
CAMELEON Project
R&D Project IST-2000-30104

CAMELEON Partners:
CNUCE Institute, Pisa, Italy

Université catholique de Louvain, Belgium

University of Grenoble, France

MTCI, Motorola, Turin, Italy

IS3-GICE, Paris, France

Title of Document: The CAMELEON Reference Framework

Author(s): G. Calvary, J. Coutaz, D. Thevenin (1st and last
versions of V1.1)

L. Bouillon, M. Florins, Q. Limbourg, N. Souchon,
J. Vanderdonckt (2nd version of V1.1)

L.Marucci, F.Paternò, C.Santoro (3rd version of V1.1)

Affiliation(s): UJF, UCL, CNUCE

Date of Document: September 3rd, 2002

CAMELEON Document: D1.1

Distribution:

Keyword List: Multi-target user interface, user interface plasticity,
Cameleon reference framework

Version: V1.1

Title: CAMELEON Reference
Framework

Id Number: D1.1

Abstract

This document covers the multi-targeting of user interfaces from the software
development perspective. A taxonomic space makes explicit the core issues in
multi-targeting for the development stages as well as for run-time. We propose a
conceptual framework that helps structuring the development process of multi-
target user interfaces as well as supporting run-time adaptation. By doing so, we
are able to clearly characterize the functional coverage of current tools and
identify requirements for future tools.

Title: Reference Framework Id Number: D1.1

1

Table of Contents

1. INTRODUCTION . 2

2. MULTI-CONTEXT, MULTI-TARGET, PLASTIC USER INTERFACES 4

2.1. MULTI-CONTEXT, MULTI-TARGET USER INTERFACES ..4
2.2. PLASTIC USER INTERFACES ..5
2.3. TERMINOLOGY: SUMMARY ..6

3. TAXONOMIC SPACE FOR MULTI-TARGET USER INTERFACES: A SOFTWARE
TOOL PERSPECTIVE. 8

3.1. TARGET SENSITIVITY ..9
3.2. CLASSES OF SOFTWARE TOOLS..9
3.3. ACTORS IN CHARGE OF ADAPTATION .. 10
3.4. COMPUTATION OF MULTI-TARGET USER INTERFACES .. 11
3.5. TARGET PLATFORMS... 11

3.5.1. Definitions... 11
3.5.2. Formal Definitions .. 12

3.6. USER INTERFACE SOFTWARE COMPONENTS .. 14
3.6.1. The Arch Model and Software Adaptation.. 14
3.6.2. Tasks, Multi-targeting and Software Adaptation.. 17

3.7. USER INTERFACE DISTRIBUTION.. 20
3.8. USER INTERFACE MIGRATION... 21

4. THE CAMELEON REFERENCE FRAMEWORK . 22

4.1. PRINCIPLES... 22
4.1.1. Overall Description of the CAMELEON Reference Framework............................ 22
4.1.2. Model-based Approach ... 23
4.1.3. Life Cycle of Domain, Context of Use, and Evolution Models 24

4.2. THE REFERENCE FRAMEWORK FOR THE DESIGN PHASE OF MULTI-TARGETING 27
4.2.1. Principles.. 28
4.2.2. Instantiations of the Reference Framework for the Design Phase.......................... 32
4.2.3. Mathematical Representations of Mappings ... 34

4.3. THE REFERENCE FRAMEWORK FOR THE RUN-TIME PHASE OF MULTI-TARGETING 38
4.3.1. Run-time Adaptation: a Three-step Process.. 38
4.3.2. Distribution Across Components ... 41
4.3.3. Instantiation of the Run-time Reference Framework.. 42

5. USABILITY METRICS . 44

5.1. HUMAN FACTORS CRITERIA .. 44
5.1.1. The ISO 9241-11 Standard.. 45
5.1.2. A Classic and General Definition ... 45

5.2. HUMAN COMPUTER INTERACTION CRITERIA .. 46

6. CONCLUSION . 52

7. REFERENCES. 53

Title: Reference Framework Id Number: D1.1

2

1. Introduction

The field of user interface technology is expanding rapidly. This expansion is driven
by three factors: technology push, users’ expectations, and development costs. With
the advent of digital cell phones, personal organizers, and wall-size augmented
surfaces, users expect to interact with the same interactive system both in the small
and in the large using multiple modalities. In addition, wireless connectivity offers
new opportunities for using interactive systems in different environments (e.g., at
home, in the street, at work) putting new demands on software functionalities such as
context-awareness [Context 01, HUC 00, Harter 99], and dynamic discovery of
interaction resources.

Meanwhile, design principles, methods and software development tools have been
devised to increase systems usability while reducing development costs. But today’s
tools have just caught up with static workstations connected to the Ethernet. Although
they have achieved a high level of sophistication, current methods and tools make a
number of implicit assumptions. In particular, interactive systems are supposed to run
on a personal computer located in a specific environment (typically, the workplace),
exploited by users supposedly sitting in front of a screen.

In general, implicit assumptions simplify implementation issues. On the other hand,
they are limiting factors for innovation. For example, windowing systems and
toolkits, which set the foundations for the GUI paradigm, model windows as
rectangular drawables whose borders are constrained to be parallel to that of the
display. This model is based on the assumption that users keep facing the screen.
With the proliferation of video beamers, it is popular to project window contents on
large surfaces such as tables [Streitz 99]. In this situation, users should be able to
rotate windows so that everyone can share window contents without twisting their
neck. Today, rotating windows must be implemented from scratch from low level
graphics primitives. Because they are screen-centric, windowing systems do not
support topologies that include the surrounding environment (e.g., walls, tables, and
users’ location with respect to interactive surfaces, etc.). Similarly, the standard
workstation is supposed to have a single mouse and keyboard. As a result, multi-user
applications such as MMM [Bier 92] and Kidpad [Benford 00] whose users share
the same screen with multiple mice, require the underlying toolkit and event manager
to be revisited as in MID [Hourcade 99]. The UIMS technology, which inherits the
assumptions of the underlying toolkits, only supports the automatic generation of
WIMP user interfaces for classic personal computers and laptops.

This brief analysis shows that current software techniques primarily address the
development of mono-target user interfaces. As a consequence, multi-target user
interfaces are built in an ad-hoc way, resulting in high development and maintenance
costs. In this document, we call for the identification of new requirements for

Title: Reference Framework Id Number: D1.1

3

software tools and propose a general software framework that addresses the problem
of user interface adaptation to multiple targets.

This document is structured in the following way: first, we define the notions of
multi-target user interfaces as well as the challenging problem of plastic user
interfaces. In Section 3, we propose the multi-context snowflake, a taxonomic space
that helps clarify the software requirements for supporting the development of multi-
target and plastic user interfaces. This problem space makes a clear distinction
between the tools that support the design phases of the development process from
those that support run-time adaptation to multiple targets. In Section 4, we propose a
unifying reference framework that covers both the design time and run time of multi-
target user interfaces. It structures the design phases of multi-target UI’s and provides
a sound basis for discussing a complementary set of tools with run time mechanisms.
Section 5 is devoted to usability criteria. The definition of the terms introduced and
used in this document can be found in the CAMELEON Glossary [D1.1 02].

Title: Reference Framework Id Number: D1.1

4

2. Multi-context, Multi-target, Plastic User Interfaces

Multi-targeting focuses on the technical aspects of adaptation to multiple contexts.
Plasticity provides a way to qualify system usability as adaptation occurs. These two
concepts are presented next.

2.1. Multi-Context, Multi-target User Interfaces

A multi-context user interface is capable of supporting multiple contexts. Context is
an all-embracing term. As a result, to be operational, context can only be defined in
relation to a purpose, or finality. For the purpose of this study, context refers to the
context of use of an interactive system. It is defined along three dimensions:

• The users of the system who are intended to use (and/or who effectively use)
the system,

• The hardware and software platform(s), that is, the computational and
interaction device(s) that can be used (and/or are used, effectively) for
interacting with the system,

• The environment, that is the physical conditions where the interaction can take
place (and/or takes place in practice).

The user may be modelled by a set of attributes. For example, if we refer to the
Human Processor Model [Card 83], the user may be described by the attributes that
characterize the perceptual, cognitive and motor abilities. In particular, disabilities may
be expressed so that the designer and/or the interactive system choose the appropriate
modalities. Other relevant attributes include age, motivation and experience in task
accomplishment and system use.

The platform is modelled in terms of resources, which in turn, determine the way
information is computed, transmitted, rendered, and manipulated by users. Examples
of resources include memory size, network bandwidth, and input and output
interaction devices. Resources motivate the choice for a set of input and output
modalities and, for each modality, the amount of information made available.
Typically, screen size is a determining factor for designing web pages. For exemple,
the platform of the DynaWall includes three identical wall-size tactile screens mounted
side by side [Streitz 99]. Rekimoto’s augmented surfaces are built from an
heterogeneous set of screens whose topology may vary: whereas the table and the
electronic whiteboard are static surfaces, laptops may be moved around on top of the
table [Rekimoto 99]. In Pebbles, PDA’s can be used as input devices to control
information displayed on a wall-mounted electronic board [Myers 98]. In Kidpad
[Benford 00], graphics objects, which are displayed on a single screen, can be
manipulated with a varying number of mice. These examples show that the platform

Title: Reference Framework Id Number: D1.1

5

is not limited to a single personal computer. Instead, it covers all of the computational
and interaction resources available at a given time for accomplishing a set of
correlated tasks. This vision has an impact on the necessity for a new underlying
architecture (actually, IAM an Interaction Abstract Machine that is under development
at UJF). A more formal definition of the notion of platform is provided in Section 3.

The environment denotes "the set of objects, persons and events that are peripheral to
the current activity but that may have an impact on the system and/or users behaviour,
either now or in the future" [Coutaz 02]. According to our definition, an environment
may encompass the entire world. In practice, the boundary is set up by domain
analysts whose role is to elicit the concepts that are relevant to the case at hand. These
include observation of users' practice [Cockton 95, Johnson 95, Lim 94, Beyer 98] as
well as consideration for technical constraints. For example, surrounding noise
should be considered in relation to sonic feedback. Lighting condition is an issue
when it may influence the robustness of a computer vision-based tracking system
[Crowley 00]. User's location provides context for information relevance: tasks that
are central in the office (e.g., writing a paper) may become secondary, or even
irrelevant, in a train. For example, programming a home heating control system would
make sense at home but is very unlikely on the road and would be too complex to be
performed with current telephone technology.

Current research on context of use tends to gather these environment attributes into
categories. Examples include physical conditions (e.g., lighting, pressure,
temperature, audio, surrounding noise, time), location (e.g., absolute and relative
positions, co-location), social conditions (e.g., stress, social interaction, group
dynamics, collaborative tasks), and work organization (structure, user’s role).

Going one-step further than multi-targeting, we introduce the concept of plastic user
interfaces.

2.2. Plastic User interfaces

The term plasticity is inspired from the property of materials that expand and
contract under natural constraints without breaking, thus preserving continuous
usage. Applied to HCI, plasticity is the "capacity of an interactive system to
withstand variations of contexts of use while preserving usability" [Thevenin 99].
The usability of an interactive system is evaluated against a set of properties
selected in the early phases of the development process. A user interface preserves
usability if the properties elicited at the design stage are kept within a predefined
range of values as adaptation occurs to different contexts of use. Section 5 of this
document contains several usability metrics.

Although the properties developed so far in HCI [Gram 96] provide a sound basis
for characterizing usability, they do not cover all aspects of plasticity. In [Calvary

Title: Reference Framework Id Number: D1.1

6

01] we propose additional metrics for evaluating the plasticity of user interfaces.
Whereas multi-target user interfaces guarantee technical adaptation to different
contexts of use, plastic user interfaces not only guarantee technical adaptation, but
guarantee usability as well. Typically, portability of Java user interfaces supports
technical adaptation to different platforms but may not guarantee consistent
behaviour across these platforms.

CAMELEON scenarios emphasize the need for plastic user interfaces [WP3.1
02]. Instead of forcing the user to adapt to the new context of use, the user
interface adapts itself or is adapted to the new target in order to guarantee
continuous usage.

2.3. Terminology: Summary

In summary, for the purpose of the CAMELEON project,

• Context of use is defined as the triple “user, platform, environment”. It is a
synonym for target.

• A multi-target (or multi-context) user interface supports multiple types of
users, platforms and environments. Multi-user, multi-platform and multi-
environment user interfaces are specific classes of multi-target user interfaces.

• A multi-user interface is a multi-target user interface that is sensitive to users
variations. It is adaptable and/or adaptive to multiple archetypes (i.e., classes)
of users. The environment and the platform, either are modelled as archetypes,
or are implicitly represented in the system.

• A multi-platform user interface is a multi-target user interface that is sensitive
to platforms variations. It is adaptable and/or adaptive to multiple classes of
platforms. The environment and user classes, either are modelled as
archetypes, or are implicitly represented in the system.

• A multi-environment user interface is a multi-target user interface that is
sensitive to multiple environments. It is adaptable and/or adaptive to multiple
classes of environments. The platform and user classes, either are modelled as
archetypes, or are implicitly represented in the system. Multi-environment
user interfaces are often assimilated to context-aware user interfaces [Context
01].

• A plastic user interface is a multi-target user interface that preserves usability
across multiple targets. Usability is not intrinsic to a system. Usability can
only be validated against a set of properties set up in the early phases of the
development process.

Title: Reference Framework Id Number: D1.1

7

Having defined the notions of multi-target (multi-context) and plastic user
interfaces, we are now able to present a taxonomic space for multi-targeting. The
goal of this taxonomy is to identify the core issues that software tools should
address to support multi-targeting.

Title: Reference Framework Id Number: D1.1

8

3. Taxonomic Space for Multi-target User Interfaces:
a Software Tool Perspective

Figure 3.1 shows a graphic representation of the problem space for multi-targeting.
Because of its shape, we call it the “multi-target snowflake”. It can be used for
characterizing existing tools or for expressing requirements for future tools. Each axis
of the snowflake makes explicit a number of issues relevant to multi-targeting. These
include: the types of targets that the tool supports (adaptation to platforms,
environments and/or users), the stages of the development process that the tool covers
(design and/or implementation), the actors that perform the adaptation of the user
interface to the target (human, and/or system intervention), the dynamicity of user
interfaces that the tool is able to produce (static pre-computed, and/or dynamic on the
fly computed user interfaces). When considering adaptation to multiple platforms, we
need to discuss the types of platforms that the tool supports as well as the way the
user interface is distributed and migrates across platforms. Similar reasoning holds
for characterizing different types of target environments as well as target users.

Figure 3.1 The Multi-Target Snowflake: a problem space for characterizing
software tools, and/or for expressing requirements for software tools aimed at
supporting multi-target user interfaces.

In the following sub-sections, we present each dimension of the multi-context
snowflake in detail, illustrated with state-of-the-art examples. In particular, we will
develop multi-platform targeting. Although as important, we are not yet in a position
to provide a sound analysis for multi-user targeting. For adaptation to multi-
environment, one may refer to [Coutaz 02, HUC 00, Context 01].

Title: Reference Framework Id Number: D1.1

9

3.1. Target sensitivity

When considering software tools for multi-targeting, the first issue to consider is the
kind of targets a particular tool addresses or is supposed to address. Are we
concerned with multi-platform or multi-environment only? Do we need adaptation to
multiple types of users? Or is it a combination of platforms, environments and users?

For example, ARTStudio [Thevenin 01] addresses the problem of multi-platform
targeting whereas the Context Toolkit [Dey 01] is concerned with environment
sensitivity only. AVANTI, which can support visually impaired users, addresses
adaptation to end-users [Stephanidis 01a]. We are not aware of any tool (or
combination of tools) that supports all three dimensions of multi-targeting (i.e., users,
platforms and environments).

3.2. Classes of Software tools

As with any software tool, we must make a distinction between tools that support the
design phases of a system from the implementation tools and mechanisms used at run
time.

Design phases are primarily concerned with the specification tools that support
modelling activities, configuration management and versioning, or code generation:

• Modelling is a foundational activity in system design. In HCI, model-based
tools such as Humanoid [Szekely 96, Szekely 93], ADEPT [Johnson 93,
Johnson 95] and TRIDENT [Vanderdonckt 95], have shown significant
promises, not only as tools for thoughts, but as generators as well.

• Configuration management and versioning have been initiated with the
emergence of large-scale software. They apply to multi-targeting as well for
two reasons. First, the code that supports a particular target can result from the
high level specification of a configuration. Second, the iterative nature of user
interface development calls for versioning support. In particular, consistency
must be maintained between the configurations that each support a particular
target.

• Generation has long been viewed as a reification process from high-level
abstract descriptions to executable code. For the purpose of multi-targeting,
we suggest generation by reification as well as by translation where
transformations are applied to descriptions while preserving their level of
abstraction. The Multi-target Reference Framework described in section 4
shows how to combine reification and translation.

• Abstraction results from the process of abstracting. In the context of reverse
engineering, it is the opposite of reification

Title: Reference Framework Id Number: D1.1

10

Implementation phases are concerned with coding. Implementation may rely on
infrastructure frameworks and toolkits. Infrastructure frameworks, such as Internet or
X window, provide implementers with a basic reusable structure that acts as a
foundation for other system components such as toolkits. BEACH is an infrastructure
that supports any number of display screens each connected to a PC [Tandler 01].
MID is an infrastructure that extends Windows for supporting any number of mice to
control a unique display [Benford 00]. UJF is currently developing IAM (Interaction
Abstract Machine), an infrastructure aimed at supporting any number of displays and
input devices, which, from the programmer’s perspective will offer a uniform and
dynamic interaction space. Similar requirements motivate the blackboard-based
architecture developed for iRoom [Winograd 01]. Dey et al.’s Context Toolkit, is a
toolkit for developing user interfaces that are sensitive to the environment [Dey 01].

3.3. Actors in charge of adaptation

The actors in charge of adaptation depend on the phase of the development process:

• At the design stage, multi-targeting can be performed explicitly by humans
such as system designers and implementers, and/or it can rely on dedicated
tools. ARTstudio [Thevenin 02] authorizes mixed initiative cooperation.

• At the installation phase, the system may be tuned by the system manager
when it is first installed. For example, a simplified version of the MacOS
finder can be configured from the full set of functionalities.

• At run time, the adaptation may be performed by the user and/or the system. A
UI is adaptable when it adapts at the user’s request (typically, by providing
preferences menus). It is adaptive when the user interface adapts on its own
initiative.

Adaptability and adaptativity have not yet received a common agreement in
the CAMELEON consortium. For UCL and CNUCE, adaptability refers to the
capacity of a UI to change its behaviour according to a small set of predefined
options whereas adaptativity characterizes applications that are able to
automatically modify their behaviour depending on externally-generated
events.

Actually, the right balance between adaptability and adaptivity is a tricky
problem. For example, in context-aware computing, Cheverst et al. report that
using context to simplify users’ tasks is sometimes perceived by users as
system preemption [Cheverst 01]. Adaptivity to users has been widely studied
in the nineties [Browne 90] and is now available in some widely used
interactive software systems (such as Microsoft Office and Amazon web site).
However, there are two main risks: the tailored reaction may not match the

Title: Reference Framework Id Number: D1.1

11

user’s interest, due to wrong deductions, or the user may not understand the
reasons for the change of the system’s behaviour resulting in disorientation
and frustration.

3.4. Computation of Multi-target User Interfaces

The phases that designers and developers elicit for multi-targeting have a direct impact
on the types of user interfaces produced for the run time phase. Multi-target user
interfaces may be pre-computed, and/or they may be computed on the fly.

• Pre-computed user interfaces result from adaptation performed during the
design, implementation or installation phases of the development process:
given a functional core [Arch 92], a specific user interface is generated for
every known target.

• Dynamic multi-target user interfaces are computed on the fly based on run
time mechanisms. Examples of run time mechanisms include the Multimodal
Toolkit [Crease 00] that supports dynamic adaptation to interaction devices.
FlexClock [Eisenstein 00], which dynamically adapts to window sizes, is
another example.

• Hybrid multi-target user interfaces cover cases where multi-targeting is a
combination of static pre-computed components with on the fly adaptation.
As a general rule of thumb, pre-computation may be used for the overall
structure of the user interface for satisfying response time requirements,
whereas dynamic computation is applied to fine grained adjustments.

3.5. Target platforms

Experience shows that some user interfaces are aimed at simple platforms such as
laptops and PDA’s, while others, such as I-land [Streitz 99], require the aggregation
of multiple computers. In addition, peripheral input and output devices can be
connected to, or disconnected from, a computer at any time. We synthesize the variety
of situations with the following notions: elementary platforms, which are built from
core resources and extension resources, and clusters, which are built from elementary
platforms.

3.5.1. Definitions

An elementary platform is a set of physical and software resources that function
together to form a working computational unit whose state can be observed and/or
modified by a human user. None of these resources per se is able to provide the user
with observable and/or modifiable computational function. A personal computer, a

Title: Reference Framework Id Number: D1.1

12

PDA, or a mobile phone, are elementary platforms. On the other hand, resources such
as processors, central and secondary memories, input and output interaction devices,
sensors, and software drivers, are unable, individually, to provide the user with
observable and/or modifiable computational function.

Some resources are packaged together as an immutable configuration called a core
configuration. For example, a laptop, which is composed of a fixed configuration of
resources, is a core configuration. The resources that form a core configuration are
core resources . Other resources such as external displays, sensors, keyboards and
mice, can be bound to (and unbound from) a core configuration at will. They are
extension resources.

A cluster is a composition of elementary platforms. The cluster is homogeneous
when it is composed of elementary platforms of the same class. For example, the
DynaWall is an homogenous cluster composed of three electronic white boards
[Streitz 99]. The cluster is heterogeneous when different types of platforms are
combined together as in Rekimoto’s augmented surfaces [Rekimoto 99].

3.5.2. Formal Definitions

More formally, let

• C be the set of core configurations

• E be the set of extension resources

• C', C" ≠ {}: C'⊂ C and C" = C – C'

• E', E": E' ⊂ E and E" = E – E'

• c1, …, cn ∈ C , e1, …, em ∈ E for n ∈ N*, m ∈ N

• Operational be a predicate over a set of resources that returns true when this
set forms a working computational artefact whose state can be observed and/or
modified by a human user.

A platform is composed of a set of core and extension resources which, connected
together, form a working computational artefact whose state can be observed and/or
modified by a human user:

P = { c1, …, cn } ∪ { e1, …, em } and Operational (P)

P is an elementary platform if and only if:

¬∃ C', E', C", E": Operational (C' ∪ E') and Operational (C" ∪ E").

Title: Reference Framework Id Number: D1.1

13

In other words, P is an elementary platform if it not possible to compose two
platforms from the set of resources that constitute P.

P is a cluster if it is possible to compose two platforms from the set of resources that
constitute P:

∃ C', E', C", E": Operational (C' ∪ E') and Operational (C" ∪ E").

Note that:

• A core configuration is not necessarily operational. For example, the Intel
Personal Server, a bluetooth-enabled micro-drive with no interaction device, is
a core configuration but not an elementary platform: its state cannot be
observed nor modified until it wirelessly connects to extension resources such
as a display and/or a keyboard [Want 01].

• A laptop is an elementary platform. When augmented with extension
resources such as a second mouse and sensors, it is still an elementary
platform. Similarly, Rekimoto’s data tiles form an elementary platform that
can be dynamically extended by placing physical transparent tiles on a tray
composed of an LCD flat screen display [Rekimoto 01].

To our knowledge, design tools for multi-platform user interfaces address elementary
platforms whose configuration is known at the design stage. Clusters are not
addressed. On the other hand, at the implementation level, software infrastructures
such as BEACH, have been developed to support clusters built from an
homogeneous set of core resources (i.e., PC’s) connected to a varying number of
screens [Tandler 01]. Whereas BEACH provides the programmer with a single
logical output display mapped onto multiple physical displays, MID addresses the
dynamic connection of multiple input devices to a single core configuration. Similarly,
Pebbles allows the dynamic connection of multiple PDA’s to a single core
configuration [Myers 98]. None of the current infrastructures addresses the dynamic
configuration of clusters, including the discovery of both input and output interaction
resources. The architecture developed for iRoom [Winograd 01] is an attempt to
address these issues.

According to these definitions, a platform is modelled by a set of attributes that
include: the type of the platform (elementary, core or extension resource, cluster),
hardware features (e.g., screen resolution, processor frequency, memory size,
colour availability, interaction devices) and software features (e.g., operating
system, graphical toolkit).

Title: Reference Framework Id Number: D1.1

14

3.6. User Interface Software Components

Multi-targeting implies that a number of software components be affected by the
adaptation process. A large body of literature exists about this issue. However,
because the software perspective is often mixed with the user’s perception of
adaptation, they do not provide a clear, non-ambiguous picture. For example,
Dieterich et al. introduce five levels of adaptation: the lexical, syntactic, semantic,
tasks and goals levels [Dieterich 93]. More recently, Stephanidis et al. identify the
lexical, syntactic and semantic levels of adaptation using examples as definitions
[Stephanidis 01b]. Typically, graphical layout reconfiguration and colour changes are
defined as lexical adaptations. An example of syntactic adaptation includes switching
from a “specify object first” to a “specify function first” command style.

We propose to use Arch [Arch 92], a reference software architecture model, as a
sound basis for characterizing software adaptation to target changes. We then
illustrate the use of Arch in relation to tasks and multi-targeting.

3.6.1. The Arch Model and Software Adaptation

Figure 3.2 shows the functional decomposition of an interactive system according to
the Arch model [Arch 92]:

• The Functional Core (FC) implements the domain-dependent concepts and
functions.

• At the other extreme, the Physical Presentation Component (PPC), which is
dependent on the actual toolkit used for implementing the look and feel of the
interactive system, is in charge of presenting the domain concepts and
functions in terms of physical interaction objects (also known as widgets or
physical interactors).

• The keystone of the arch structure is the Dialogue Component (DC) whose
role consists of regulating task sequencing. For example, the Dialogue
Component ensures that the user executes the task “open document” before
performing any editing task.

• FC, DC and PPC do not exchange data directly. Instead, they mediate through
adaptors: the Functional Core Adaptor and the Logical Presentation
Component.

• The Functional Core Adaptor (FCA) is intended to accommodate various
forms of mismatch between the Functional Core and the user interface per se.
The FCA can be understood as the virtual application layer.

• The Logical Presentation Component insulates the rendering of domain
objects from the actual interaction toolkit of the target platform. It is expressed

Title: Reference Framework Id Number: D1.1

15

in terms of logical presentation objects provided by a virtual toolkit such as
Java Swing, XVT of Galaxy.

Figure 3.2 The Arch reference architecture model.

Using Arch as a structuring framework, the software components concerned by
multi-targeting are the FCA, the DC, the LPC, the PPC, or a combination of them. In
particular,

• At the Physical Presentation Component level, classes of physical interactors
used for implementing the user interface are kept unchanged but their
rendering and behaviour may change across platforms. For example, if a
concept is rendered as a button class, this concept will be represented as a
button whatever the target platform is. However, as shown in Figure 3.3, the
look and feel of the button may vary. This type of adaptation is used in Tk as
well as in Java/AWT with the notion of peers.

Figure 3.3. Physical level of adaptation.

Button

MacOS-X
(NSButton)

Java/JFC
(JButton)

Palm
(Button)

On platform:

Dialogue
Component

Functional Core Adaptor
or Virtual Application

Logical Presentation Component
or Virtual Toolkit

Interaction Toolkit Component

Physical Presentation Component
or

Application Functional Core
or

Domain-Specific Component

Dialogue
Component

-

Possibly adapted Domain Objects Logical Presentation Objects

Interaction ObjectsDomain Objects

Title: Reference Framework Id Number: D1.1

16

• At the Logical Presentation Component level, adaptation consists of changing
the representation of the domain concepts and/or of the user’s tasks. For
example, the selection of month can be performed through a Label+Textfield,
or as a Label+Combobox, or as a dedicated physical interactor (see Figure
3.4). In a LPC adaptation, physical interactors may change across platforms
provided that their representational and interactional capabilities are
equivalent. The implementation of an LPC level adaptation can usefully rely
on the distinction between Abstract Interactive Objects and Concrete
Interactive Objects as presented in [Vanderdonckt 93].

Figure 3.4. Logical level of adaptation. On the left, adaptation of the presentation
(same task, different interactors). On the right, adaptation of the navigation (same
task, different articulation).

• At the Dialog Component level, the tasks that can be executed with the system
are kept unchanged but their organization is modified. As a result, the
structure of the dialogue is changed. AVANTI’s polymorphic tasks
[Stephanidis 01a] are an example of a DC level adaptation.

• At the Functional Core Adaptor level, the natures of the entities as well as the
functions exported by the functional core are changed. Zizi’s semantic zoom is
an example of an FCA level adaptation [Zizi 94].

As illustrated by the above examples, Arch offers a clear analysis of the impact of a
particular adaptation on the software components of a user interface. The following
section analyses the relation between tasks, multi-targeting and software adaptation at
a finer grain.

Adaptation of the navigation:
Equivalent navigation capacity

Adaptation of the presentation:
Equivalent functional and representational

capacities (month specification)

Label + TextField : Label + ComboBox :

Dedicated interactor:

Thumbnails:

Hyper link:

No navigation :

Adaptation of the navigation:
Equivalent navigation capacity

Adaptation of the presentation:
Equivalent functional and representational

capacities (month specification)

Label + TextField : Label + ComboBox :

Dedicated interactor:

Thumbnails:

Hyper link:

No navigation :

Title: Reference Framework Id Number: D1.1

17

3.6.2. Tasks, Multi-targeting and Software Adaptation

When multi-targeting, it is important to understand what type of tasks can actually be
performed on the targets. We have identified a number of possibilities illustrated here
with an interactive system that supports the visit of museum exhibits.

• Same task on multiple targets with the same physical interactors. At best,
adaptation is performed at the Physical Presentation level. For the museum
system, textual links are provided to access general information about the
museum (how to reach, timetable, etc.) whatever the target platform is.

• Same task on multiple targets, but with different physical interactors. This is a
Logical Presentation Adaptation. Figure 3.5 illustrates this situation. In both
cases, users can select a section of the museum (e.g., Roman Archaeology,
Modern Sculpture, etc). However, on the desktop system, a large, colored
interactive map of the museum is at the users’ disposal, whereas on the phone,
because of limited screen capabilities, only a text link is available to denote a
museum section.

Figure 3.5. Same task (selecting a section in a museum), different interactors: a
Logical Presentation level adaptation. On the left, a map interactor shows the
sections of the museum on a workstation. On the right, sections are represented as
textual links on the mobile phone.

• Same task on multiple targets, but with different sets of domain concepts. This
is a Functional Core Adaptor level adaptation. Figure 3.6 illustrates the
situation for presenting information about works of art. On the desktop
workstation, it is possible to access a large set of domain elements (title, image
type, description, author, material, and date of creation). On the WAP phone,
on the other hand, a low-resolution image of the art of work is provided (to
give users a rough idea of what the work of art is about), along with the title

Title: Reference Framework Id Number: D1.1

18

and the museum section where to find it. One will find in [D2.1 02] how the
CTTE tool makes it possible to specify the domain sets for each task for
distinct target platforms.

Figure 3.6. Same task (accessing a work of art), different domain concepts: a
Functional Core Adaptor level adaptation. On the left, only the first-class
attributes of a work of art are displayed for WAP-enabled phones. On the right,
users have access to all of the attributes available about works of art.

• Same task on multiple targets, but with different task decomposition. This is a
Dialogue Control level of adaptation. Depending on the target, the task is
decomposed differently, possibly with different sets of sub-tasks. Figure 3.7
illustrates this situation for the task “access works of art”. On desktop
workstations, users can accomplish additional sub-tasks, which are not
supported on the WAP enabled device. For example, reading reviews of a
particular work of art. This is a lengthy information-processing task that one
can perform satisfactorily when sitting in front of a desktop computer, but
which is unacceptable with handheld devices.

Figure 3.7. Same task (accessing a work of art), with different task
decompositions: a Dialogue Component level adaptation. On the left, users using
a workstation can perform subtasks such as reading reviews. These subtasks are
not available on mobile phones (on the right).

Title: Reference Framework Id Number: D1.1

19

• Same task on multiple targets, but with different temporal constraints among
subtasks. It is a Dialogue Control level adaptation. Consider the case of users
who wish to electronically reserve their tickets for a particular visit in order to
avoid queues. As shown in Figure 3.8, users have to provide personal
information. However, while in the desktop workstation they are free to filling
in the form in any order, they are constrained by the WAP interface to follow
a predefined sequential order.

Figure 3.8. Same task (providing personal information), but different temporal
relationships between subtasks: a Dialogue Component level adaptation. On the
workstation (on the left), fields of the form can be filled in any order. On the
WAP phone, a sequential order is imposed.

• Dependencies among tasks performed on different targets. This is a Functional
Core level consideration. Consider the task for reserving tickets. With the
desktop, users can access, compare and contrast the different options about the
best time for visiting the museum (depending on planned exhibitions, time,
etc.). Once they have selected their preferences and entered personal data, the
system provides them with a special reservation code that identifies the data
associated with a specific visit. It is only when users arrive at the museum that
they need the reservation code. The WAP device they usually bring should
therefore be able to show the code necessary to pick up the ticket at the
museum and avoid queuing. Figure 3.9 illustrates the scenario. Capturing task
dependencies is particularly important when the result of a available only on a
specific target affects the performance of another task available on a different
target. A similar situation occurs when users physically visit the museum and
simultaneously annotate the most interesting works of art on their PDA. Back

Title: Reference Framework Id Number: D1.1

20

at home, they would appreciate being able to receive information regarding
these works of art when they first access the museum web site with their
desktop workstation.

Figure 3.9. Dependencies between tasks executed on distinct target platforms. The
reservation code obtained at home on the workstation is then shown on the WAP
phone when needed to enter the museum.

3.7. User Interface Distribution

Clusters of platforms open the opportunity for distributing the user interface across
multiple interaction devices. The granularity for distribution may vary from
application level to pixel level:

• At the application level, the user interface is fully replicated on the platforms
of the target cluster. If the cluster is heterogeneous (e.g., is comprised of a
mixture of PC’s and PDA’s), then each platform runs a specific targeted user
interface initialised, for example, from a pre-computed user interface. All of
these user interfaces, however, simultaneously share the same functional core.

• At the workspace level, the user interface components that can migrate
between platforms are workspaces. A workspace is an interaction space. It
groups together a collection of interactors that support the execution of a set of
logically connected tasks. In graphical user interfaces, a workspace is mapped
onto the notion of window. The painter metaphor presented in Rekimoto’s
pick and drop [Rekimoto 97, Ayatsuka 00] is an example of distribution at the
workspace level: the palettes of tools are presented on a PDA whereas the
drawing area is mapped onto an electronic white board. Going one-step

Title: Reference Framework Id Number: D1.1

21

further, the tools palette (possibly the drawing area) can migrate at run time
between the PDA and the electronic board (See migration in section 3.8).

• At the domain concept level, the user interface components that can be
distributed between platforms are physical interactors. Here, physical
interactors allow users to manipulate domain concepts. In Rekimoto’s
augmented surfaces, domain concepts can be distributed between laptops and
horizontal and vertical surfaces. As for Built-IT [Rauterberg 98], the topology
of the rendering surfaces matters: objects are represented as 3D graphics
interactors on laptops, whereas 2D rendering is used for objects placed on an
horizontal surface.

• At the pixel level, any user interface component can be partitioned across
multiple platforms. For example, in I-land, a window may lie over two
contiguous white boards simultaneously. When the cluster is heterogeneous,
designers need to consider multiple sources of disruption. For example, how to
represent a window whose content lies across a white board and a PDA? From
a user’s perspective, is this desirable?

3.8. User Interface Migration

User interface migration corresponds to the transfer of the user interface between
different platforms. Migration may happen at run time or between sessions only:

• On the fly migration requires that the state of the functional core be saved as
well as that of the user interface. The state of the user interface may be saved
at multiple levels of granularity: when saved at the Dialogue Component level,
the user can pursue the job from the beginning of the current task; when saved
at the Logical Presentation or at the Physical Presentation levels, the user is
able to carry on the current task at the physical action level, that is, at the exact
point within the current task. There is no discontinuity.

• Migration between sessions implies that the user has to quit, then restart the
application from the saved state of the functional core. In this case, the
interaction process is heavily interrupted. From the user’s perspective, how
disruption can be alleviated?

User interface migration between platforms, as well as user interface distribution
put high demands on the underlying infrastructure and toolkits. They also raise
interesting user-centered design issues that should be addressed within the design
process. Implementation and design phases are addressed next with the
presentation of the CAMELEON Reference Framework.

Title: Reference Framework Id Number: D1.1

22

4. The CAMELEON Reference Framework

We first present the overall principles of the CAMELEON reference framework
(Section 4.1). We then successively discuss the use of the framework for the
design phase (Section 4.2) and the run-time phase (Section 4.3) of a multi-target
user interface.

4.1. Principles

The CAMELEON reference framework results from two key principles:

• A model-based approach,

• Coverage of both the design and run-time phases of a multi-target user
interface.

These two principles are discussed next following the overall description of the
reference framework.

4.1.1. Overall Description of the CAMELEON Reference Framework

As shown in Figure 4.1, the framework is three-fold: models, design phase and run
time phase.

• The ontological models (left side of the figure) are abstract models of the
concepts (and their relationships) involved in multi-targeting. Ontological
models are instantiated into archetypal and/or observed models. Archetypal
models are declarative models that serve as input to the design of a particular
interactive system. Observed models are executable models that support the
adaptation process at run-time.

• The design phase (top right of the figure) complies with a structured
development process whose end result is a set of executable user interfaces
each targeted at particular archetypal context of use.

• For the run-time phase (bottom of the figure), a run-time configuration is built
from a run time infrastructure and the user interfaces produced in the design
phase. They, together, cooperate to support run time adaptation.

Title: Reference Framework Id Number: D1.1

23

Figure 4.1. The CAMELEON Reference Framework. Di denotes the name of a
model specified above the notation (Di). For example, D1 denotes a Concepts
model, and D2, a Tasks model. Italic is used to express the presence of knowledge
from an archetypal model in a model produced in the design or run-time phases.
For example, the notation D1, D 2, D 3 in the Concepts and Task Model D8 means
that D8 contains knowledge about the archetypal Concepts, Task and User models
of Configuration 2 (see Section 4.2.1.2). S stands for situation recognition, C for
computation of a reaction, and E for execution of a reaction.

Concepts
(D1)

Config 1 Concepts and
Task Model

(D8)

Concrete
interface

(D10)

Final UI
for

Config 1
(D11)

Abstract
interface

(D9)

D8

D1, D2, D3

D10

D8, D9, D4, D5

D11

D9, D10, R3, R4

D9

D8

S
C
E

Runtime Infrastructure
R5

Ontological models

Domain

Concepts

Tasks

Context of use

User

Platform

Environment

Adaptation

Evolution

Transition

Archetypal models

Config 2

Tasks
(D2)

User
(D3)

Platform
(D4)

Environment
(D5)

Evolution
(D6)

Transition
(D7)

D1

D2

D3

D4

D5

D6

D7

Observed
models

S
C
E

S
C
E

4.1.2. Model-based Approach

Model-based approaches, which rely on high-level specifications, provide the
foundations for code generation and reverse engineering. As a result, they
alleviate the cost of code production while improving code quality. As shown in
Figure 4.2, the CAMELEON Reference Framework recommends the specification
of the following classes of description:

Title: Reference Framework Id Number: D1.1

24

• The Domain Model covers the domain concepts and users tasks. Domain
concepts denote the entities that users manipulate in their tasks. Tasks refer to
the activities users undertake in order to reach their goals with the system.

• The Context of use Model describes the context of use in terms of the user, the
platform and the environment. The attributes mentioned in section 2.1 may be
considered to populate this model.

• The Adaptation Model specifies the reaction to adopt when the context of use
changes. It includes the Evolution Model that identifies the new UI to switch
to, and the Transition Model that denotes the particular Transition User
Interface to be used during the adaptation process. A transition UI allows the
user to evaluate the evolution of the adaptation process [Barralon 02].

The models produced in the design phases (i.e., the Task-oriented specification,
the Abstract UI, and the Final UI) will be presented in detail in Section 4.2. Those
used in the run-time phase will be discussed in Section 4.3.

In practice, the domain model, the context of use model, and the adaptation
model, which serve as the central source of knowledge in the framework, exist in
three forms: ontological, instantiated, and observed. A form corresponds to a step
in the life cycle of a model.

4.1.3. Life Cycle of Domain, Context of Use, and Evolution Models

Instantiated, a model, whether it be a domain, a context of use, or an adaptation
model, serves in the design phase of a user interface. Observed, a model, whether
it be a domain, a context of use, or an adaptation model, serves at run-time for he
dynamic adaptation process. Ontological, it serves the CAMELEON consortium
as a basis for a theory.

“An ontology is a formal explicit specification of a shared conceptualisation”
[Gruber 95]. “A conceptualisation … refers to an abstract model of how people
think about things in the world, usually restricted to a particular subject area. An
explicit specification means the concepts and the relationships of the abstract
model are given explicit terms and definitions.” [Gruninger 02]. For the
CAMELEON consortium, the subject area is multi-targeting.

In the context of the CAMELEON reference framework , ontological models are
meta-models that make explicit the key-dimensions for addressing multi-targeting.
They are independent from any domain and interactive system, but they make
explicit the CAMELEON subject area: multi-targeting. When instantiated, they
give rise to archetypal models which, this time, depend on the domain and the
interactive system being developed. As introduced above, multi-targeting involves
three classes of ontological models: domain models, context of use models, and

Title: Reference Framework Id Number: D1.1

25

adaptation models. All of these models are generic. They serve as tools for
reasoning about multi-targeting.

Figure 4.2. Models are at the centre of the reference framework for both the design
and run-time phases. In (a), domain, context of use, and adaptation models are
used for statically developing different versions of a user interface each targeted at
a specific target. In (b), domain, context of use, and adaptation models are used
for dynamically reconfiguring a user interface in response to changes in the
context of use. Arrows denote “are used by” relationships. They are shown as
indicative examples of relationships. In theory, domain, context of use, and
evolution models, may all impact any model developed in the design and run-time
phases.

Concepts

Tasks

Platform

Environment

Evolution

Transition

Task-Oriented
Specification

Final UI

Concrete User
Interface

Abstract User
Interface

Models used for both

the Design and Run-time phases

(a) Design phase: Developing
UI versions for different targets

Current run-time

Configuration

New run-time
Configuration

Reconfiguration

(b) Run-time phase: UI
adapts to changes of the
Context of use

User

- Domain -

- Context of use -

- Adaptation -

 The ontological domain models for multi-targeting extend domain models to
address multi-targeting. For example, the ontological concept model is UML
classes enriched with the expression of the range of values for the domain
concepts [Thevenin 99, Thevenin 01]. When instantiated as an archetypal domain
model, this extension makes it possible to express that a particular interactive
system handles the concept of month and that a month is an integer comprised
between 1 and 12. The ontological tasks model may be ConcurTaskTrees
concepts [Paternò 94] enhanced with decorations to specify the contexts of use
for which each task makes sense. When instantiated as an archetypal task model,

Title: Reference Framework Id Number: D1.1

26

it could express the fact that the task “reading reviews about a work of art” does
not make sense on a PDA in a train.

The ontological context of use models supports reasoning about the target user,
platform and environment. Except for the user model that comes from model-
based approaches [Marucci 02], the platform and the environment models have
been overlooked so far. Now a number of researchers are concerned with these
notions [Dey 00] [Salber 99] [Schmidt 99]. We now explicitly introduce these
models to convey the physical context of use. The ontological platform model
makes explicit the dimensions for describing the software and hardware resources
available. For example, it may support the distinction between elementary
platforms, which are built from core resources and extension resources, and
clusters, which are built from elementary platforms.

The interactors description is one aspect of the platform model. It describes the
interactors available on the platform for the presentation of the user interface.
According to [Daassi 02], an (ontological) interactor comprises the following
items:

• The abstraction (i.e., the data types) the interactor is able to represent as well
as the user’s tasks it is able to support (e.g., selection);

• The physical presentations owned by the interactor (e.g., a graphical menu,
and/or a spoken list of menu items, etc.). Each one of the possible
presentations of an interactor includes: (a) the look and feel of the interactor
(b) its requirements in terms of input and output resources (for example, for a
graphical interactor, the screen footprint and the existence of a pointing
device) (c) its side effects on the context of use (for example, for a sonic
presentation, the possible increase of the noise level) (d) the properties the
presentation conveys (for example, the traditional IFIP properties [Gram 96]
as well as the proactive nature of the presentation. (A presentation is proactive
if it guides the user in the accomplishment of the task.);

• The control that links together the abstraction and the presentations facets of
the interactor. The control specifies whether the association between the
abstraction and the presentations is typical or atypical for a particular context
of use.

The ontological environment model identifies generic dimensions for describing
the surrounding environment. Salber’s, Dey’s and Crowley et al.’s work are
attempts in this direction [Salber 99, Dey 01, Crowley 02, Coutaz 02].

The ontological adaptation models make explicit the dimensions for describing
the reaction in case of changes in the context of use:

Title: Reference Framework Id Number: D1.1

27

• The ontological evolution model includes the notion of triggers and reaction.
In turn, triggers include: entering a context of use, exiting a context of use,
being in a context of use. Given a trigger, a reaction can be specified, e.g.,
switching to a new UI.

• The ontological transition model aims at alleviating discontinuities between
changes of context. It offers the opportunity to associate a prologue and an
epilogue to a reaction. These epilogue and prologue include the specification
of the granularity of the state to be saved and restored along with the
Transition User Interface to be executed while adaptation occurs (Cf. section
4.3).

Whereas ontological models are generic (i.e., they are independent from any
application domain and context of use), archetypal models result from the
instantiation of the ontological models for a particular application domain and a
particular set of contexts of use. For example, given an interactive system to be
developed, Figure 4.1 shows two sets of archetypal models denoted as
Configuration 1 and Configuration 2. Configuration 1 corresponds to the set of
archetypal models applicable in a context of use where as Configuration 2
corresponds to a different context of use, but both of them apply to the same
interactive system.

Archetypal models act as classes of potential effective models. For example, an
archetypal platform PDA may fit a Palm, a Psion or an Ipaq. The observed models
are the effective models observed at run time. They may fit a single or multiple
archetypal contexts of use in case of overlapping multi-target domains.

Archetypal and observed models respectively support the design phase and run
time phase of multi-target UIs.

Having introduced the principles of the CAMELEON reference framework, we
now present in detail the framework when used in the design phase of multi-
targeting.

 4.2. The Reference Framework for the Design Phase of
Multi-targeting

The reference framework for the design phase provides designers and developers
with generic principles for structuring and understanding the development process
of multi-target user interfaces. It conveys a number of principles : reification,
translation, human intervention, factorization, decoration, and instanciation.
These are discussed next in detail followed in 4.3.2 by the description of a number
of interpretations of the theoretical framework. Mathematical expressions of the
operation are presented in 4.2.3.

Title: Reference Framework Id Number: D1.1

28

4.2.1. Principles

The design phase is based on domain, context of use and adaptation models that
are instantiations of ontological domain, context of use, adaptation models
respectively. The archetypal models are referenced along the development
process. As shown in Figure 4.3, the process is a combination of vertical
reification and horizontal translation. A vertical reification is applied for a
particular target while translation is used to express bridges between the
descriptions for different targets. Reification and translation are discussed next.

Figure 4.3 The Reference Framework for the design phase of multi-target user
interfaces.

Task-oriented
specification

Final UI
for Config 1

Concrete
interface

Abstract
interface

Concepts

Tasks

Platform

Environment

Interactors

Evolution

Configuration 2

Task-oriented
specification

Final UI
for Config 2

Concrete
interface

Abstract
interface

: Reification : Translation : Reference: Human Intervention

Task-oriented
specification

Concrete
interface

Abstract
interface

Configuration 1

Task-oriented
specification

Concrete
interface

Abstract
interface

: Reification : Translation : Reference: Human Intervention: Reification : Translation : Reference: Human Intervention

Concepts

Tasks

Platform

Environment

Evolution

Transition

User

Concepts

Tasks

Platform

Environment

Evolution

Transition

User

4.2.1.1. Reification and Translation

Reification covers the inference process from high-level abstract descriptions to
run-time code. As shown in Figure 4.3, the framework recommends a four-step
reification process: a Concepts-and-Tasks Model is reified into an Abstract User
Interface which, in turn, leads to a Concrete user Interface. A Concrete User
Interface is then turned into a Final User Interface.

• At the highest level, the Concepts-and-Tasks Model brings together the
concepts and the tasks descriptions produced by the designers for that
particular interactive system and that particular context of use.

Title: Reference Framework Id Number: D1.1

29

• An Abstract User Interface (Abstract UI) is a canonical expression of the
rendering of the domain concepts and functions in a way that is independent
from the interactors available on the targets. For example, in ARTStudio, an
Abstract UI is a collection of related workspaces. The relations between the
workspaces are inferred from the task relations expressed in the Concepts-and-
Tasks model. Similarly, connectedness between concepts and tasks is inferred
from the Concepts-and-Tasks model.

• A Concrete User Interface (Concrete UI) turns an Abstract UI into an
interactor-dependent expression. Although a Concrete UI makes explicit the
final look and feel of the Final User Interface, it is still a mockup than runs
only within the multi-target development environment.

• A Final User Interface (Final UI), generated from a Concrete UI, is expressed
in source code, such as Java and HTML. It can then be interpreted or compiled
as a pre-computed user interface and plugged into a run-time infrastructure
that supports dynamic adaptation to multiple targets (see Section 4.3).

A translation is an operation that transforms a description intended for a particular
target into a description of the same class but aimed at a different target. As shown in
Figure 4.3, translation may be applied between Task-and-Concepts for different
targets, and/or between Abstract UI’s, and/or Concrete UI’s, and/or Final UI’s.

By combination of reification and translation, the production of intermediary models
may be avoided. As a short cut, a cross operator is introduced to both translate to
another target and change the level of reification [Bouillon 02].

Reification and translation may preserve or consume knowledge. This issue is
discussed in the following section.

4.2.1.2. Knowledge Life Cycle

Archetypal models can be referenced at any stage of the reification and translation
process. In Figure 4.1, references to an archetypal model are denoted by grey arrows.
Delaying the reference to context of use (i.e., to the user, platform and environment
models) at the latest stages of the reification process, results in a wider domain for
multi-targeting. Whatever this reference point is, knowledge may be preserved by the
transformations.

An italic-based notation is introduced in the reference framework to make observable
the life cycle of knowledge through the design phase process: at Level I, Model Dj is
mentioned if knowledge modelled in Dj is present at I. Traceability of knowledge is
useful for run-time adaptation. As a counter example, in ARTStudio, the task-oriented
specification is lost at the Abstract User Interface level. This means that the user
interface is not able to dynamically accommodate another context of use in which a
different task model is required (Cf. the Museum examples in Section 3.6.2). To

Title: Reference Framework Id Number: D1.1

30

overcome this drawback, first, the designer has to specify a second configuration with
a different task model (as shown in Figure 4.1) leading to two pre-computed UI’s,
and second, the run-time infrastructure has to manage the change of context by
commuting between the pre-computed user interfaces. (See Section 4.3 for the run-
time phase.)

Although high-level specifications are powerful tools, they have a cost. As observed
by Myers et al. about the problem of “threshold and ceiling effects” [Myers 00], high
ceiling tools (i.e., powerful tools) require high learning curves. Conversely, low
threshold tools, which are easy to master, do not necessarily provide the support
needed. Human intervention, factorization and decoration, discussed next, are
intended to alleviate this dual problem.

4.2.1.3. Human Intervention

In the absence of tool support, reification and translation are performed manually by
human experts. At the other extreme, tools can perform them automatically. But full
automation has a price: either the tool produces common-denominator solutions (e.g.,
standard WIMP UI’s produced by model-based UI generators), or the designer has to
specify an overwhelming number of details to get the desired results.

As shown in Figure 4.3, the CAMELEON Framework for the design phase stresses
human and tool cooperation in the following way: the multi-target development
environment infers descriptions that the designer can then adjust to specific
requirements. Decorations, presented next, is one way to perform adjustments.

4.2.1.4. Decoration

Generally speaking, a decoration is a kind of information attached to description
elements. Although a decoration does not modify the description per se, it supports
the expression of information that modifies the interpretation of the description.

Applied to multi-targeting, decorations are used to express exceptions to nominal
conditions. Designers focus on the representative target, and then express deviations
from the reference case study. We suggest three types of decorations:

• Directive decorations are used when they correspond to rules that cannot be
easily expressed in terms of general-purpose inference rules. For example,
suppose the multi-target development environment includes the following
generation rule: “any domain concept of type Integer must be represented as a
Label in the Concrete UI”. If the designer wants the temperature domain
concept to be represented as a gauge, a directive decoration can be attached to
that particular concept. Directive decorations are pro-active. Corrective
decorations are reactive.

Title: Reference Framework Id Number: D1.1

31

• Corrective decorations can be used by designers to override standard options
of the multi-target UI development environment. For example, suppose that,
for workstations, the multi-target UI development environment generates the
Final UI without navigation (Figure 3.4). The designer can override the rule in
order to use a thumbnail physical interactor, which gives access to one room at
a time, by decorating the Concrete UI in order to obtain the presentation
shown in Figure 3.4.

• Factorization decorations express exceptions to the nominal case. They are
complementary to the factorization function presented next.

4.2.1.4. Factorization

Given a set of descriptions of the same class (e.g., a set of task models, of platform
models, etc.), each aimed at a particular target, factorization is an operation that
produces a new description composed of a description shared by all the targets and of
descriptions specific to each target. When applied to task models, factorization
corresponds to AVANTI’s polymorphic tasks. Figure 4.4 illustrates the principles.

Figure 4.4. Factorization function and factorization decorations applied to task
models. At the top, three task models for Java/AWT, HTML and WML-enabled
target platforms. On the bottom left, the task model obtained from factorization.
On the bottom right, the task model obtained with factorization decorations.
Whereas factorization produces 3 specific parts linked to a shared part, the use of
factorization description leads to a single shared description where exceptions are
expressed as decorations.

Java/AWT HTML WML

Java/AWT HTML WML

Specific parts:

Common part:

Using factorization: Using factorization decoration:

WML case:
doing that

T

T1 T2

T21 T22

T

T1 T2

T21 T22

T

T1 T2

T21 T22

T

T1 T3

T

T1

T3T2

T21 T22

T2

T21 T22

T2

T21 T22

For
WML ... T3

Such that the interpretation
for the WML target of: is equivalent to:

Descriptions of class X for tree distinct targets:

Java/AWT HTML WML

Java/AWT HTML WML

Specific parts:

Common part:

Using factorization: Using factorization decoration:

WML case:
doing that

T

T1 T2

T21 T22

T

T1 T2

T21 T22

T

T1 T2

T21 T22

T

T1 T3

T

T1

T3T2

T21 T22

T2

T21 T22

T2

T21 T22

For
WML ... T3

Such that the interpretation
for the WML target of: is equivalent to:

Descriptions of class X for tree distinct targets:

Title: Reference Framework Id Number: D1.1

32

Factorization supports multi-targeting from a “specific-target-at-a-time” approach.
It allows designers to focus on one target at a time, followed by the combination
of the descriptions produced independently for each target into a single
description where common parts are factored out. Decoration supports a different
approach where designers focus on a reference target and then express exceptions.

Having presented the general principles of the CAMELEON Reference
Framework for the design phase, let’s see how it can be instantiated.

4.2.2. Instantiations of the Reference Framework for the Design
Phase

The generic representation of the Multi-target Framework shown in Figure 4.2 can be
instantiated in ways that reflect distinct practices: reification and translation may be
combined along different patterns; the reification process may be started from any
level of abstraction; and the framework may be used to perform multi-targeting
through reverse engineering as in Vaquita [Bouillon 02]. These issues are discussed
next.

4.2.2.1. Combining Reification and Translation

Figure 4.5 illustrates typical patterns of reification and translation:

• In 4.5a), two final user interfaces are reified in parallel. This configuration,
which depicts current practice in the absence of tool support, forces to check
and maintain consistency manually between multiple versions. When
factorization is applied, the consistency problem is alleviated although it is
still relevant for the specific descriptions.

• Figure 4.5b) corresponds to the ideal situation: reification is applied until the
very last step. Consistency maintenance is here minimal. This approach has
been conducted with ARTstudio for Java-enabled target platforms. A similar
approach is described in [Eisenstein 00, Eisenstein 02].

• In 4.5c), the Concepts-and-Tasks model is translated to fit another context.
From there, reifications are performed in parallel. As ARTStudio does not
support WML generation, this approach has been adopted to produce WAP
mobile phones UIs. Sub-trees that correspond to infrequent tasks have been
pruned from the original task tree developed for the Java-enabled platforms.

• Figure 4.5d) shows a mix of interleaving between reification and translation.

Title: Reference Framework Id Number: D1.1

33

Figure 4.5 Different ways of combining reification and translation and their
corresponding effect when factorization is performed at every stage of the
reification process.

4.2.2.2. Entry Point in the Reification Process

The generic Multi-target Framework promotes a four-step process starting with
domain concepts and task modelling. Although research in HCI has promoted the
importance of task modelling, practitioners often skip this stage, and directly produce
Concrete UI's using prototyping tools such as Flash because of the lack of tools
allowing rapid prototyping from task models. This practice corresponds to the last
two steps of the reification process recommended in the reference Framework.
Referring to the “threshold-ceiling effect” discussed in Section 4.2.1.2, the framework
can be instantiated with the number of reification steps that fits designers’ culture. In
other word, designers can choose the entry point in the reification process that best
fits their practice. If necessary, the missing abstractions higher in the reification
process can be retrieved through reverse-engineering [Paganelli 02].

4.2.2.3. Multi-targeting by Reverse Engineering

So far, we have presented the reference framework as a means to structure the
forward development of multi-target UI’s. Legacy systems, which have been
designed for a particular target, must be developed from scratch to make them multi-
target aware. Alternatively, they can be reverse-engineered using the CAMELEON
framework where reification is complemented with an abstraction process. For

case a case b

Tgtl 1

Reification

Traduction

Specific part

Common part

Tgt 1 Tgt 2 Tgt 1 Tgt 2 Tgt 1 Tgt 2

Tgt 1 Tgt 2

Description

case c case d

Tgt 1 Tgt 2 Tgt 1 Tgt 2Tgt 1 Tgt 2Tgt 1

Tgt 1 Tgt 2

Tgt 1

Tgt 2

=

For a given target, a
description is composed
of a common part and a
part specific to the target
specific part:

case a case b

Tgtl 1

Reification

Traduction

Specific part

Common part

Tgt 1 Tgt 2 Tgt 1 Tgt 2 Tgt 1 Tgt 2

Tgt 1 Tgt 2

Description

case c case d

Tgt 1 Tgt 2 Tgt 1 Tgt 2Tgt 1 Tgt 2Tgt 1

Tgt 1 Tgt 2

Tgt 1

Tgt 2

=

For a given target, a
description is composed
of a common part and a
part specific to the target
specific part:

Title: Reference Framework Id Number: D1.1

34

example, an Abstract UI can be inferred from a Concrete UI. In turn, a Concepts-and-
Task model can be retrieved from an Abstract UI.

More generally, abstraction complements the free choice of entry points in the
reification process: given a level I entry point, higher-level descriptions can be
inferred through abstraction by tool support. The notion of entry point coupled with
that of abstraction provides a way to address the threshold-ceiling problem.

4.2.3. Mathematical Representations of Mappings

The purpose of this section is to introduce a mathematical representation of the UI
transformations performed on each level of the reference framework. Each UI
transformation at any level of abstraction in Figure 4.6 can be denoted as a
mathematical function.

Figure 4.6 Mathematical notations.

Concrete
interface

Final interface Final interface

Concrete
interface

Tasks and
concepts

Abstract
interface

Tasks and
concepts

Abstract
interface

Reification TranslationAbstraction

absc

absa

abstc

absc

absa

abstc

reic

reia

reitc

transf

transf

transa

transtc

reic

reia

reitc

retarga

reftc

refa

refc

reff

reftc

refa

refc

reff

Reflexion

regenf

Let U be the set of all possible UIs. A mapping M:A_B is represented as a set

M = {(x,y) † x ∈ A and y ∈ B}

where A is called the domain of M, written domain(M) and B is called the range
of M, written range(M). A m-to-1 mapping M associates one or more than one
element in domain(M) with each element in range(M). An onto mapping M
associates elements of A with all elements of B. A function f is then defined as a
m-to-1 and onto mapping. If f is a function, then the range of f is also called the
co-domain of f, written co-domain(f).

Title: Reference Framework Id Number: D1.1

35

Reification. Reification functions are functions mapping a UI representation from
one non-terminal level of abstraction to a lower level of abstraction. The functions
reia, reic , reif respectively produce an abstract interface from a couple (task
model,concepts model), a concrete interface from an abstract interface and a final
interface from a concrete:

reia: TC_AI: (t,c) ai
reic: AI_CI: ai ci
reif:CI_FI: ci fi

Nota Bene: in order to avoid the multiplication of models in the definition of the
origin of functions, we assume that archetypal models (e.g. a user model, a
computing platform model) are given as hypotheses. A complete definition would
of course include these models, but here we prefer to focus only on the origin and
the destination of functions.

Abstraction. Abstraction functions are functions that map a UI representation
from one non-initial level of abstraction to a higher level of abstraction. The
functions absc, absa, abstc respectively produce a concrete interface from a final
interface, an abstract interface from a concrete interface, and a couple (task,
concepts) from an abstract interface.

absc: FI_CI: fi ci
absa: CI_AI: ci ai
abstc:AI_TC: ai (t,c)

Translation. Translation functions are functions that map a UI representation at a
same level of abstraction, but from one context of use to another. The functions
transttc, transa, transc, transf respectively produce a couple (task model, concepts
model), an abstract interface, a concrete interface and a final interface at the same
level of abstraction for another context of use.

transtc:TC X C X C _TC: (ti, ci) x cti x ctf (tf,cf)
transa: AI X C X C _AI: aii x cti x ctf aif
transc: CI X C X C _CI: cii x cti x ctf cif

transf: FI X C X C _FI: fii x cti x ctf fif

where ci, cf denote respectively the initial and final context of use.

Reflexivity. Reflection functions are functions that map an existing UI
representation at a given level of abstraction to another UI representation at the
same level of abstraction for the same context of use.

reftc:TC X C _TC: (ti,ci) x ct (tf,cf)
refa: AI X C _AI: aii x ct aif
refc: CI X C _CI: ci i x ct cif

Title: Reference Framework Id Number: D1.1

36

reff: FI X C _FI: fii x ct fif

where ci, cf denote respectively the initial and final context of use.

Composition of functions. As it turns out to be important to perform functions
one after another, to combine functions in sequence, the composition of functions
needs to be defined. If f:A_B and g: B_C are two functions, then the composition
of f and g, written as f o g, is defined as:

f o g = {(x,y) † ∀ x ∈ A, ∃ y ∈ C: y=g(f(x)) }

that is f o g = {(x,y) † ∀ x∈A, ∃ y∈C, z∈B such as (x,z)∈B and (y,z)∈C}. In this
definition, f and g can be composed because domain(g)=co-domain(f). The
reverse composition g o f is not necessarily valid since domain(f) co-domain(g).

Inverse functions. Another important concept in this study of functions is inverse
functions since we want to perform both forward and reverse engineering of UIs.
In addition, it is important to identify when a particular UI produced by forward
engineering (i.e., by applying reification, translation, reflection or any
combination of them) can be completely recovered by reverse engineering (i.e., by
applying abstraction, translation, reflection or any combination of them). The
same question arises with respect to a UI produced by reverse engineering to be
reproduced by forward engineering. These conditions can be expressed in terms of
inverse functions.

Let f and g be two functions. If f(g(x)) = x and g(f(x)) = x, then g is the inverse of
f and f is the inverse of g. The inverse function of a function f is denoted f -1. In
this case, f is said to be inversible. To ensure a true bidirectional engineering of UI
at any level of abstraction, all involved functions should be inversible, that is the
following conditions must hold:

∀ (t,c)∈TC, ∃ a∈AI † reia((t,c)) = a and (t,c) = abstc(a)
∀ a∈AI, ∃ c∈CI † reic(a) = c and a = absa(c)
∀ c∈CI, ∃ f∈FI † reif(c) = f and c = absc(f)
∀ (t1,d1)∈TC, ∀ c1,c2∈C, ∃ (t2,d2)∈TC † transtc((t1,d1), c1, c2)=
(t2,d2) and transtc((t2,d2), c2, c1)= (t1,d1)
∀ a1 ∈AI, ∀ c1,c2∈C, ∃ a2∈AI † transa(a1, c1, c2) = a2 and
transa(a2, c2, c1) = a1

∀ d1 ∈CI, ∀ c1,c2∈C, ∃ d2∈CI † transc(d1, c1, c2) = d2 and
transc(d2, c2, c1) = d1

∀ f1 ∈FI, ∀ c1,c2∈C, ∃ f2∈FI † transf(f1, c1, c2) = f2 and transf(f2, c2,
c1) = f1
∀ (t1,c1)∈TC, ∀ c∈C, ∃ (t2,c2)∈TC † reftc((t1,c1), c) = (t2,c2) and
reftc((t2,c2), c)= (t1,c1)
∀ a1 ∈AI, ∀ c∈C, ∃ a2∈AI † refa(a1,c) = a2 and refa(a2, c) = a1

Title: Reference Framework Id Number: D1.1

37

∀ c1 ∈CI, ∀ c∈C, ∃ c2∈CI † refc(c1,c) = c2 and refc(c2, c) = c1

∀ f1 ∈FI, ∀ c∈C, ∃ f2∈FI † reff(f1,c) = f2 and reff(f2, c) = f1

Restriction. For a given function to be applied in a specific computing platform,
there is a need to define a condition to be satisfied when applying this function.
For example, a constraint may be imposed when a translation between two
computing platforms occurs, such as: “the target computing platform does not
allow hierarchy of presentation elements deeper than a certain threshold”. The
WML language instantiates this constraint to 9 (not more than 9 presentation
levels in decks and cards), while certain versions of cHTML instantiates this
contraint to 4 (not more than 4 levels of cHTML tags). The restriction of function
is therefore required.

A restriction (or selection) of a function f:A_B, denoted as _cond(f), is a function
such that

_cond(f) = {(x,y) † ∀ x ∈ A, ∃ y ∈ B: y=f(x) and
cond(x,y) = true} where cond is any first-order predicate.

Retargeting. Retargeting can now be defined as a shortcut by a composition of
three functions:

retarga= _target(transa ο absc ο absf)

where target is a set of first-order predicates expressing constraints applicable for
a particular target. For instance, typical constraints include constraints imposed by
the screen resolution, the number of colours, the availability of interaction objects,
the availability of interaction resources.

Regenerating. To complete the process to obtain another UI for any other
computing platform, regenerating can now be defined similarly by the
composition regenf = reic o rei a so as to represent the complete process by regenf o
retarga.

Idempotence. Some functions have the special property that applying them more
than once to the same co-domain produces no further change after the first
application. For instance, f(f(x)=f(x). To ensure a true bidirectional engineering of
UI at any level of abstraction, the composition of all the functions involved and
their corresponding function should be idempotent, that is the following
conditions must hold:

f = (reif ο absc) ⇒ f is idempotent since ∀ fi FI , ∀ i ∈ {1,…,}: fi
= f(fi) = f(f(fi)) = … = f…i times(f(fi)) = f o f o i times f(fi). Similarly,
g = (reic ο absa) and h = (reia ο abs tm) are idempotent.

The inversibility and idempotence of composition as introduced above guarantee a
true bidirectional engineering of UI. We can observe in this case that domain(reif)

Title: Reference Framework Id Number: D1.1

38

= co-domain(reif-1) = co-domain(absc) and co-domain(reif) = domain(reif-1) =
domain(absc). If the properties of inversibility and idempotence no longer hold,
then co-domain(absc

-1) ⊂ co-domain(reif) ⇒ absc
-1 and reif are not two inverse

functions of each other, but absc
-1 is a restriction of reif . The same reasoning can

be established analogously for the other levels of abstraction and for the other
functions.

Having presented the CAMELEON reference framework for the design phase, we
now focus on the CAMELEON reference framework for run-time.

4.3. The Reference Framework for the Run-Time Phase of
Multi-targeting

The CAMELEON Reference Framework for the Run-Time Phase of Multi-Targeting
addresses two issues: the decomposition of the adaptation process into functional
steps and the distribution of these functions across software components. These
issues are presented next.

4.3.1. Run-time Adaptation: a Three-step Process

As for any evolutive phenomenon, we suggest to structure multi-target adaptation as a
three-step process: recognition of the situation, computation of a reaction, and
execution of the reaction. Figure 4.7 illustrates the run-time adaptation process.

Figure 4.7 Run-time adaptation process.

Situation recognition

Execution of the reaction

Sensing the
context

Identifying
candidate
solutions

Selecting a
candidate
solution

Detecting
context
changes

Identifying
context
changes

Executing the
prologue

Executing the
reaction

Executing the
epilogue

Run time

Computation of a reaction

Title: Reference Framework Id Number: D1.1

39

4.3.1.1. Situation Recognition

Recognising the situation includes the following steps:

• Sensing the context of use (e.g., current temperature is 22°C).

• Detecting context changes (e.g., temperature has raised from 18°C to 22°C).

• Identifying context changes (e.g., for the heating control system, transition
from the regular context to the comfortable context).

In turn, the identification of context changes may trigger a reaction. There are two
general types of trigger: entering a context and leaving a context. Schmidt suggests a
third type of trigger [Schmidt 99] not considered in our discussion: being in a context.
Triggers are combined with the AND/OR logic operators. For example, ‘Leaving(C1)
AND Entering(C2)’ is a trigger that expresses the transition from Context C1 to
Context C2. Having recognised the situation, the next step consists of computing the
appropriate reaction.

4.3.1.2. Computation of a Reaction

The reaction is computed in the following way: Identify candidate reactions and select
one of them that best fits the situation.

Reactions may be specific or may be chosen among the following generic options:

• Switch to another platform and/or to different environmental settings (e.g.,
switch from a portable PC to a PDA as the battery gets low, or turn the light
on because the room grows dark).

• Use another executable code: the current user interface is unable to cover the
new context. It can't mould itself to the new situation and, in the meantime,
preserve usability. Another executable code produced on the fly or in a pre-
computed way is launched.

• Adapt the user interface but keep the same executable code (e.g., switching to
a more compact representation when the screen gets too cluttered). Adaptation
may be pre-computed or computed on the fly.

• Execute specific tasks such as turning the heat on. In this case, adaptation does
not modify the presentation of the user interface, but it may impact dialogue
sequencing.

Some of the reactions may conserve the system state in terms of Functional Core
Adaptor, Dialog Controller, etc. The persistence criteria may guide the selection
among the candidate reactions.

Title: Reference Framework Id Number: D1.1

40

The Selection of a candidate reaction depends on migration cost. Migration cost refers
to the effort the system and/or the user must put into migrating to the new UI. As
discussed in [Calvary 01], the effort is measured as a combination of criteria selected
in the early phase of the development process.

4.3.1.3. Execution of the Reaction

The execution of the reaction consists of a prologue, the execution per se, and an
epilogue:

• The prologue prepares the reaction. The current task is completed, suspended,
or aborted; the execution context is saved (such as the specification of the
temperature under modification); if not ready for use, the new version of the
user interface is produced on the fly (e.g., a new presentation, a new dialogue
sequence, etc.).

• The execution of the reaction corresponds to the commutation to the new
version (e.g., the new presentation, the new dialogue sequence, or the
execution of a specific task).

• The epilogue closes the reaction. It includes the restoration of the execution
context (e.g., temperature settings, resuming of the suspended task).

Each of the above steps is handled by the system, by the user, or by a co-operation of
both. The evolution and transition models of the CAMELEON Reference
Framework, are the location for specifying reactions that can be used by the system at
run-time. For example: When connecting to an Ethernet Network (triggering
condition), set the system in "Office" mode (reaction). When memory gets tight, save
the state of the running application as well as the state of the working documents
(prologue), reboot the system (reaction) then re-open the working documents
(epilogue).

Transition between steps means transition between states. Transition between states
has been analysed since the early developments of HCI. Norman's evaluation gap,
Mackinlay's et al. use of graphical animation for transferring cognitive load to the
perceptual level [Mackinlay 91] the notion of visual discontinuity [Graham 00] etc.,
have all demonstrated the importance of transitions. A transition between two
platforms, between executable codes, between UIs, etc. is therefore a crucial point that
deserves specific research [Barralon 02]. The prologue and epilogue are here to help
the designer to think about transitions.

In practice, as shown in Figure 4.1, system handled reactions may be performed by a
cooperation of the user interface and an underlying run time infrastructure. This
slinky balance is analysed in the next section.

Title: Reference Framework Id Number: D1.1

41

4.3.2. Distribution Across Components

A system-handled reaction may be performed by the cooperation of the user
interface and the underlying run-time infrastructure. The cooperation may be
balanced in a slinky way to perform the situation recognition (S), the computation
of the reaction (C) and the execution of the reaction (E). These three steps rely on
the archetypal and observed models.

Observed models are the effective models used (therefore, observed) at run time.
Each one of the ontological models may be instantiated into an observed model
that describes the run-time reality. The run time models Ri and their homologue
archetypal design models Di may both be referenced by the actor (i.e., the run-
time infrastructure and/or the final user interface) in charge of a step in the
adaptation process (i.e., situation recognition, computation and execution of the
reaction). Figure 4.1 shows this type of dependencies. Figure 4.8 suggests a
problem space for reasoning about these dependencies. Models are identified by a
number (the same number as the one suggested on the right part of the unifying
reference framework of Figure 4.1). Every model i has two versions: a design
version (Di) that describes the archetypal dimensions of i, and a run time version
(Ri) maintained at run time. Any combination of the models Di and Ri may
contribute to the situation recognition, the computation and execution of the
reaction.

Figure 4.8. Design and run time models references.

Recognition Computation Execution

1

2

10

Models

Adaptation
steps

Nature

Design (D)

Runtime (R)

Title: Reference Framework Id Number: D1.1

42

The next section shows how the CAMELEON Reference Framework for Run-Time
can be instantiated.

4.3.3. Instantiation of the Run-time Reference Framework

One contribution of the framework is to help understanding the coverage of
existing tools. For example, AspectJ and the probe [Calvary 98].

4.3.3.1. Aspect-Oriented Programming and AspectJ

AspectJ provides an elegant way to transform a context non-aware final UI into a
context-aware or context-sensitive final UI. Translation is performed at the lowest
level of the reification process. The designer defines aspects (Aspect Oriented
Programming) that will instrument the final UI code. If the aspects contain
instructions for sensing the context (S), computing the reaction (C) or executing the
reaction (E), then the translated UI embeds these mechanisms. In a more general way,
Aspect Oriented Programming provides a way to extend pre-computed user interfaces
with the expression of dynamic adaptation. The probe, which could be implemented
using AOP, has the same coverage.

4.3.3.2. The probe

In the following discussion, we suppose that:

• Designers have modelled the context of use in terms of user, platform and
environment.

• Context of use is sensed and modelled as software objects at the appropriate
level of abstraction as in [Salber 99, Dey 01].

Figure 4.9 illustrates the principles of the probe. Write access methods to context
objects are automatically augmented with spy statements that notify the context
supervisor with context events. On receiving an event context, the supervisor infers
the prologue, the reaction and the epilogue either:

• from the evolution model, when it exists;

• and/or from intrinsic properties of the current user interface coupled with
selection rules and the history of previous contexts.

The supervisor then executes the selected prologue, the reaction and the epilogue.

Title: Reference Framework Id Number: D1.1

43

Figure 4.9. The adaptation process to context changes based on a transparent probe
mechanism.

With regard to the framework, the probe supports an automatic translation at the
lowest level of reification. The supervisor is managed by the run-time infrastructure.

Context
History

Current and
Next Contexts

Evolution
Model

Selection
Rules

Prologue

Reaction

Epilogue

Supervisor

Pre-computed
multi-target

UI

Probe

Context Events

Context
History

Current and
Next Contexts

Evolution
Model

Selection
Rules

Prologue

Reaction

Epilogue

Supervisor

Pre-computed
multi-target

UI

Probe

Context Events

Title: Reference Framework Id Number: D1.1

44

5. Usability metrics

Usability can be defined in several ways representing different design goals and
requirements [Dowell 89]. In this section, usability is defined according to the human
factor criteria and according to the human-computer interaction criteria.

5.1. Human Factors Criteria

Human Factor (HF) quality criteria complement Software Engineering quality
factors. They meet the users perspective by defining external quality factors. The
main quality criteria advanced by HF is usability. From the users’ point of view, a
system should be both useful and usable. Usefulness is defined as the
functionalities or services that are provided to the user to accomplish his/her task.
Usability refers to how these functionalities or services are provided to the user.

As argued by Olsen, programmers have probably chosen their profession because
they enjoy the challenges and intricacies of the logical structures we call software
[Olsen 94]. Users do rarely share this fascination. The challenge of usability is to
understand users needs and apply this design knowledge to software development.

Is usability a field of science? Partly no, partly yes. On the one hand, applying
design knowledge to user interfaces through guidelines or design principle is often
heuristic and empirical. On the other hand, deploying systematic and reproducible
knowledge to centre the development cycle on users is a scientific activity.

Usability is important to the designer because it potentially improves [Gould 85]:

• Efficiency and Productivity. An unusable system will distract users from
their work. They will strive with the interface rather that concentrating on their
task to be carried out.

• Safety. Usability is particularly concerned with human errors. Human error
may potentially hinder safety.

• Autonomy. Usability potentially decreases the need for training and the
learning time for a system. Support costs will be reduced accordingly.

• Acceptance. A usable system is more likely to be accepted by users than
unusable ones.

• Product Sales. Usability is a major success factor for software.

• Savings in the Development Cycle. Adopting a usability approach from the
start decreases maintenance costs.

Title: Reference Framework Id Number: D1.1

45

Usability is hard to define due to the multiplicity of disciplines that contribute to the
concept (e.g., psychology, human factors, software engineering). Major definitions
given in the literature are surveyed.

5.1.1. The ISO 9241-11 Standard

Usability is defined by the ISO 9241-11standard as “the extent to which a product
can be used by specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use” [ISO 91]. Effectiveness is “the
accuracy and completeness with which the users achieve specified tasks”. Efficiency
is defined as “the resource expanded in relation to accuracy and completeness with
which users achieve goals”. Satisfaction is defined as “the comfort and acceptability
of use by end users”.

5.1.2. A Classic and General Definition

Shneiderman’s [Schneiderman 98] and Nielsen’s [Nielsen 94] definitions have
probably been the most influential in the HCI community. Shneiderman defines
usability by expressing five metrics central to achieve evaluation of human factors
goal, i.e., usability. So usability is defined by Shneiderman as minimizing or
maximizing these metrics:

• Time to learn is the time required for a typical user to learn how to achieve a
particular set of tasks (and associated goals).

• Speed of performance is the measure of the time necessary to achieve a
particular set of tasks.

• Rate of errors by users is a metric assessing users errors. Measuring the error
rate, but also the error type, is useful to detect usability problems. This
measure is particularly important for safety critical systems.

• Retention over time is a metric evaluating the persistence over time of the
interface concepts in the user’s mind. It is closely related to learning time.

• Subjective satisfaction is a measure that tries to grasp qualitative aspects of
the interface. Subjective satisfaction is measurable through qualitative analysis
(e.g., interviews facial expressions analysis).

Nielsen’s usability criteria are similar to Shneiderman’s but are dedicated to design
analysis steps rather than on evaluation. They are: learnability, efficiency of use,
memorability, few and non-catastrophic errors, subjective satisfaction.

Title: Reference Framework Id Number: D1.1

46

5.2. Human computer Interaction Criteria

HCI quality criteria are decomposed in terms of properties. Dix et al. [Dix 98] and
Gram et al. [Gram 96] definitions are very dialog oriented. Dix et al. top criteria for
defining usability are learnability, flexibility and robustness. Gram et al. criteria are
goal and task completeness, interaction flexibility and interaction robustness.
Although they look similar, the contents of these criteria are not exactly the same.
Furthermore, Gram et al. subtly augment these three criteria by adding internal quality
criteria to the definition of usability.

Dix defines usability by raising three principles:

1. Learnability concerns the way a novice user can master a system. The
concept of learnability is further decomposed into:

• Predictability: is the support given to the user for predicting future
actions based on past interaction history

• Synthesizebility: is the support given to the user to assess on the effect
of previous operation on current system’s state.

• Familiarity: is the extent to which a user’s knowledge or experience
of other systems or real life can be applied to the system.

• Generalizability: is the support provided to the user to extend his/her
knowledge of specified interaction within and across application to
similar situations.

• Consistency: is the likeness of behaviour arising from similar
situations or similar task objectives.

2. Flexibility refers to the multiplicity of ways the user and the system can
exchange information. Flexibility is further refined into:

• Dialog initiative: refers to the ability of the user to “pre-empt” (i.e.
control the initiative) the dialog with the system.

• Multithreading: is the ability of the user to achieve several tasks
simultaneously.

• Task migratability: refers to possibility of task exchange between the
system and the user. The system should be able to take in charge a task
at a certain time or delegate it to the user at another time and vice
versa.

• Substitutivity: is the ability of a system to substitute with its current
form of input output to another one.

Title: Reference Framework Id Number: D1.1

47

• Customizability: is the UI ability to be modified by the user or by the
system. If the modification is done on the users initiative the system is
said adaptable. If the modification is done on the systems initiative the
system is said adaptative.

 3. Robustness concerns the system ability to support the users to achieve and
assess the goal he she assigned himself herself. Robustness is further refined
into:

• Observability: is the ability of the user to evaluate the internal state of
the system through perceivable representations. Observabilty is refined
into five other principles: browsability, defaults, reachability,
persistence and operation visibility. Browsability allows the users to
explore systems internal state. Defaults provides user with default
values as input for particular interactions with the system. Reachability
allows the users to reach observable systems state. Persistence refers to
the persistence of some interaction trace, operation visibility refers to
the presentation to the user of the available observable states.

• Recoverability: is the possibility given to the user to recover from
errors.

• Responsiveness: is the way the user perceives system response.

• Task conformance: is the way the system supports all the tasks the
user wishes to accomplish and in the way he/she understands them.
Task conformance is refined into two principles: task completeness
(refers to the coverage issue) and task adequacy (refers to the user’s
understanding).

Gram et al. refine the general software engineering criteria into HCI specific criteria.
They classify usability criteria along the internal and external axis. External criteria
are: goal and task completeness, interaction flexibility and interaction robustness.
Internal criteria are modifiability, portability, evaluability, maintainability, run-time
efficiency, integrability, functional completeness, development efficiency. The
originality of Gram et al. approach lies in the fact that they explicitly link usability to
internal quality factors. We consider herewith these criteria:

1. Goal and task completeness assert that the user should be able to reach the
goals he she seeks to achieve in interaction with the system. This property is
unfortunately unpredictable since the user can conceive goals that are not in
the scope of the system. Task completeness appears more relevant to the
developer when tasks are defined as computer support for achieving a goal.

2. Interaction flexibility concerns the multiple ways the user and the system
may exchange information. Interaction flexibility takes into account users

Title: Reference Framework Id Number: D1.1

48

differences or preferences. Interaction flexibility is further decomposed into
three categories:

a) Representation of information

• Device multiplicity - the capacity of the system to propose
multiple input/ouput devices. This property concerns the lowest
level of interaction i.e., the physical level.

• Representation multiplicity is the flexibility in representing state
elements as well as the articulation of inputs. Multiple
representations concern the contents and the form of the presented
information. The concept of time for instance might be represented
as a digital clock, as a needle clock or as a dynamically self filling
rectangle (a progression bar). The system provides multiple view
of a single internal state. The system or the user decides whether a
view is appropriate at a certain time during the task execution. The
fact of presenting to the user multiple views at the same type is
called multimodality. Furthermore multiple internal states of the
system can be seen within a single representation. Control systems
of all sorts, e.g. air traffic control, apply this principle.
Multiplicity of input allows the user to communicate information
to the system in various ways. For instance erasing a file can be
done through direct manipulation of icons or through command
line. Presenting multiple input channels simultaneously to the user
is called equal opportunity.

• Input Output reuse - is the capacity of the system to use previous
input or output as future input. In other words I/O reuse is the
capacity of the system of recording past I/O and provide to the user
to retrieve this information and reuse it for further input processes.
A typical example is the cut and past function or the history
recording function for command line instructions.

b) Planning of task execution

• Human role multiplicity refers to a cluster of user’s goal adopted
by a user within a particular organizational context. The concept of
is used to represent collaborative aspects or at least multi-user
aspects (if no collaboration exists) of interactive applications.
Human role multiplicity is the capacity of the system to support
several roles at the same time for multiple and single users.
Database systems for instance propose different roles to the user
depending on the tasks they have to perform. Roles are often:

Title: Reference Framework Id Number: D1.1

49

database, designer, encoder or access forms designer. Note that the
transition from one role to another refers to adaptativity.

• Multithreading is the capacity of the system of allowing the user
to perform several tasks simultaneously

• Non-pre-emtiveness is the degree to which the user has control on
the actions allowed to be performed. Interaction where all dialog
consist in users reactions to the systems output is said system
driven. On the contrary, interaction where the dialog consist in
systems reactions to user input is called user driven. System driven
interaction is said pre-emptive i.e., it limits the users the users
freedom. User driven interaction is said non pre-emptive as it lets
full initiative in the users hands. Non pre-emtiveness has a
particular importance in the user’s perception of flexibility.

• Reachability is the support given to the user to allow him to reach
any system state.

c) Adaptation

• Reconfigurability is the ability of the user to adjust the form of
input and output UNIX shells is an example of very reconfigurable
interfaces as the user can define or extend commands through a
powerful programming language.

• Adaptativity is the automatic customization of the UI by the
system. Factors that are taken into account are, for instance, user
experience, repetitive tasks, ambient factors, (e.g. noise, intensive
light, …) , …

• Migratability is a property of a task that can be indifferently
delegated to the system or to the user.

3. Interaction robustness

Interaction robustness concerns all properties that have something to do with user’s
failures management. An interactive system is said to be robust if the user can
accomplish his/her task without irreversible mistakes and if a correct and complete
picture of the task in progress is given. Robustness is refined in seven sub properties:

a) Observability is a property that states that all pertinent states (i.e.,
information in this case) of the system relating to the current task should
be visible to the user. Due to the limited capacity of output devices all
pertinent states should be at least browsable.

b) Insistence states that observability is not enough, it is sometimes
necessary to attract user’s attention on certain states of the system. Means

Title: Reference Framework Id Number: D1.1

50

to achieve this goal are, for instance, the usage of signals of all sorts
(visual, auditory) or modeless dialog boxes.

c) Honesty deals with the interpretation of signals by the user. A system
may respect observability and insistence but still induce a
misinterpretation of the presented system states. The honesty property
states the matching of the user’s representations of the UI with the actual
UI. For achieving this property, the developer has to choose pertinent
system states for a given task but also the right representation for a given
system state. Note that flexibility has a positive impact on honesty since a
flexible system adapts or is adapted to the user’s characteristics.

d) Predictability is a property that allows the user to predict the future
interaction with the system. Predictability is highly dependent of user s
experience and knowledge but can be improved by the developer.
Consistency for instance helps the user to induce knowledge on future
interaction. Predictability is also concerned with temporal stability in
response and execution time. A user performing similar (or perceived as)
tasks expects that their respective execution time will be similar.

e) Access control is concerned with error preventing in the case of human
role multiplicity. Assuming that roles are assigned to users in respect to the
task they have to carry out, it is recommended to implement access control
mechanism. For instance, the database administrator of a library may want
to alter a record structure for the books contained in her database while a
librarian is only authorised at recording loans. Access control is related to
adaptativity since the system UI has to be reconfigured by the system in
respect access control mechanisms.

f) Pace tolerance states an adjustment between users time and systems
time.

g) Deviation tolerance states that an interactive system is should detect
errors or situations where the probability of error is high. It should prevent
the user from making any error and allow him her to recover from already
done errors.

Gram et al. add internal quality criteria to their external quality. Internal criteria are
only perceivable by the developer. As such, one could think that it does not affect the
usability. One of the originality of Gram et al. work is to explicitly link internal criteria
to usability (although indirectly sometimes):

1. Modifiability is the ease of adapting software products to change of
specification. The UI part of the application is particularly concerned to
extendibility.

Title: Reference Framework Id Number: D1.1

51

2. Portability is the ease of transferring software products to various
hardware and software environments.

3. Evaluability is the ease of a system to be evaluated on quality criteria.
Evaluability of an interactive system can be achieved through logging
tools recording interaction events.

4. Maintainability is important in interactive systems as the first cause of
maintenance need is users requirement change.

5. Run time efficiency is the speed to which the system responds to user’s
input.

6. Integrability is the ease with which the system is integrable in existing
systems.

7. Functional completeness states that the functional core should provide
every function needed to the execution of every task. Functional
completeness is the internal counterpart of task and goal completeness.

8. Development efficiency concerns the efficiency of the development cycle
itself in terms of cost speed or other dimensions like team management
and work allocation.

Title: Reference Framework Id Number: D1.1

52

6. Conclusion

This paper covers multi-targeting from the software development perspective. A
taxonomic space makes explicit the core issues in multi-targeting for the development
stages as well as for run-time. We propose a conceptual framework that helps
structuring the development process of multi-target UI’s as well as supporting run-
time execution. By doing so, we are able to clearly characterize the functional
coverage of current tools and identify requirements for future tools.

Title: Reference Framework Id Number: D1.1

53

7. References

[Arch 92] Arch, “A Metamodel for the Runtime Architecture of An Interactive
System”, The UIMS Developers Workshop, SIGCHI Bulletin, 24(1), ACM Press,
1992.

[Ayatsuka 00] Ayatsuka, Y., Matsushita, N. Rekimoto, J.: Hyperpalette: a hybrid
Computing Environment for Small Computing Devices. In: CHI2000 Extended
Abstracts, ACM Publ., 2000, pp. 53–53.

[Barralon 02] N. Barralon. Interfaces Homme-Machine de Transition. Master of
Computer Science, University Joseph-Fourier, Grenoble I, June 2002.

[Benford 00] Benford, S. et al.: Designing Storytelling Technologies to Encourage
Collaboration Between Young Children. In Proc. ACM Conference on Human
Factors in Computer Human Interaction (CHI 2000), (2000), pp. 556-563.

[Beyer 98] Beyer, H., Holtzblatt K.: Contextual Design, Morgan Kaufmann Publ.
(1998)

[Bier 92] Bier E., Freeman, S., Pier, K.: The Multi-Device Multi-User Multi-Editor.
In Proc. of the ACM conf. On Human Factors in Computer Human Interaction
(CHI92), (1992), pp. 645-646.

[Bouillon 02] Bouillon, L., Vanderdonckt, J., Souchon, N.: Recovering Alternative
Presentation Models of a Web Page with VAQUITA, Chapter 27, in Proc. of 4th Int.
Conf. on Computer-Aided Design of User Interfaces CADUI’2002 (Valenciennes,
May 15-17, 2002), Kluwer Academics Pub., Dordrecht, 2002, pp. 311-322.

[Breedvelt-Schouten 97] Breedvelt-Schouten, I.M., Paterno, F.D., Severijns, C.A.:
Reusable structure in task models. In: Proceedings of DSVIS'97, Design,
Specification and Verification of Interactive System, Horrison, M.D., Torres, J.C.
(Eds), 1997, 225–240.

[Browne 90] Browne, D., Totterdell, P., Norman, M.: Adaptive User Interface,
Academic Press, Computer and People Series, 1990.

[Calvary 98] Calvary, G.: Proactivité et réactivité: de l’Assignation à la
Complémentarité en Conception et Evaluation d’Interfaces Homme-Machine, Phd of
the University Joseph-Fourier-Grenoble I, Speciality Computer Science, 1998.

[Calvary 01] Calvary, G., Coutaz, J., Thevenin, D.: A Unifying Reference Framework
for the Development of Plastic User Interfaces, Proceedings of 8th IFIP International
Conference on Engineering for Human-Computer Interaction EHCI’2001 (Toronto,
11-13 May 2001), R. Little and L. Nigay (eds.), Lecture Notes in Computer Science,
Vol. 2254, Springer-Verlag, Berlin, 2001, pp. 173-192.

Title: Reference Framework Id Number: D1.1

54

[Card 83] Card S.K., Moran T.P., Newell A., The Psychology of Human-Computer
Interaction, Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1983.

[Cheverst 01] Cheverst, K., Davies, N., Mitchell, K., Efstratiou, C.: Using context as
a Crystal Ball: Rewards and Pitfalls, Personal and Ubiquitous Computing, Springer
Ed., 5(1), 2001, pp. 8-11.

[Cockton 95] Cockton, G., Clarke S., Gray, P., Johnson, C.: Literate Development:
Weaving Human Context into Design Specifications. In: Critical Issues in User
Interface Engineering, P. Palanque & D. Benyon (Eds), Springer-Verlag: London
Publ., ISBN 3-540-19964-0, 1995.

[Coutaz 02] Coutaz, J., Rey, G.: Foundations for a Theory of Contextors, in Proc.
CADUI’02, 2002.

[Crease 00] Crease, M., Gray, P., Brewster, S.: A Toolkit Mechanism and Context
Independent Widgets, DSV-IS00, (2000), Springer Verlag, pp. 121-133.

[Crowley 00] J. Crowley, J. Coutaz, F. Bérard. Things that See, Communication of
the ACM, Vol 43 (3), March 2000, pp. 54-64.

[Crowley 02] J. Crowley, J. Coutaz, G. Rey, P. Reignier. Perceptual Components for
Context-Aware Computing, Ubicomp 02, Goteburg, Suède, September 2002.

[D1.1 02] G. Calvary, J. Coutaz, D. Thevenin, L. Bouillon, M. Florins, Q. Limbourg,
N. Souchon, J. Vanderdonckt, L. Marucci, F. Paternò, C. Santoro, The
CAMELEON Glossary, Deliverable D1.1 Companion, CAMELEON project, 2002.

[D2.1 02] G. Mori, L. Paganelli, F. Paternò, C. Santoro, Tools supporting
transformations for multi-platform applications, Deliverable D2.1, CAMELEON
project, 2002.

[Daassi 02] Daassi, O. Les Interacteurs en Plasticité, Master of Computer Science,
University Joseph-Fourier, Grenoble I, June 2002.

[Dey 00] Dey, A.K, Abowd, G.D Towards a Better Understanding of Context and
Context-Awareness, CHI 2000 Workshop on The What, Who, Where, When, and
How of Context-Awareness, The Hague, Netherlands, April 1-6 2000.

[Dey 01] Dey, A., Abowd, G., Salber, D.: A Conceptual Framework and a Toolkit
for Supporting the Rapid Prototyping of Context-Aware Applications. Human
Computer Interaction, Lawrence Erlbaum Publ., 16(2-4), (2001), pp. 97-166.

[Dieterich 93] Dieterich et al.: State of the Art in Adaptive user Interfaces. In
Adaptive User Interfaces, Elsevier Publ., Human Factors in Information Technology
series, 1993.

[Dix 98] Dix, A., Finalay, J., Abowd, G. and Beale, R. Human-Computer
Interaction, Prentice Hall Europe, London, 2nd Edition, 1998.

Title: Reference Framework Id Number: D1.1

55

[Dowell 89]Dowell, J., Long, J.: Toward a conception for an engineering discipline
of human factors, Ergonomics, Vol. 32 (11), 1989, pp. 1513–1535.

[Eisenstein 00] Eisenstein J., Vanderdonckt, J. Puerta, A.: Adapting to Mobile
Contexts with User-Interfaec Modeling. In: Proc. of 3rd IEEE Workshop on Mobile
Computing Systems and Applications WMCSA 2000 (Monterey, December 7-8,
2000), IEEE Press, Los Alamitos, 2000.

[Eisenstein 02] Eisenstein, J., Rich, C.: Agents and GUIs from Task Models, in Proc.
of ACM Conf. on Intelligent User Interfaces IUI’2002 (San Francisco, Junary 13-16,
2002), ACM Press, New York, 2002, accessible at http://www-scf.usc.edu/
~jeisenst/papers/iui02.pdf

[Gould 85] J.D. Gould and C.Lewis, Design for usability: Key principles and what
designers think, Communication of the ACM, 28(3), 300-311, 1985.

[Graham 00] Graham, T.C. N., Watts, L., Calvary, G., Coutaz, J., Dubois, E., Nigay,
L. A Dimension Space for the Design of Interactive Systems within their Physical
Environments, DIS2000, ACM Publ. New York, 2000, pp. 406–416.

[Gram 96] Gram, C., Cockton, G. Ed.: Design Principles for Interactive Software.
Chapman & Hall, 1996.

[Gruber 95] Gruber, T.R. Toward principles for the design of ontologies used for
knowledge sharing. Int. J. Hum. Comput. Stud. 43, 5/6, 1995, pp. 907-928.

[Harter 99] Harter, A., Hopper, A., Steggles, P., Ward, A., and Webster, P.: The
anatomy of a context-aware application (p. 59-68), Proceedings of the fifth annual
ACM/IEEE international conference on Mobile computing and networking , August
15 - 19, 1999, Seattle, WA USA.

[Gruninger 02] M. Gruninger, J. Lee. Ontology: Application and Design,
Communications of the ACM, February 2002, Vol. 45, N°2, pp. 39-41.

[Hourcade 99] Hourcade, J., Bederson, B.: Architecture and Implementation of a Java
Package for Multiple Input Devices (MID), CS-TR-4018, UMIACS-TR-99-26, May
1999.

[HUC 00] HUC 2K, First workshop on Resource Sensitive Mobile Human-
Computer Interaction, 2000.

[Gram 96] Design Principles for Interactive Software, Gram, C. and Cockton, G.
(eds), Chapman & Hall, 1996.

[ISO 91] ISO9241-11 Ergonomic requirement for office works with VDT’s –
guidance on usability. Technical report, International Standard Organisation, 1991.

[Johnson 93] Johnson, P. Wilson, S., Markopoulos, P., Pycock, Y.: ADEPT-
Advanced Design Environment for Prototyping with Task Models. In: InterCHI’93
proceedings, 1993, pp. 66.

Title: Reference Framework Id Number: D1.1

56

[Johnson 95] Johnson, P. Johnson, H. Wilson, S.: Rapid Prototyping of User
Intefaces Driven by Task Models, Scenario-based design: envisioning work and
technology in system development, J. Carroll (ed.), John Wiley&Sons, 1995.

[Lim 94] Lim, K. Y., Long, J.: The MUSE Method for Usability Engineering,
Cambridge Univ. Press, 1994.

[Marucci 02] Marucci L, Paternò F. Supporting adaptivity with heterogeneous
platforms through user models, in Proc. Mobile HCI 2002, Springer Verlag publ.,
2002.

[Mackinlay 91] Mackinlay, J.D., Robertson, G.G, Card, S.K.: The Perspective Wall:
Detail and Context Smoothly Integrated, in Proc. of ACM Conference on Human
Factors in Computing Systems CHI’91 (New Orleans, April 27 - May 2, 1991),
ACM Press, New York, 1991, pp. 173-179.

[Myers 00] Myers, B., Hudson, S., Pausch, R.: Past, Present, Future of User
Interface Tools. Transactions on Computer-Human Interaction, ACM, 7(1), March
2000, pp. 3-28.

[Myers 98] Myers, B., et al.: Collaboration using multiple PDA’s connected to a PC.
In Proc. Of the ACM Conf. On CSCW (CSCW98), 1998, pp. 285-294.

[Nielsen 94] Nielsen, J. Usability Engineering, Morgan Kauffman, San Francisco,
1994.

[Olsen 94] Olsen, D.R. Developing User Interfaces, Morgan Kauffman, San
Francisco, 1994.

[Paganelli 02] Paganelli L., Paternò F., Automatic Reconstruction of the Underlying
Interaction Design of Web Applications, Proceedings SEKE 2002, ACM Press

[Paternò 94] Paternò, F., Leonardi, A. A Semantics-based Approach to the Design
and Implementation of Interaction Objects, Computer Graphics Forum, Blackwell
Publisher, Vol.13, N.3, pp.195-204, 1994.

[Paternò 02] Paternò, F., Santoro C., One Model, Many Interfaces, in Proc. CADUI
2002, Kluwer.

[Rauterberg 98] Rauterberg, M. et al.: BUILT-IT: A Planning Tool for Consruction
and Design. In Proc. Of the ACM Conf. In Human Factors in Computing Systems
(CHI98) Conference Companion, 1998, pp. 177-178.

[Rekimoto 99] Rekimoto, J., Saitoh, M. Augmented Surfaces: A spatially continuous
workspace for hybrid computing environments. In Proc. of the ACM conference on
Human Factors in Computing Systems (CHI99), ACM Press, 1999, pp. 378-385.

[Rekimoto 01] Rekimoto, J., Ullmer, B., Oba, H. DataTiles: A modular Platform for
Mixed Physical and Graphical Interactions. In Proc. Of the ACM conference on
Human Factors in Computing Systems (CHI2001), ACM Press, 2001, pp. 269-276.

Title: Reference Framework Id Number: D1.1

57

[Rekimoto 97] Rekimoto, J. Pick and Drop: A Direct Manipulation Technique for
Multiple Computer Environments. In Proc. Of UIST97, ACM Press, 1997, pp. 31-
39.

[Robertson 91] Robertson, G., Mackinlay, J., Card, S.: Cone Trees: Animated 3D
Visualizations of Hierarchical Information. In: Proc. CHI90, ACM Publ., 1991, pp.
189-194.

[Salber 99] Salber, D., Dey, A. K., Abowd, G. D.: The Context Toolkit: Aiding the
Development of Context-Enabled Applications. In: the Proceedings of the 1999
Conference on Human Factors in Computing Systems (CHI '99), ACM Press,
Pittsburgh, PA, May 15–20, 1999, 434-441.

[Schmidt 99] Schmidt, A.: Implicit human-computer interaction through context,
Proc. of 2nd Workshop on Human Computer Interaction with Mobile Devices
MobileHCI’0, Edinburgh, August 1999.

[Schneiderman 98] Schneiderman, S. Designing the User Interface. Strategies for
Effective Human-Computer Interaction. Addisson-Wessley, Reading (MA), third
edition, 1998.

[Context 01] Special Issue on Context-Aware Computing, Human Computer
Interaction, Lawrence Erlbaum, 16(2-4), 2001.

[Stephanidis 01a] Stephanidis, C. et al.: A case study in Unified User Interface
Development: The AVANTI Web Browser. User Interface for All, Concepts,
methods and tools, Lawrence Erlbaum, Publ., ISBN 0-8058-2967-9, 2001, pp. 525-
568.

[Stephanidis 01b]Stephanidis, C., Savidis, A.: Universal Access in the Information
Society: Methods, Tools, and Interaction Technologies. Journal of the Universal
Access in Information Society (UAIS), 1(1), June 2001, Springer Publ., pp. 40-55.

[Streitz 99] Streitz, N. et al., I-LAND: An interactive landscape for creativity and
innovation. In Proc. of the ACM Conf. On Human Factors in Computing Systems
(CHI99), Pittsburgh, May 15-20, 1999, pp. 120-127.

[Szekely 96] Szekely P.: Retrospective and Challenges for Model-Based Interface
Development, Computer-Aided Design of User Interfaces. In: Proceedings of
CADUI'96, J. Vanderdonckt (eds), Presses Universitaires de Namur, 1996.

[Szekely 93] Szekely, P. et al.: Beyond Interface Builders: Model-based interfaces
tools. In Proc. Of the ACM Conf. On Human Factors in Computing (INTERCHI
93), ACM Press, 1993, pp. 383-390.

[Tandler 01] Tandler, P.: Software Infrastructure for Ubiquitous Computing
Environments: Supporting Synchronous Collaboration with Heterogeneous Devices.
In Pro. Ubicomp 2001, Springer Verlag, 2001, pp. 96-115.

Title: Reference Framework Id Number: D1.1

58

[Thevenin 01] Thevenin, D.: Adaptation en Interaction Homme-Machine : le cas de
la Plasticité. PhD thesis, Grenoble, 2001, 234 pages. http://iihm.imag.fr/publs/2001/

[Thevenin 99] Thevenin, D., Coutaz, J.: Plasticity of User Interfaces: Framework
and Research Agenda. In: Proc. Interact99, Edinburgh, A. Sasse & C. Johnson Eds,
IFIP IOS Press Publ., 1999, pp. 110–117.

[Vanderdonckt 95] Vanderdonckt, J.: Knowledge-Based Systems for Automated
User Interface Generation; The TRIDENT Experience. RP-95-010, Fac. Univ. de N-
D de la Paix, Inst. d'Informatique, Namur, B, 1995.

[Vanderdonckt 93] Vanderdonckt, J., Bodart, F., Encapsulating Knowledge for
Intelligent Automatic Interaction Objects Selection. In Proc. INTERCHI 93, ACM
Press, 1993, pp. 424-429.

[Want 01] Want, R., Shilit, B.: Expanding the Horizon of Location-Aware
Computing, IEEE Computer, 34(8), 2001, pp. 31-34.

[Winograd 01] Winograd, T.: Architecture for Context, Human Computer Interaction,
Lawrence Erlbaum Publ., 16(2-4), 2001, pp. 401-419.

[WP3.1 02] Application of tools to case studies, Cameleon Project WP3.1 working
paper, V1, 2002.

[Zizi 94] Zizi, M., Beaudouin-Lafon, M. Accessing Hyperdocuments through
Interactive Dynamic Maps, ECHT94, ACM Press, 1994, pp. 126-135.

