels with respect to the complexity of the entire system, some complex level remained and has
been realised using different methodologies to compare and validate the used model.

The paper is organised as follows. Section 2 contains an overview of the Ansaldo TMR
MODIAC system; Section 3 defines the meaning of the basic parameters used and describes our
assumptions and the modelling approach. Sections 4 and 5 contain a description of the various
models for one execution and for the mission respectively. A few evaluations of the
dependability attributes are shown in Section 6 and finally Section 7 concludes this paper.

2. Ansaldo TMR MODIAC system.

We analysed the “Apparato Centrale con Calcolatore” (ACC) [15] system nucleus constructed
by Ansaldo for their railway station signalling control system, called TMR MODIAC. The sys-

tem is divided into two parts (Figure 1):

. SN -->> is the subsystem which performs vital functions: it comprises the Safety
Nucleus and a variable number, depending on the station size, of distributed Trackside
Units, which communicate the state of the station to the central computer. After the nec-
essary interactions with the operator, processing and controls, the.central computer
sends back commands for the signalling system to the Trackside Units.

. RDT -->> is a supervisory subsystem that performs Recording, Diagnosis and
Telecontrol functions; this subsystem allows continuos monitoring of the system state
and events recording; the latter is useful to make estimations and find out less reliable

sections.

! Recording;
Safety Diagnosis and: Central
Nucleus Telecontrok room

unif.

. Trackside
units

¥ital Section

Figure 1: The TMR MODIAC system

The Safety Nucleus [14] is structured as shown in Figure 2 and is the vital part of the system. It
comprises six units with a separated power supply unit. The three Nsi sections represent three
computers which are connected in TMR configuration, i.e. working with a “2-out-of-3" major-

page 3






ity: three diverse software programs performing iteratively the same tasks, run inside three
identical hardware sections. The system is designed to keep on running even after the failure of
one section; in such a case the section is excluded and the system uses only two sections with a
“2-out-of-2" majority, until the failed section is restored. A section excluded after failing is re-
stored after a few minutes. The Exclusion Logic is a fail-safe circuit whose job is to electrically
isolate the section that TMR indicated to be excluded. The activation/de-activation unit is a de-
vice that switches on and controls power supply units. The video switching unit controls video
images to be transmitted to the monitors of the operator terminal.

Figure 2: Structure of the Safety Nucleus

The TMR sections carry out the same functions; the hardware, the basic software architecture
and the operating environment are exactly the same; while “design diversity” [2] was adopted in
the development of software application modules. Each section is composed by two physically
separated units which carry out different functions in parallel:

. GIOUL (operator interface manager and logical unit): exccutes the actual processing
and manages the interactions with the Operator Terminal and the RDT subsystem;

. GP (trackside manager): manages the communications with the Trackside Units and
modifies, whenever necessary, the commands given by GIOUL.

The processing loops last 1 second for GIOUL and 250 msec for GP: this causes the communi-
cations between GIOUL and GP belonging to the same TMR section to be performed at every
second (GIOUL loop), i.e. once every four loops of GP. Instead the communications between
units of the same type (between the three GIOUL units and separately between the three GP
units) are carried out at every processing loop.

Each TMR (GIOUL and GP separately) unit votes on the state variables and processing results.
If it finds any inconsistency between its results and those of the other units and three sections
are active, it can recover a presumably correct state and continue processing. If one section dis-
agrees twice in a row it is excluded. No disagreement is tolerated when only two sections are
active. Besides voting on software each unit controls communications and tests internal boards
functionalities. Based on hardware test results, one section can decide to exclude itself from the
system. Diagnostic tests are carried out during the usual unit operation; they are implemented
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stich that they do not modify the operating environment. Each section is also able to detect mal-
functions on its databases thus deciding to exclude itself. Tn addition to these tasks, GIOUL has
to manage the communications with the Operator Interface, and to perform tests on keyboard
inputs as well. If an error is detected a signal is displayed.

TMR MODIAC is a critical system, meaning that failures or unavailability can have catastrophic
consequences, both economical and for human life. The constraints to be satisfied by the sys-
tem are a probability of catastrophic failure less than or equal to 10" per hour and no more than
5 minutes down time are allowed over 8600 hours (i.e. availability higher than or equal to

0.999990310078).
3. Assumptions and Modelling Approach.

3.1 Assumptions and Basic Parameters

We restricted our modelling effort to the Safety Nucleus, the most relevant part of the system.
Qur model does not include the RDT subsystem neither the Trackside Units, but represents the
overall functionalities of the Nucleus, including the main features and the interactions among the
different components. The main components that must be considered in modelling the system
are: hardware, software, databases and, only for GIOUL, acceptance test on the input from the
Operator Terminal, Hardware aspects cover internal boards and physical characteristics of the
communications while software aspects cover the operating system and software modules that
are sequentially activated during the processing loops. The databases, whose control represents
one of the ways for detecting errors in various modules, cover both hardware and software as-
pects: database malfunction can be due to either corruption of memory cells or an error of the
managing software. One of the tasks that GIOUL has to perform is checking the correctness of
the inputs issued by the operator terminal keyboard before transmitting them to the other mod-
ules for their processing; this check is very important since it can avoid the system to send
wrong commands to the Trackside Units. For this reason the software module performing this
check is not considered together with the other software modules of GIOUL. We also made the
choice of not modelling in detail the system while an excluded section is restored. More pre-
cisely we account for the time required for restoring a section but we neglect the particular con-
figurations that GIOUL and GP can assume during that period.

The definition of the basic events we have considered and the symbols used to denote their
probabilities are reported in Table 1. The following assumptions have been made:

1)  *“Compensation” among errors never happens,

2)  The Video Switching, the Activation/de-Activation and the (external fail-safe) Exclusion
Logic units are considered reliable;

3}  The Diagnostic module, (that exploits majority voting), and Exclusion Management
module within GIOUL and GP are considered reliable.

4y  Two erroneous, identical outputs are only the result of correlated errors; two or three in-
dependent errors within different units are always distinguishable by the voting.
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5)  During one execution, both GIOUL and GP may suffer from many errors, at most one
for each component (software, hardware, databases and acceptance test for GIOUL).

6)  Errors affecting different components of the same unit are statistically independent.

7)  The hardware communication aspects of the Nucleus are grouped together with the other
hardware aspects; the software part of communications is assumed reliable.

8}  The occurrence of hardware detected or undetected faults which do not prevent the cor-
rect continuation of activity is disregarded.

9)  The execution of each iteration is statistically independent from the others.
10y  Symmetry: the error probabilities of GIOUL and GP are the same for the three sections.

11)  GIOUL units receive identical inputs from the keyboard.

Error type (Events) Probabilities | Probabilities
(GIOUL) (GP)

independent hardware fault in 4 unit ghl ghp

the diagnostic does not detect a error caused by an hardware fault ghdl ghdp

the diagnostic erroneously detects a (non-present) error due (o ghndl ghndp

independent hardware fault

an independent error in a database is detected gbrl ghrp
an independent error in a dalabase is not detected gbnrl gbnm
correlated error between three databases q3hdl q3bdp
correlated error between two databases g2bdl gZbdp
independent software error in a unit qil qip
correlated software error between three units g3vl q3vp
correlated software error between two units 7 gq2vl q2vp
independent error of the acceptance test in a unit (it accepts a wrong gail B

input or does not accepts a correct ong)

correlated error between the acceptance tests of three units accepting the Qgal ]

same wrong input

correlated error between the acceptance iests of two units accepting the gal |

same wrong input

Table 1: Basic error types and symbols used to denote their probabilities

3.2 Modelling Approach

The model was conceived in a modular and hierarchical fashion, structured in layers. Each layer
has been structured for producing some results while hiding implementation details and internal
characteristics: output values from one layer may thus be used as parameters of the next higher
layer. In this way the entire modelling can be simply handled. Further, different layers can be
modelled using different tools and methodologies: this leads to flexible and changeable sub-
models so that one can vary the accuracy and detail with which specific aspects can be studied.
The specific structure of each sub-model depends both on the system architecture and on the
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measurements and evaluations to be obtained. The modeli of the Safety Nucleus of the TMR
MODIAC we have built, shown in Figure 3, can be split into two main parts: the first part deals
with one execution and computes the probabilities of success or failure; the second one, build-
ing on this, allows the evaluations of the dependability attributes for an entire mission.

In the previous section we explained that if a disagreement is found while all three sections are
active, GIOUL and GP recover the correct value and participate to the next loop. This holds for
one single disagreement: if one section disagrees twice in a row it is excluded at the end of the
current loop. Therefore, in order to represent as close as possible the actual system behaviour,
we had to make several models to keep memory of previous disagreement of one section at the
beginning of the execution.

A Level 4:
( Reliabitity ) ( Safety ) ( Availability) dependability
attributes
Part
two |
Level 3:
C Mission ) mission

P l—

+ model
I
Level 2:
@ one execution
. models

Level 1:
basic objects
. . @ models

Part
one

@@ €967

Figure 3: High level model of the TMR MODIAC
To describe the GIOUL and GP TMR units at level | (Figure 3) we defined:

. five sub-models of the behaviour of GP in configurations 3h, 3h.1, 3h.2, 3h.3, 2h
(3h.x means that section x (1, 2 or 3) disagreed during the previous loop);

. five sub-models of the behaviour of GIOUL (3h, 3h.1, 3h.2, 3h.3, 2h).

One system execution (level 2) lasts 1 second, it includes one GIOUL (1 second) and four GP
(250 msec) iterations and could also be considered as brief one—second mission. Due to the
need to keep memory of previous disagreements, 17 different models for one-execution have
been defined: one models the system when only two sections are active, while the remaining
describe the system with three active sections (level 2 in Figure 3):

. 3h/3h: GIOUL and GP are correctly working at the beginning of the execution.

. 3h.x/3h: the GIOUL of section x (1, 2 or 3) disagreed during the previous loop while
GP is correctly working.
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. 3h/3h.y: GIOUL units are correctly working while the GP of section y (1, 2 or 3) dis-
agreed during the previous (GP) execution.

. 3h.x/3h.y: both the GIOUL of section x and the GP of section y disagreed during the
previous loop (x and y can represent the same section or different ones)

. 2h/2h : execution begins with only two active sections.

Each of the 17 models uses, in different combinations and sequences, the same base objects of
level 1 and describes the essential characteristics of the Safety Nucleus. It models the functions
of the units as a whole: different aspects of the units are not considered separately, instead their
interactions and thetr peculiar nature is considered. Specifically hardware and software aspects
cannot be always kept separaied because on one side, hardware faults often manifest themselves
as software errors and on the other, the methods for software fault tolerance allow to tolerate
not only software faults but also hardware faults of the internal boards and of the communica-
tion cables. This explains why GP and GIOUL models do not comprise different separated sub-
models each one regarding one single aspect, but are structured as a unique global sub-model in
which both interactions and specific aspects are included. The models for one-execution are
conceived to compute (and to provide to level three) the following probabilities:

. probability of success of one-execution; it is the probability that the system per-
forms an entire one second mission correctly. This implies that the system is ready to
start the next execution. It is composed by many different success probabilities accord-
ing to the configuration achieved.

. probability of safe failure of one-execution; it is the probability that the system
fails during one execution and stops avoiding catastrophic damages (this is ensured by
the ACC system that is designed so that it stops when malfunctions occur, forcing de-
vices and subsystems to lock in a safe state).

. probability of catastrophic failure of one-execution; it is the probability that
the Nucleus, failing, keeps on sending erroneous commands causing serious damages.

The mission model (level 3), considering all the possible system configurations during one exe-
cution, describes the system behaviour during time. Once that both the single execution and the
mission models have been constructed we focused on which kind of measurements are re-
quired. For our highly critical system the following dependability attributes have been evalu-
ated: reliability, safety and availability. While reliability and safety can be both obtained by
computing the probabilities of catastrophic and safe failure at time t defined as the duration of
the mussion, availability required the definition of a specific availability model.

4. Models for one execution.

Two methodologies have been adopted to build the models for one-execution: Discrete time
Markov chains that have been manually drawn for which the probability evaluation has been
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accomplished using “Mathematica™!, and Stochastic Activity Networks that have been directly
solved using the software tool “Ultrasan™2. Since Markov chains are often impractical, even if
they provide symbolic results, Ultrasan has been adopted in order to avoid building 17
repetitive one-execution models using only Markov chains. Only two models (3h/3h and 2h/2h)
have been completely built using Markov chains in order to test and validate the results obtained
by Ultrasan. This redundancy in building models has been very useful: some errors occurred
during the model developing phase have been detected. Ultrasan has been a good choice, since
we could develop one single model that allowed to compute the results for the 17 different
scenarios. In fact, by assigning different values to the variables of the model, thus representing
different initial markings, we could represent the different states of the system and account for
previous failures of the various sub-components. The model is also able to distinguish the
various configurations without having to replicate the unchanged aspects. Only two of the
seventeen models were tested using Markov chains but those two models are the most relevant
ones and cover all the scenarios that need to be represented. The results obtained by Ultrasan
and Markov, using the same values for the parameters, were in agreement. Now we show, as
an example, some objects belonging to the two lower levels. First the Markov chains are

described and later the Ultrasan model.

Figure 4: Detailed description of the behaviour of GIOUL in configuration 3h

I Mathematica, vers. 2.2, Wolfram Research, Inc.

2 Ultrasan, ver. 3.0.1, University of Illinois at Urbana-Champaign: Center for Reliable and High-Performance

Computing Coordinated Science Laboratory, 1994.
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Probability | Expression Probability | Expression
notation notation
gla (1-ghi)3 ql16 (1-gbrl-gbarl)? gbrl (L-gchd]3)
qlb gal (1-ght)? qlt9 ((1-gbrl-gbnri)3+ gbnel (1-gbrl-
gbnri)?) (1-gchdi3)
gle ghi2 (1-ghl) qi20 (1-gail)3 (1-qacl3);
glw ghl? ¢l21 (1-qailY2qail (1-gacl3)
glf {i-ghndl)3 qi24 (3 qail?(1-gail)+gail®) {1-gacl3)
qlg qhndl (1-ghndl)2 qi25 = qI28=] qacl3
g130 = gi32
qil 3 ghndi? (1-ghndl)+ ghndl® ql26 = gl33 4120 + ql21
gln (1-ghdl) (1-ghnd])2 q127 = gI31 2ql21 +ql24
glo ghdl {qkndi2+2 ghndl (1-ghndl) ) + ((-ghdl} | 9129 {}-qacl3)
(2 ghndl (1-ghndl} + qhndlz)
qlg ghdl (1-ghnd])? q134 (1-gih)? (1-qcl3)
qlé {1-gbri-gbnrl)3 (I-qebdl3) q:g?} = ql36 = (1-qih? qil (1-qci3)
g
g7 gbrl (1-gbri-gbarl)? (1-gebdI3) ql38 (3 qil2 (1-gil) + gil3 ) (1-gel3)
qi8 (3 qbr12( I-gbrl-gbnrl) +qbri3+3 qbr]2 qbnrl { ql40 = ql54 (173} (q134 + ql33)
+qbnr13+3 gbnrl2(1-gbrl-gbnsl)+3gbnrl?
gbri+6 gbrl gbnri (1-gbarl-gbrl)) (1-gebdl3)
ql9 = glI3 =i qcbdl3 gldl = gls5 ql37 + ql36 + gi38
gils =qgll8
qlio 3 gbnel (1-gbrl-gbnrh)? (1-gebdi3) qld2 = qg156 =] qcl3
ql3% = ql31 =
ql53
qlll ( (i-gbrl-gbnrl)y> + gbri (1-gbel-gbnrl)? + | 9149 ql34 + qI35
(1-gbrl-gbnr)Z gbnrl ) {1-qebdid)
gi12 (2 qbri(i-gbrl-gbnr)2 +qbrd+3 gbel? (1-| ais0 qi36 + qi37 + gl38
qbrl-gbnr)+3 qbrl2 gbnrl + qbnrl3 + 3
gbnri? qbrl+3 qbnrl? ((-gbrl-gbarl)+2 (I-
qbrl-gbnrl)2 gbari+6 gbnrl qbrl (1-gbarl-
gbrl)) (1-gcbdi3)
gll4 1-qcbdl3 ql52 (1-gel3)
qll7 (2qbri(1-gbnrl-qbrZ +gbrld+3gbri2(1-

gbrl-

qbnri}+3qbr12qbnrl+qbnrl3+3qbnr12q bri+3
gbnrl2(1-qbel-gbnrl)+2( 1 -gbrl-

qbnrl)zq bnrl+6gbrl qbnel(1-gbrl-gbnrh)) (1-
gebdl3)

Table 2: Transition probabilities of Figure 4, according to the Table 1
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State netation Meaning

3h start of GIOUL 3h

h0 not hardware fault

hl hardware fault into an unit

h2 hardware fault into two units

¢h hw() not hardware diagnosed fault

db hwl hardware diagnosed fault into a unit

db st diagnostic tests detected failure due to hardware faults

3db inr hardware not diagnosed fauit that appears as a processing
error

ac hdd hardware and databases are correct

ac hd] a unit is already failed because of a hardware or database
fault

ac st two or three units are already failed bécause of hardware or
database faults

ac cf catastrophic GIOUL TMR failure due to database faults

3ac Inr hardware or database not diagnosed faults that appear as a
processing error

swal) hd() hardware, databases and acceptance test are correct

swal hd0 hardware and databases are correct but a unit acceptance
test doesn't operate correctly

sw hdl ) a unit is already failed because of a hardware or database
fault

sw st two or three units are aiready failed because of hardware,
database or acceptance test fauits

swcf catastrophic GIOUL TMR failure due to database or
acceptance (est faults

dsw Inr hardware or database not diagnosed fault that appears as a
processing error

Table 3: Notation of the states of Figure 4

As an example of a model of the level | (base object level), we report in Figure 4 the detailed
description representing the behaviour of the GIOUL TMR in configuration 3h (the notation of
the states of Figure 4 is reported in Table 3). The models for other configurations can be
obtained by analogy with this. The transition probabilities shown in Figure 4 and reported in
Table 2 are obtained as combinations of the basic events probabilities reported in Table 1. The
Markov chain in Figure 4, is organised into five levels plus the final states ({inal states are iden-
tified with H, SF and CF). Level one involves the hardware aspects, the level two the diagnos-
tic tests carried out on boards and communications channels (hardware). Level three checks
databases; level four investigates the behaviour of the acceptance test on the keyboard input
whereas level five involves software. It should be noted that the model doesn't represent the
timing relations among the various events.

Figure 5: Compact description of the behaviour of GIOUL in configuration 3h
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Probability notation Meaning

p3Hgioul success with three correct GIOUL units

p3Hxgicul success with three GIOUL units, but the unit x disagreed
p2Hgioul success with two GIQUL units

pFBeioul safe GIOUL unit failure

pFCgioul catastrophic GIOUL unit failure

Table 4: Notation of the transition probabilities of Figure 5

The upper level (level 2 of Figure 3) is not concerned with this detailed view, from its perspec-
tive it is just necessary to observe that the GIOUL TMR, performing one execution, can jump
from the tnitial 3h state into all the other GIOUL TMR configurations (success state) or into the
failure (safe or catastrophic) state according to the transition probabilities resulting by the reso-
lution of model in Figure 4. Thus its view can be represented by the Markov chain in Figure 5
where all the paths, that go from the initial state to each of the final states, are substituted with
one arch and the relative transition probability (reported in Table 4),

pS3HOO

pS3ge PS 3 moa /RSF20] psaNz2 \ pEMETNEIIRIZ
psfinz/ psHz1 | psN23

SEEEEE600000DDLOOE

Figure 6: Black-box model of one execution from the configuration 3h/3h

oCF

Probability notation Meaning

pS3HOO success with three correct sections

pS3HGyY success with three yet active sections, but the GP y unit
disagreed

pS3Hx0 success with three yet active sections, but the GIOUL x
unit disagreed

pS3Hxy success with three yet active sections, but the GP y unit
and GIOUL x unit disagreed

pS2H success, but one section is excluded

nSE the system is stopped

nCF catastrophic failure

Table 5: Notation of the transition probabilities of Figure 6

Once all the models of level | have been obtained and the related transition probabilities com-
puted, these objects are composed into the several models for one system execution (level 2
Figure 3). Also for this level, only the description of one of the 17 configurations is provided;
the remaining 16 can easily be obtained by analogy. This time we proceed in a top-down ap-
proach to show our models by showing first what is the viewpoint of the next level, the mission
level (level 3 of Figure 3). Figure 6 depicts the black-box model of configuration 3h/3h show-
ing just the transitions to other configurations after one execution and their probabilities
(reported in Table 5).
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Figure 7: Partial explosion of the model of Figure 6

State uotation Meaning
3h 3h GIOUL and GP success with the GIOUL and GP correct
units; start execution of four GP lpops
3h gp the four GP loops terminated with three GP correct
units
Jhx gp the four GP loops terminated, but the GP units of the
section x disagreed
2h gp the four GP loops terminated with only two GP units
already active
b gzp safe GP unit failure
fc ap catastrophic GP unit failure
3h/0 gioul GP not disagreeing and start checking the GIOUL
ouiputs
3h/1 gioul the GP unit of section x disagreed and start checking
the GIOUL outputs
32 gioul a GP unit is already excluded and start checking the
GIOUL outputs
3hts gioud safe GP unit failure and and start checking the GEOUL
outputs
3hc gioul catastrophic GP unit failure and start checking the
GIQUL outputs
3h.x 3h GIOUL and GP success, but the GIOUL unit of the
section x disagreed
2h GIOUL and GP success, but a GIQOUL unit is excluded
SF the GP units are correct, but the GIOUL units failed
safely causing the safe system failure
CF the GP units are correct, but the GIOUL units failed
catastrophically causing the catastrophic system
failure
Table 6: Notation of the states of Figure 7
Probability notation Meaning
p3HGP after four loops, the GP units are correct
p3HxGP after four loops, the GP units are working, but the GP unit
of the section x already disagreed
p2HGP after four loops, GP succeeds, but a unit is excluded
pSEGP safe GP unit failure
pCFGP catastrophic GP unit fatlure
p3Hgicul s10
p3Hligioui sll
p2Hgioul s12
pSFEgioul 513
pCFgicul s14

Table 7: Notation of the transition probabilities of Figure 7
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Of course, in order to obtain the transition probabilities mentioned above it is necessary to ex-
plode the arcs which go from the "3h/3h" state to the final states and describe the system be-
haviour when one iteration starts with the GIOUL and GP TMR working perfectly. This ex-
plosion is shown in Figure 7 (between the dashed lines); it should be noted that the graph is not
complete in order to leave the figure clear, still it is easy to deduce the entire model. The
notation of the transition probabilities of Figure 7 is reported in Table 7 and the notation of the
states in reported in Table 6.
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Figure 8: Model for the four executions of GP in each system execution

Probability notation Meaning

s| = p3Hgp the three GP units are correct during the short loop

s2 = p3Hlgp the GP unit of section x disagreed once

s3 = p2Hgp one section is excluded with any unit not disagreeing at
the loop start

s4 = pFBgp safe GP one-execution failure

85 =pFCgp catastrophic GP one-execution failure

56 = p2Hgpi one section is exciuded due to two successive GP unit
disagreeing

87 =p22Hap success with only two active GP units

58 =p2FBap safe tailure with only two active GP units

59 = p2FCygp catastrophic failure with only two active GP units

Table 8: Notation of the transition probabilities of Figure 8

page 14







State notatien Meaning

Sh gpd GP execution: first short foop

3h gpl during the first short loop, the GP units are correct; GP
execution: second short loop

3hx gpl during the first short loop, the GP unit of the section x
disagreed; GP execution: second short loop

2h gpl during the first short loop, a GP unit is excluded; GP
execution: second short foop

fb gl during the first short loop, safe GP unit faifure

fc gpl during the first short loop, catastrophic GP unit failure

3h gp2 during the second short loop, the GP unit of the section x
disagreed; GP execution: third short loop

3h.x gp2 during the second short loop, the GP unit of the section x
disagreed; GP execution: third short loop

2h gp2 during the first or second short loop, a GP unit is
excluded; GP execution: third short loop

fb gp2 during the first or second short loop, a GP unit is
excluded: GP execution: third short loop

fc gp2 during the first or second short loop, catastrophic GP unit
failure

3h gp3 during the third short loops, the GP unit are correct;GP
execution: fourth short loop

3h.x gp3d during the third short loop, the GP unit of the section x
disagreed; GP execution: fourth short loop

2h gp3 during the first or second or third short loop, a GP unit is
excluded; GP execution: fourth short loop

fb gp3 during the first or second or third short loop, safe GP unit
failure

fc gp3 during the first or second or third short loop,
catastrophic GP unit failure

Table 9: Notation of the states of Figure 8

The transition probabilities (pxxGP) from the state "3h/3h" represent the output transition prob-
abilities for the four executions of GP which may result in the different outcomes represented
by the different states following by one execution of GIOUL. The transition probabilities from
the state "3h/3h" are obtained from the model (sub-level of level 2} shown in Figure 8; note that
each state (notations in Table 9), together with the corresponding transition probability
(notations in Table 9), represents, in Figure 8, one of the object already studied in level 1.

The system model obtained with Ultrasan allows to represent all the 17 configurations of one
execution. Also in modelling using Ultrasan we started following a modular approach, building
first the basic objects (level 1) and then putting them together in the system model for one exe-
cution. Unfortunately, however, the valuable possibility offered by Ultrasan to define separated
models and to join them into the Ultrasan "Composed Model” is very useful for conceiving a
design but slows down the execution speed of the compound model. In fact the common places
between sub-models must be attached to timed transitions, and this is useless for this model.
This causes the increment of the state number in the "Reduced Model" and decreases the eval-
uation speed. Thus we decided not to take advantage of this opportunity but preferred to speed
up the evaluations as much as possible. Figure 9 shows the model that we actually used.
Despite it can just provide an idea of the size and complexity, the existence of two sub-models
is visible: the upper part represents one iteration of GP and it is executed four times, the lower
part represents one iteration of GIOUL executed once. An additional general problem to the un-
derstanding of the behaviour of models built using Ultrasan derives from the extensive use of C
code that is hidden into the gates.(This model was evaluated using the Ultrasan transient solver)
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Figure 9: Ultrasan model for one execution

5. Models for the mission and wanted measures.

Also the model for a mission has been developed using both Markov chains and SANs. Despite
the constant time of one second required for each system execution, modelling a mission using
discrete time Markov chains (MC/TD) is not feasible due the following reasons:

1) The system can operate with only two active sections (2h/2h), if no failures occur, for a
time interval in the range 5+435 minutes (15 minutes average) i.e. a much longer time
and a very large number of states "2h/2h";

2)  Since the model has to be as general as possible, the time to restore a section should be
left as a parameter and this cannot be accomplished using a discrete time model.

For all these reasons continuos time Markov Chains (MC/TC) have been used. The obtained
model solves the above problems, but it is approximate. In fact not only it uses exponential
distributions in place of the deterministic ones (this is not a problem since we use a very long
mission time with respect to the time required from one execution), but the main approximation
comes from the fact that the n states "2h/2h" in the hypothetical MC/TD are compressed in only
one state "2h/2h". The output rates of this compressed "2h/2h" state approximate the behaviour
{averaging both time and probabiiities)[16]. The MC/TC model defined is partially depicted in
Figure 10 only to give an idea on the state transitions. This model allows to evaluate the prob-
abilities of safe or catastrophic failure of missions of a given duration. The model has been
solved obtaining the system of differential equations [21]. The solution was obtained using
Mathematica: it provided both symbolic and numerical results. The solutions we have found are
complete since they allow to evaluate the probability of safe or catastrophic failure over any
given time interval t.
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To validate this approximated model we compared the results obtained with those returned by a
mission model built using Ultrasan (where time distribution is still exponential). The Ultrasan
model is structured into two layers: the lower layer is composed by a number of sub-models
each one representing a given system configuration, and an higher level (“Composed Model)
that joins the sub-models as required. For the model of a mission we did use the Composed
Model without slowing down the execution speed because each sub-model aiready contained
timed transitions at the beginning. In Figure 11a the sub-model representing the configuration
"3h/3h" is shown: the other sub-models are very similar. In Figure 11b the "Composed Model"
is shown; each box indicates one sub-mode! of one-execution and the "join" box links them to-

gether.
3 133 !
h3 h3 2
13 h3 1

‘m_z_hsg ”m_z_ha_z " W32 h33 " 133 h3 ” h3_3 hz 1 |h3_3_h.3_2 |

Figure 11: Ultrasan a) 3h/3h sub-model b) "Composed" mission model

The two mission models (with the Markov chains and with SANs) have been tested against
each other on the same input data for variable mission duration up to one year. The results pro-
vided are of the same magnitude as soon as t reaches 1000 seconds, and for t from one day up
they can be considered identical; as t grows, the number of identical significant digits increases
and even exceeds the desired accuracy. While we preferred to use the Ultrasan model to obtain
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the results for one execution (and used a Markov one to validate it) because of the possibility to
represent all the different configurations within a single model, here we have done the opposite:
we used the model based on Markov to compute the results and the one based on SANs to vali-
date it. We preferred to use Mathematica and the Markov model to achieve results at a higher
speed: only few minutes are required to provide the results for one year missions while our
Ultrasan model requires several days.

[*fc

oJoXol

Figure 12: The availability model

Once the probabilities of success or failure (safe and catastrophic) in one year have been ob-
tained, it is immediate to find out the reliability and safety measures while to obtain availability
measures it is necessary build an availability model which is represented by the continuos
Markov Chain (MC/TC) illustrated in Figure 12. When the system is in state F, it is operating
and provides a correct service. R and C indicate the repair states: the system is not available
following a safe failure (R) or a catastrophic failure (C). The system resuming rates are "m”",
following a safe failure, and "mm", following a catastrophic failure. "I" indicates the failure
transition rate; it should be multiplied for "f", the probability of safe failure, or for "fc", the
probability of catastrophic failure. This availability model (with repair after catastrophic failure)
respects the behaviour of the TMR MODIAC; in fact, in a railway interlocking system, a
catastrophic event involves usually only one part of the controlled system, while the rest of the
system must continue working also after a catastrophic event.

6. Evaluations

Once the models have been realised, the system behaviour can be evaluated, to check for ex-
ample if the systemn meets its requirements, and to analyse the sensitivity to the various parame-
ters. The input variables for the set of models can be split in those necessary to the models rep-
resenting one execution and those for models of the mission. The models of one execution re-
- quire the probability values of the basic events (described in Table 1) while those related to the
mission require i) the results of the evaluation of one execution, ii} the repair time for restoring
an excluded section, iii) the mission time, and iv) the recovery time (only for the availability
model). Since there are many input variables, reasonable values have been "a priori” assigned to
all the parameters, and the sensitivity of the dependability measures has been investigated for
just one parameter at a time: sensitivity first to the main parameters (hardware, software), then
to the secondary parameters have been evaluated; finally, a specific study on software has been
carried out. Due to space limitations we do not report on all the evaluations carried out [16] but
show just a few examples.

The probability values of the basic events are reported in Table 11, while we set the mission du-
ration to one year, the failure rate | which has to be multiplied by the failure probability to one
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per hour, the repair rate following a safe failure, m, to 2 per hour and the repair rate following a
catastrophic failure, mm, to 1/2 per hour. Moreover the correlated error between two units {g2c)
has been expressed as a function of the independent error (giv): q2¢ = corr qivZ, where “corr”
has been set to 100: this corresponds to the assumption of a positive correlation among software

CIrors.

Probabilities Values/hour Prohabilities Yalues/hour
ghl 8E-5 ghp 2E-5
qhdl 2E-10 qhdp 2E-10
ghndl 3E-i2 ghndp 3E-12
gbrl 1E-8 gbrp IE-8
gbnrl 1E-10 gbnrp 1E-10
qil 1E-5 qip 1E-5
gail ‘E-8 1 ...

Table 10 : GIOUL and GP parameters

0.1  Measurements with variable software error probability .

Figures 13, 14 and 15 show dependability measurements as a function of the probability of
software independent error. The range goes from 1E-3 to LE-6 per hour; curves for different
values of the hardware error probability per unit are reported.

Probability of failure

8 3 3 s
£ 1 @ @
JE+00 | - o —
IE-01
Eo | @ o o ghelES.
- O- gh=iB4’
m - - -
& IE-03 ik e A GhelES
E-04 | e o g X ah=lE6
. V_.A'“'-—.
|E-05 | S e
E
IE-06 -

Indipendent software error per hour

Figure 13: Failure probability (one year mission)

Observing the shapes of the curves in Figure 13, it is clear that reliability is sensitive to varia-
tions of the software error probability if hardware quality is good enough (ranging from 1E-5 to
1E-6), instead it becomes more and more insensitive as the hardware error probability in-
creases. The curves also point out that decreasing the probability of software error over 1E-5
(that is improving the quality of the software) is practically useless without decreasing all the
remaining system parameters at the same time as well. In fact, while in the left side of the fig-
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ure, from IE-3 to [E-5, it can be observed that the reliability improves, it remains approxi-
mately constant for the values in the right side.

The shape of the curves representing the probability of catastrophic failure, shown in Figure 14,
appears quite different. Safety is almost a "linear" function of the probability of independent
software error: the more the software error probability decreases and the more the safety im-
proves. Of course, this is valid under certain conditions, that is as long as the remaining pa-
rameters are kept unchanged and the software error probability is kept over a certain value. The
same Figure also points out that the safety seems completely insensitive to variations of the
hardware error probability: in fact, it is difficult to distinguish among the four curves shown. It
should also be noted that the system satisfies its target (that for such systems is usually 1E-7 per
year) if independent error probability values are less than or equal to 1E-5.

Probability of catastrophic failure
3 3 5 g
= = = =

lE+00 P e [ —

[E-OF -

o s o gwiEs
® |E.05 R & qh=IE-S
Z o6 ‘X ah=1E-6

{E-07 R

IE-08 -

IE-09 - .

1E-10 by

[ndipendent software ervor per hour

Figure 14: Catastrophic failure probability (one year mission)
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Figure 15: Availability (one year mission)
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Figure 15 shows the availability, it clearly points out that the availability is very high and almost
constant when the software error probability ranges form 1E-4 to 1E-6, while it is a bit worse
for higher values. The figure shows also that there are almost no variations of the availability
for values of the hardware error probability equal or better than 1E-4. In any case the system is
never affected by availability lacks, since the target (5 minutes unavailability over 8600 hours,
i.e. 0.9999903 10078} is satisfied in all the considered range of the software error probability.
In short, within our parameters setting, the software must be regasded as a critical factor for
safety, while it appears of almost no concern for availability.

6.2  Measurements with variable hardware error probability. .

Figures 16, 17 and 18 show dependability measurements versus independent hardware error
probability per unit ranging from 1E-3 to 1E-6; curves are quoted as a function of the indepen-
dent software error probability per section.

Figure 16 shows the failure probability decreasing in a linear fashion as the hardware error
probability decreases too, its slope also decreases as it approaches the value 1E-5. This points
out that, increasing hardware reliability, the overall system reliability also slightly increases (if
hardware error probability is reduced by an order of magnitude, then the overall system reli-
ability is increased of two orders of magnitude), but it is not necessary to exceed certain values
without improving software and/or database quality as well. Figure 16 also points out that,
when software error probability is good enough, the curves are quite closer: this implies that
software is not a critical factor at all for system reliability if the error probability ranges into
reasonable values.

Failure probability

[sa) =+ vy 8
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——qsw=1E6.

Indipendent hardware error per hour

Figure 16: Failure probability (one year mission)

Figure 17 shows that safety is quite insensitive to hardware error probability variations, instead
it is strongly sensitive to software error probability variations.

Figure 18 shows availability versus hardware error probability. Observing the curve shapes
within a certain hardware error probability range, no availability lacks are remarkable; neverthe-
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less any hardware error probability increase can result harmful, as we deduce from the curve
slope regarding values higher then 1E-4.

Catastrophic failure probability
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Figure 17: Catastrophic failure probability (one year mission)
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Figure 18: Availability (one year mission}

6.3  Measurements with variable database error probability.

It should be recalled that database error probability consists of detected error probability plus
not-detected error probability. In order to achieve the dependability measurements, the above
two probabilities have been linked: the former has been assumed about two orders of magnitude
greater then the latter. This is indeed an arbitrary choice, but yet appears realistic. Measurements
have been made with regard to two independent software error probability values (1E-3 and 1E-
5), whereas database error probability is in the range 1E-4 to 1E-10.

page 22






Failure probability
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Figure 19: Failure probability (one year mission)

Figure 19 clearly shows how a software error probability increase makes the failure probability
grow by two orders of magnitude when database error probability is less then 1E-6, whereas
such difference decreases, when this gets larger. This implies that, no matter how good the
database is (always within an acceptable range), reliability cannot improve if software is not
reliable. Another aspect to be pointed out in Figure 19 is the different slope of the two curves:
when gsw equals |E-3 the curve appears less sensitive to database quality improvements and
almost instantaneously reaches a steady state; instead, when qsw equals 1E-5, the slope 18
greater and more gradual.

Catastrophic failure probability
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Figure 20: Catastrophic failure probability (one year mission)

Figure 20 shows that safety is almost insensitive to database error probability variations, its
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corresponding value being unchanged, when gsw equals to 1E-3: the system could not satisfy
the target, even though it made use of totally reliable databases. Instead, it is clear that, if soft-
ware is good, database can result a discriminating factor for safety. In fact, if database quality is
poor, then catastrophic failure probability can grow up.

Figure 21 shows availability versus database error probability. The two curve shapes appear
quite similar, even if availability increases as a result of a qsw decrease. Targets are satisfied,
but the curves indicate that unavailability can sensibly increase if one of the two parameters
grows Worse.

Availability
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0.9999970
(0.9999965 \
T 2 g 5 2 2
N R
Indipendent database error per hour

Figure 21: Availability {(one year mission)

6.4  Specific study on software: correlation coefficient variation.

This section shows how dependability measurements are affected when changing the relation-
ship linking the correlated error probability to the independent error probability (per execution).
The coefficient (corr) has been made varying in the range 1EO to 1E4, whereas the software er-
ror probability has assumed the values 1E-3, 1E-4 and 1E-5.

Figure 22 clearly shows the different shapes assumed by reliability depending on software error
probability and “corr” factor: in fact, if gsw equals 1E-5 then “corr” factor does not have any
effects on failure probability, instead, as the software error probability grows, an possible cor-
relation factor increase can drop the reliability. It is also evident the influence on system
reliability of higher software error probability is high and higher growth of the correlation
factor.
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Figure 22: Failure probability (one year mission)
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Figure 23: Catastrophic failure probability (one year mission)

Again, with regards to the three qsw values mentioned above, safety always varies
proportionally to the correlation coefficient. As a result, the three curves appear parallel, as
shown in Figure 23. One important aspect should be pointed out: the safety target is 1E-11
referred to a hour, which means 1E-7 if referred to a year; thus, all the possible gsw and “corr”
combinations that make the safety target satisfied can be obtained drawing the curves
intersections across a horizontal line corresponding to a safety value of 1E-7. This target is
actually satisfied by qsw equal to 1E-5 and corr less then or equal to 100, and gsw equal to 1E-
4 and corr equal to 1 as well: this implies that a software with an error probability reduced by an
order of magnitude can be used still avoiding serious consequences, only if the correlation
factor is small enough. Of course, if gsw increases too much (1E-3), then the safety is sensibly
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modelling method and evaluation tool for each level. Last, and very important, in order to vali-
date the most complex models, we built alternatives using different tools and methodologies;
this constitutes an example of application of diversity and proved to be very useful since it al-
lowed to find small bugs and imperfections and to gain more confidence that the models repre-
seated the real system behaviour.

With respect to the evaluated characteristics of the Ansaldo TMR MODIAC, our analyses,
which have not been reported here, allowed to establish the dependability bottlenecks of the cur-
rent system and to state targets for the several sub-components such that the system targets
could be reached. We could thus provide hints for next releases or modifications of the systems
and information to assign targets, and consequently the budget, to the various components of
the systern. The work presented in this paper constitutes a nucleus that will be expanded in fur-
ther studies: some directions are, the release of some of the simplifying hypotheses or the
modelling of some variation of the system characteristics to better identify directions for next
releases. Another step to be also carried on is the modelling of the rest of the system, (o evaluate
the dependability figures accounting for the trackside units and the communication network.
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