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Abstract.  We introduce a simple conceptual framework for assessing a number of well known formal 
specification techniques w.r.t. their ability to model state-oriented and/or event-oriented aspects of system 
behaviour.  By attributing a-priori equal importance to the notions of event and state, by explicitly recognizing 
the two derived, very fundamental ways of thinking about system behaviours, and by assessing the bias of 
existing formal methods towards one or the other,  one can make more conscious decisions and selections in the 
upper phases of software development, that is, in requirements elicitation and analysis, in the construction of 
abstract system models, and in the choice of formal languages for high- and low-level design.  In particular, we 
assess the recently introduced model of Abstract State Processes, and the design choices behind its definition, in 
light of the introduced state-event framework. 
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1. Introduction 
 

In this paper we refer to the problem of formally specifying complex (software and/or hardware) 
concurrent, distributed, reactive systems.  In the early phases of system development abstract 
models of the system are built, possibly by means of formal specifications, in order to clarify system 
requirements.  Among the several formal or semi-formal specification techniques available for 
building abstract system models, we are interested here on those that address explicitly system 
behaviour.  Thus we exclude, for example, Data Flow diagrams, Entity Relation diagrams and 
(UML-) Class Diagrams, and we refer to formal specification techniques that allow one to express 
dynamic aspects: which events happen when the system operates, and how does the system state 
evolve?  We shall use the terms behavioural specification and behavioural specification language.    
 
In [AL93] Abadi and Lamport write: 
 

The popular approaches to specification are based on either states or actions. In a state-based approach, an 
execution of a system is viewed as a sequence of states, where a state is an assignment of values to some set of 
components. An action-based approach views an execution as a sequence of actions. These different approaches 
are, in some sense, equivalent. An action can be modeled as a state change, and a state can be modeled as an 
equivalence class of sequences of actions. However, the two approaches have traditionally taken very different 
formal directions. State based approaches are often rooted in logic, a specification being a formula in some 
logical system. Action-based approaches have tended to use algebra, a specification being an object that is 
manipulated algebraically. Milner’s CCS is the classic example of an algebraic formalism […]. 
State-based and action-based approaches also tend to differ in practice. […] 
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The excerpt above represents one of the main motivations for our work.  Our objective is to further 
investigate the issue of state-based vs. action-based specification, in the context of the early phases 
of (software) system development, namely those that involve the initial brainstorming about system 
functionalities, the elicitation and analysis of system requirements, the construction of abstract 
system models, and the choice of formal languages for high- and low-level design.  We therefore 
focus on the expressive flexibility of languages – on their appeal to human intuition – rather than on 
analytical power, or support to formal verification tasks. 
 
Some software engineers seem to believe that the first, crucial step in system development is the 
identification of the right global state structure.  Others seem to prefer reasoning in terms of 
external viewpoints: they first describe the system interactions with the environment as patterns of 
events, without immediately worrying about the state.  But, is it really possible, and convenient, to 
hit the extremes of this spectrum, and have a purely state-oriented or purely event-oriented formal 
specification?  And how do existing formal specification languages support an integration of these 
two descriptive modes?  If there are multiple ways to do it, where are the advantages and 
disadvantages?   
 
Consider specification approaches such as ASM [G93, BS03], B [A96], CCS [M80], CSP [H85], 
High Level Petri Nets [JR91], Statecharts [H87], UML-State Machines [BRJ99], TLA [L03], Z 
[S89].  Most people would agree in regarding some of them as closer to state-oriented thinking (e.g. 
ASM), and some others as closer to event-oriented thinking (e.g. CSP); but what does it really mean 
for a formal specification language to be state oriented or event oriented?  Can we provide a simple 
conceptual framework or grid where existing formal specification languages can be positioned and 
compared with one another based on their bias towards states of events? 
 
The purpose of this paper is to shed some light on these questions.  Frequently the selection of a 
specification method – a choice which may influence in various ways the subsequent phases of 
system development -- is driven by non-technical reasons such as tradition, corporate policy, or 
even dogma.  Our simple state-event framework is meant to contribute in supporting more 
conscious and perhaps more successful choices, based on primitive but technical criteria. 
 
In Section 2 we introduce a first, elementary version of the conceptual framework, in form of a 
simple diagram, and we discuss two instances of it (two existing specification methods) that 
actualize in different ways its constituent elements.  In Section 3 we refine the framework, based on 
the need to handle multiple event types, multiple fragments of the global state, and multiple 
specification ‘chunks’.  These multiplicities lead us to naturally distinguish among five basic 
constraint types, corresponding to as many behavioural specification paradigms. 
 
In Section 4 we discuss the two most simple constraint types: invariants and pure event-event 
constraints.  Section 5 is devoted to the more advanced specification paradigms, that we call 
disjoint-events/shared-variables and shared-events/disjoint-variables; two instances of these 
paradigms are discussed.  In Section 6 we assess the recently introduced model of Abstract State 
Processes, and the design choices behind its definition, in light of the discussed state-event 
framework.  In the concluding Section 7 we provide a list of research topics related to the 
conceptual vehicle introduced in the paper. 
 
For space reasons, we cannot provide introductions to the several formal languages considered in 
the paper, and we can only provide small examples of formal specifications that reflect (some of) 
the discussed paradigms.  We defer more substantial coverage of these components to a longer 
version of this paper. 
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2. Basic framework 
 
 
Figure 1.a illustrates a well known concept in electrical engineering: the synchronous sequential 
circuit.  At each clock step the circuit, based on the current state s and the input sample in, produces 
the output sample out and a new state, say s’.  The outputs are defined by a combinational 
(stateless) circuit, that represents the ‘logics’ of the system.  The way most behavioural 
specification languages work can be ultimately described by the diagram in Figure 1.b, which 
proposes in a new setting the basic elements of Figure 1.a.  This diagram implies that states and 
events are primitive concepts of equal importance in behavioural specification. 
 

 
(a)     (b) 

 
Figure 1 – Basic framework for behavioural specification languages 

 

In Figure 1.b: 
 

- Circles are intended to represent state variables or, more generally, portions of a global state 
structure. 

- Rectangles represent events, which may be structured, and may involve data provided from, 
and/or offered to  the environment.  Event occurrences are instantaneous; they may depend 
on the current state value, and affect it according to some ‘logics’.   

- Hexagons represent the 'logics' that connects the state and the events, that is, the actual 
formal specification of the system, be it a piece of text or a diagram; this specification would 
be meaningless without the semantic rules of the language, which are therefore also 
considered, perhaps implicitly, as part of the ‘logics’.  We adopt the term constraint for this 
element, since it enforces some correlation between event occurrences and values on one 
hand, and state values on the other. 

  
The system specification and the language semantics are the static elements of the picture; the state 
and the event are the dynamic ones.  State variables tend to persist, but events make them change.  
Events disappear. One can make future use of the value of an event only by recording it somewhere 
in the state, as the event happens.  Apart from this difference, states and events may well be of the 
same type (e.g., tuples of natural numbers).  In Figure 2 the state structure is represented by a 
dynamic set of state variables that may change their values (colours) as events occur.  
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Figure 2 – Events and state changes 
 
 

2.1 Instances 
 

We briefly consider here two instances of the basic framework of Figure 1.b.  The purpose is to 
emphasize how formal specification languages may differ in the way they conceive and represent 
events, states and constraints. 
 
 
Predicate/Transition nets 

 

A Predicate/Transition net [JR91] is a bipartite graph where nodes can be places (circles) or 
transitions (boxes), and arcs are labelled by multisets of terms representing token values.  A finite 
set of tokens distibuted over one or more places represents the initial marking.  Transitions are 
labelled by first order formulae.  A transition T with label P can fire when its input places contain 
tokens with the values as specified by its incoming arc’s labels, and P can be satisfied; the effect is 
to inject tokens with values defined by T’s outgoing arc labels into T’s output places.   
 
The correspondence between the diagram of Figure 1.b and Predicate/Transition nets is as follows 
(see Figure 3): 
 

- An event is the firing of a transition.  Some of the variables appearing in P can be readily 
interpreted as event parameters, whose values can be provided or used by an external, 
unspecified observer. 

- The state is the current marking. 
- The system specification is the net itself, which includes the initial marking 
- The operational semantics is the transition firing game 

 
 
Full LOTOS 

 

Full LOTOS [BB87] is a process algebraic language.  System behaviours are described by 
behaviour expressions, built by behavioural operators, and by value expressions used for denoting 
data values.  A system is conceived as a dynamic set of processes that interact with one another and 
with their environment by synchronising (rendez-vous) at so called gates, and by possibly 
exchanging data values. 
 

State 
structure 

Events 

time 
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The correspondence between the diagram of Figure 1.b and Full LOTOS and is as follows (see 
Figure 3): 
 

- An event is … a LOTOS event, consisting of a gate name and, possibly, a tuple of 
parameter values. 

- The state is the current behaviour expression: this evolves as the events occur, and during 
evolution its data variables are substituted for actual values that play the role of state 
variables, although LOTOS is not an imperative language (LOTOS exploits single-use, 
‘logical’ variables, that cannot be re-assigned values).  A behaviour expressions acts as a 
complex state which implicitly defines all the transitions immediately possible from for that 
behaviour, that is (i) all the events that may occur immediately, and (ii) the residual 
behaviour expression obtained after each of these events. 

- The system specification is the LOTOS text. 
- The operational semantics is the set of axioms and inference rules of the LOTOS SOS 

(Structural Operational Semantics), that formally define the transition relation.  
 

 
 

Figure 3 - Two instances of the diagram in Figure 1.b: Pr/T nets and Full LOTOS 
 
Note that in both cases the state ranges in an unbounded set of values.  A marking may have an 
unbounded number of tokens, each with values drawn from an unbounded domain.  A behaviour 
expression may grow unboundedly (by using parallel composition in conjunction with process 
instantiation), and be parameterized by variables of infinite types. 
 
 

3. Advanced framework 
 
In the previous section a specification was conceived as a single, monolithic piece (see Figure 1.b).  
We can achieve a better assessment of behavioural specification languages by introducing another 
dimension in our framework, that has to do with specification decomposition.  Formal 
specifications are produced and read by human beings, who need to break them into manageable 
blocks.  This is where further differences emerge: different specification languages support different 
system decomposition policies, that are based on different types of specification block, or 
constraint.   
 
The differentiation among constraint types is basically driven by two distinct factors: the 
differentiation among event types, or classes, and the fragmentation of the global state. In systems 
with complex behaviours it is quite natural to distinguish among event types, for accurately 
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modelling functional requirements and user-interaction scenarios.  Similarly, one often partitions 
the global state into pieces, for reflecting logical or physical boundaries within the system. 
 
Taking into account this new dimension leads to the revised framework depicted in Figure 4.  Note 
that the splitting of the event and the global state allows us to explicitly represent also event-to-
event and state-to-state constraints.  
 

The purpose of the state-event framework in Figure 4 is to distill and compactly represent the 
essentials of behavioural description.  The meanings of box, circle and hexagon in the diagram are 
as discussed for Figure 1, except that now the language semantics is left in the background: the 
hexagon just represents a specification block, or constraint.  Let us shortly introduce the five 
constraint types. 
 

 
Figure 4 – A conceptual framework: the ST.EVE square 

 
1. Invariants.   

The hexagon labelled ‘Type 1’ connects two state variables (could be, in general, any 
number), and is meant to represent specification chunks that constrain the possible values 
simultaneously taken by those variables during system operation.  These state-to-state 
constraints are widely known as state invariants. 

 
2. Pure event constraints.   

The hexagon labelled ‘Type 2’ connects two event types (could be, in general, any number), 
and is meant to represent specification chunks that constrain the possible instances 
(occurences) of those events.  Recall that each event type could be instantiated several or 
infinite times, thus yielding multiple event occurrences.  The purpose of the constraints is 
exactly to express the ‘when’ (in terms of relative ordering) and possibly the ‘what’ (in 
terms of data values) of event instances.  Note that the ‘what’ is here limited to the 
consideration of event values, if any, not state values.  Thus, event-event relations may be 
used for expressing aspects such as temporal ordering (sequence), causality, cyclic 
behaviour, choice, synchronisation, simultaneity, independence, interleaving, priority.  
Furthermore,  we certainly allow for hierarchical definitions, although this is not made 
explicit in the graphics: complex constraints can be defined in terms of simpler ones. 

 
3. Disjoint-events/shared-variables.   

The hexagon labelled ‘Type 3’ connects exactly one event type and two (could be more) 
global state fragments, and is meant to represent specification chunks that constrain the 
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occurrence of events of that type by relating them, via pre-conditions and post-conditions, to 
the connected portion of the global state.  Note that pre- and post-conditions refer 
exclusively to state variables, and possibly to the parameters of the event under 
consideration, not to other events.  In other words, information about the history of past 
events is exclusively available via the current system state.  Figure 5.a represents the idea 
that, in this scenario, constraints are in one-to-one relation with event types, but may share 
state variables.  One could say that the constraints interact by a shared-variable policy. 

 
4. Shared-events/disjoint-variables.   

The hexagon labelled ‘Type 4’ connects two event types (could be more) and exactly one 
portion of the global state, intended as disjoint from those connected to other constraints in 
the specification.  Similar to the pure  event-event constraint, this type of specification 
chunk constrains the possible instances of several event types.  However, each constraint 
can now encapsulate a disjoint portion of the global state, and use it, in conjunction with the 
connected events, for expressing pre- and post-conditions on event occurrences.  The 
constraints interact purely by a shared-event policy (hand-shake, or rendez-vous).  This 
circumstance is pictorially represented in Figure 5.b.  

 

 
(a)                                                                 (b) 

 
Figure 5 – (a) disjoint-events/shared-variables, and (b) shared-events/disjoint-variables 

 
Figure 6 is a simple transformation of Figure 5 in which the graphical elements in one-to-
one relation are collapsed: constraints collapse into events in case (a), and state variables 
collapse into constraints in case (b).  These diagrams are more easily recognized  as  
representative of various specification paradigms, as will become clear later when we 
consider concrete examples.  

 
Figure 6 – (a) disjoint-events/shared-variables, and (b) shared-events/disjoint-variables 

 
5. General case.  The hexagon labelled ‘Type 5’ is meant to represent constraints that can 

freely insist on any portion of the global state and any subset of event types, and share both 
events and state variables.  This case represents the least restricted type of specification 
chunk.    
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4. Simple constraints 
 
In this section we discuss in more detail the elementary constraints of types 1 and 2 identified in 
Figure 4, and we mention how they are actually instantiated by some formal languages. 

 
4.1 Invariants 
 
We use this type of constraint for expressing relations that must be preserved among state variables 
regardless of the events that may change them.  Figure 7 illustrates a set of four state variables and a 
set of four invariants that relate them pairwise.  LivesIn and worksIn are relations in People × Cities. 
Whatever event may occur that changes the values of one or more variables, these must keep 
satisfying the constraints for the whole duration of a possibly infinite system run.  According to the 
specification, not all persons must necessarily work, and not all populated cities must necessarily 
have people that work there.  Dom and ran denote, respectively, the domain and range of a binary 
relation. 
 

 
 

Figure 7 – Four state invariants 
 
Several formal languages support the explicit formulation of invariants: examples are Z, B, and 
TLA.   
 
Remarks 

 

No realistic specification (language) can limit itself to the pure expression of invariants.  The 
identification of the state variables and the relations that must be preserved as the system evolves 
may be an convenient starting point; however, this provides no information about what can actually 
happen, that is, about the nature and temporal sequence of events.  For this reason, some 
specification techniques, B for example, adopt invariants as a sort of initial contract that the 
subsequent, more detailed behavioural specification is expected not to violate. 
 
 

4.2 Pure event constraints 
 
What is an event?  Probably the most simple and general definition is suggested by physics: an 
event is a point in space and time.  The pair (room B, 9.00 am) represents an event, one that 
happens in room B at 9.00 am.  Assuming a one-dimensional space, an event is a pair (x, t), where x 
and t real numbers.  Figure 8 illustrates a set of four events and a set of four constraints that relate 
them pairwise.  Events (x1, t1) and (x2, t2) occur on a train running at constant speed, respectively 

livesIn 

persons workers 

worksIn  ran(worksIn) ⊆ ran(livesIn)  

workers ⊆ persons 
 

persons = dom(livesIn) workers = dom(worksIn) 
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at the front and rear of it: their space distance is TrainLength.  Events (x1’, t1’) and (x2’, t2’) occur 
on the ground, simultaneously: their time distance, relative to the ground system, is zero.  If we 
insist  that (x1, t1) and (x1’, t1’) are the same event as seen, respectively, from the train and from 
the ground, their coordinates must be related by the Lorentz transformation Lorentzv(x, t, x’, t’): 
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where v is the speed of the train and c is the speed of light.  The same applies to events (x2, t2) and 
(x2’, t2’).   
 

 
Figure 8 – Events and constraints for measuring the length of a running train 

. 
The diagram can indeed be seen as a behavioural specification: the system behaviour is composed 
by any quadruple of events that satisfies the constraints.  These are the essential events involved in 
the experiment of measuring the length of a running train, as described in [E16].  In particular, if the 
constraints are respected, the space distance between events (x1’, t1’) and (x2’, t2’) always provides 
the length of the train as measured from the ground, which turns out to be shorter than the 
TrainLength measured from the train. 
 
The limit of this specific instantiation of pure event constraints is that the solution of the network of 
constraints only accounts for finite sets of actual events, since the boxes actually represent event 
instances.  Unlike the case of state invariants, every alternative solution here is another finite 
system run, and  infinite behaviours are out of reach.   
 
For this reason, many formal specification languages omit time information from events, or just use 
relative rather than absolute time measures, and succeed in supporting finite representations of 
infinite event occurrences. Examples are CCS, CSP and (Basic) LOTOS.  For example, the four 
constraints in Figure 9 can be expressed  by the four LOTOS processes defined below.  Each 
constraint/process captures a fragment of information about the relative orderings of two parameter-
less events.  Although in principle one could have breakfast on the way to the office, due to the 
need to feed the dog at home, but only after breakfast, the latter is taken at home. 
 
 

Process P1[wakeUp, breakfast]  := wakeUp; breakfast; P1[wakeUp, breakfast] 

Process P2[wakeUp, drive]   := wakeUp; drive; P2[wakeUp, drive] 

Process P3[breakfast, feedDog] := breakfast; feedDog;P3[breakfast, feedDog] 

Process P4[feedDog, drive]  := feedDog; drive; P4[feedDog, drive] 

 

The processes can then be composed by the LOTOS parallel expression: 

 x1-x2  = TrainLength 

Lorentzv(x1, t1, x1’, t1’) 

x1 t1 x2 t2 

t1’ = t2’ x1’ t1’ x2’ t2’ 

Lorentzv (x2, t2, x2’, t2’) 
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(P1[wakeUp, breakfast] |[wakeUp]| P2[wakeUp, drive]) 
|[drive, breakfast]| 

(P3[breakfast, feedDog] |[feedDog]| P4[feedDog, drive]) 

 

 
 

Figure 9 – Pure event constraints for some daily activities 
  

The reader may object that the small specification above is not a valid example of pure event-
oriented reasoning, since behaviour expressions represent evolving state information, as discussed 
Section 2.  However, we insist in ascribing pure behaviour expressions to pure event-oriented 
thinking.  A pure behaviour expression is one that does not manipulate data.  In fact, in Basic 
LOTOS one can’t write anything but pure behaviour expressions.  And indeed, while the example 
above makes use of only a few behavioural operators (namely action prefix, process instantiation 
and parallel composition), the set of expressive tools for supporting pure event-oriented 
specification is wider, and includes operators such as choice, interleaving, enabling, disabling. 
 
We claim that pure event-oriented specification can indeed be achieved also by making  explicit use 
state variables, as long as (i) these assume finitely many values, and are used only for event-
ordering purposes, not for representing data structures, and (ii) the behaviour is described in terms 
of instances of a finite set of parameter-less events (as in the example above).    For example, one 
can readily replace the four Basic LOTOS processes above by equivalent, two-state machines.  
And, in the same way in which one can compose Basic LOTOS processes in a number of ways, via 
choice, interleaving, partial synchronisation, enabling, disabling, and so on, one can consider 
equivalent, or similar operations on state machines, along the lines of Statecharts [H87].  
 
Remarks 

 

Is pure event-oriented specification any useful?  Several researchers and developers tend to answer 
negatively, based on the idea that a good model for the global system state is a necessary step for 
building a useful specification.  On the contrary, our experience with applications of process 
algebras, in their data-less forms, seems to indicate that pure event-oriented thinking does offer 
some advantages, although these only apply to the very early stages of system conception .   
 
Let us first point out the typical limitation of this method:  by reasoning solely in terms of temporal 
ordering of pure events, we cannot record any data and refer to it later for deciding about the 
possible occurrence or value of some event.  Consider the evergreen example of a vending machine. 
At a very high abstraction level, its behaviour can be described in terms of a small number of pure 
events, such as InsertCoin, SelectItem, GetChange, GetChocholate, GetTea, and the like.  In a pure 
event-oriented description, we would not be allowed to refine, say, the InsertCoin events by 

P1 

P2 

P4 

P3 

wakeUp breakfast 

drive feedDog 
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numeric parameters indicating coin values, nor could we accumulate these values in an internal 
variable, for later deciding whether or enough money was inserted for enabling a GetChocolate 
event.  Actually this limitation could be circumvented by coding (finitely many) values into event 
names, yielding names such as Insert5, Insert10, Insert20, Insert50, … and by growing event trees 
in a way which carefully keeps track of the number of different Insert events up to any stage along 
each path.  But, due to combinatorial explosion, very soon this approach would lead to 
unmanageable complexity.  On the contrary, a combined usage of parameterized events, such as 
Insert(x: Coin), and state variables, such as CurrentDeposit, would yield a simple description.  A 
state variable is enough for keeping track of the relevant events, abstracting from the order in which 
they have occurred. 
 
In conclusion, we believe that pure event-oriented thinking can be used mainly for providing very 
abstract, and very early behavioural descriptions of a wide class of reactive systems.  They would be 
even more useful if formal refinement techniques were available for smoothly introducing state 
information.  Often the supporters of state-oriented thinking criticize process algebraic approaches 
by saying that they cannot scale up to realistic system sizes, and that they are only good at 
describing toy examples such as vending machines.  Our reply is that a vending machine is indeed a 
very complex object,  as demonstrated by its frequent malfunctioning; it could be described by very 
complex internal state structures and event patterns.  It is the specifier’s choice of a very high 
abstraction level that makes the description so simple.  Whether the level is too high, and the 
description too naïve to be of any practical use, even for pure documentation purposes, is another 
question, which is left open for further discussion. 
 
 

5. Complex constraints 
 
In this section we discuss in more detail the constraints of types 3 and 4 identified in Figure 4, and 
we mention how they are actually instantiated by some formal languages. 

 
5.1 Disjoint-events/shared-variables 
 
The structure of specifications of this type is abstractly depicted in Figures 5.a and 6.a.  These 
specifications are structured around event types: the specification is a set of formal fragments, or 
blocks, each describing one event type and its associated pre- and post-conditions, which involve a 
number of state variables.  Events are usually expected to occur one at a time.  Specification blocks 
may share state variables. 
 
Many behavioural formal models adopt this specification paradigm, possibly combined with 
invariants.  Z, B, TLA are fundamentally based on pre- and post- conditions and invariants.  For 
example, in Z one can write a schema describing the global state and its invariants, and other 
schemata, one for each operation.  These identify pre- and post-conditions on state variables, and 
input and output parameters associated with the operation.   
 
Predicate/Transition nets express pre- and post-conditions on events in a very appealing, partly 
graphical way.  The net of Figure 10, that matches Figure 6.a, describes a portion of a car share 
system.  Places livesIn and worksIn represent relations in People × Cities (as in Figure 7): each 
token in these places is an element of the relation, that is, a (person, city) pair.  The values of the 
tokens requested and produced by transition ‘Pairing’ are indicated in the multisets of terms (pairs) 
appearing in the shown arc inscriptions.  The transition is characterized also by an input parameter – 
the system user indicates the city c where the involved persons p1 and p2 must live -- and includes a 
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predicate (c ≠ d) establishing that the city where they work is different, so that it makes sense for 
them to share a car.  
   

 
Figure 10 – A detail of a predicate/transition net for a car share system 

 
Remarks 

 

The success of the disjoint-event/shared-variables approach, using pre- and post-conditions, is due 
to its simplicity: it allows one to concentrate on event types individually.  One does not have to 
think explicitly about patterns of events in time: these are implicitly defined by the ‘game’ of pre-
conditions and post-conditions.  Specifiers only define the rules of this game.  The advantage of this 
approach is also its limitation: one cannot directly express ‘views’ about system behaviour made up 
of several events. 
 
 

5.2 Shared-events/disjoint-variables 
 

The structure of specifications of this type is abstractly depicted in Figures 5.b and 6.b; they are 
structured into chunks that describe the behaviour of one logical or physical entity, each 
encapsulating a portion of the global state and insisting on a number of events.  Each fragment – 
possibly called a process -- expresses ordering and other constraints on the occurrences of these 
events.  Entities interact by rendez-vous (shared events). 
 
This is the specification paradigm adopted by process algebraic languages such as CCS and CSP.   
The temporal constraints on events are expressed by behaviour expressions, built in terms of 
behavioural operators.  Mutual influences between event parameters and data values are also 
expressible, whenever these languages offer data representation capabilities. 
 
Figure 11, matching Figure 6.b, illustrates three LOTOS processes People, Cities and a non-
specified R, that interact by sharing events birth, death, and a non-specified event g.  Events birth 
and death have the same structure: they have two parameters, namely a person and a city. The 
LOTOS syntax for the composition is: 
 
 (People[birth, death, g](P)  

|[birth, death, g]|  

Cities[birth, death, g](C) 

) 
|[g]| 

R[g](X, Y) 

Input: c 

teams livesIn worksIn 

 

c ≠ d 

[[…]] 

 
Predicate 
 
 
Transition 
 
 
Place 
 
Arc inscription 
(multiset) 
 

[[(p1,d), (p2,d)]] 

[[(p1,c), (p2,c)]] 

[[(p1, p2)]] 

‘Pairing’ 
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Figure 11  - Interacting LOTOS processes 
 

Minimal definitions for processes People and Cities could be as follows.  We use underscore ‘_’ for 
don’t care variables. 
 

Process People[birth, death] :=  

OnePerson[birth, death]  
||| 

i;  People[birth, death] 
 
where 

Process OnePerson[birth, death] :=   

birth ?p: person ?_: city; 

death !p ?_: city; 
stop 

 

Process Cities[birth, death](C: setOf City) :=  
   birth ?_: person ?aCity: city;  

 ( [aCity In C] ->  Cities[birth, death](C) 
 [][aCity NotIn C] ->  Cities[birth, death](C union [aCity]) 

) 

[] death ?_: person ?aCity: city;  

 Cities[birth, death](C minus [aCity]) 

 
Process Cities handles the set C of cities currently represented in the system.  LOTOS variables are 
not exactly state variables, as found in imperative languages: they do not represent memory 
locations that can be re-assigned values.  Each process is parameterized by ‘logical’ variables, che 
get bound to the values passed via actual parameters when the process is instantiated; updating 
these variables is achieved by re-instantiating the process with different actual parameters.  These 
variables are represented in Figure 11 by dotted lines. 
 
An object-oriented instance of the paradigm of communicating agents that share events and 
encapsulate state information, where the latter is represented as traditional, imperative state 
variables, is described in [BD98]. 
 
 

 

6. Design choices behind a new mixed specification model 
 
In this section we consider the recently introduced model of Abstract State Processes [BB03], and 
match its features against the conceptual framework introduced so far, with the purpose to better 
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assess the design choices behind its definition.  Abstract State Processes enrich ASM (Abstract 
State Machines) with few behavioural operators borrowed from process algebra, for supporting 
flexible specification of concurrent, distributed, reactive systems. 
 
As a first step, in Figure 12 we instantiate the general diagram of Figure 1.b w.r.t. Abstract State 
Processes. 
 

 
Figure 12 – Instantiating the diagram of Figure 1.b for Abstract State Processes 

 
The diagram reflects the following design choices. 
 

- Event.  In Abstract State Processes, an event is an update set, that is, a set of pairs, 
each consisting of a memory location and a value to be assigned to it.  The updates 
take place synchronously, and affect the current state σ.  The notion of synchronous 
updates is exactly as found in the original ASM model. 

- State.  In Abstract State Processes, a state is a pair (B, σ), called configuration, where 
B is a behaviour expression B and σ is a traditional ASM state, that is, a structure of 
functions (we shall still use the term ‘state’ for referring to this element).  Thus, in 
Abstract State Processes we combine two fundamental ways to represent state 
information, as adopted, respectively, by imperative languages and by process algebra 
(both were represented  in Figure 3) 

 
The inference rules of the abstract state process semantics [BB03] allow one to derive transitions of 
the general form: 
 

(B, σ) --- u ---> (B’, σ’) 
 

where (B, σ) is the current system configuration, u is an update set (an event), and (B’, σ’) is the 
next configuration.  The state σ’ is obtained from σ by applying the update set u to σ’, exactly as 
done for ASMs.    
 
We consider now the problem of relating Abstract State Processes with the conceptual framework 
of Figure 4.  In this formalism, a system is conceived as a collection of interacting processes, and a 
specification is structured as a collection of process definitions, representing the constraints of our 
framework.  In the current definition of Abstract State Processes [BB03], any process in a 
specification can refer to any element of the σ state, and update it.  Since events are update sets, a 
process sharing with other processes portions of the state will share, in general, also events, unless 
read-only variables are explicitly introduced.  Let us be more precise on the way in which two 
abstract state processes may share an event.  Similar to ASM, two parallel processes P1 and P2 
share an event/update set U, when P1 can produce event U1, P2 can produce event U2, and U = U1 

(Bex0, σ0) 
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∪ U2.  U1 and U2  must update in the same way the locations they share (if any).  Furthermore, the 
selective synchrony parallel composition of Abstract State Processes, borrowed from CSP and 
LOTOS, implies synchronisation, and the union of update sets, in a more selective way.  Only when 
the composed processes are ready for events that include the updating of a common location 
explicitly indicated by the user in the operator itself, do the two processes synchronize; otherwise, 
their events are interleaved.  The composition ‘P |[f]| Q’ means that P and Q may produce a joint 
event only if are both ready to consistently update, possibly among other locations, the same point 
of function f.  For example, P may be ready to produce the updates g(x) := a || f(y) := b, and Q may 
be ready to produce the updates f(y) := b|| h(z) := c; then, their composition yields the updates: 
 

g(x) := a || f(y) := b || h(z) := c 
 
Based on the above discussion, and referring to Figure 4, we would be induced to view Abstract 
State Processes as type 5 constraints, and to represent them as in Figure 13. 

 
 

Figure 13 – Interacting abstract state processes 
 
However, while diagrams such as the one in Figure 13  suggest (as precisely intended) that events 
and state components are equally important factors in structuring a specification, Abstract State 
Processes do not fully reflect this symmetry.  When understood as update sets, events are 
conceptually subordinate to the state component, and it does not make sense to think of defining 
and partitioning the event space of a system before providing its state structure.  And, even when 
the state structure is fully defined,  the different combinations of event types (different tuples of 
locations to be simultaneously updated) that may emerge at execution time tend, at least in 
principle, to explode combinatorially: event types do not lend themselves as a natural means for 
structuring the specification.   
 
In conclusion, Abstract State Processes do not seem to find a fully convincing place in the state-
event framework we have successfully used for the other formalisms mentioned in this paper.  The 
reason is that the notion of event with which we have equipped them is not sufficiently independent 
from that of state.  Do we then need a new, stronger notion of event for Abstract State Processes?   
 

 
7. Conclusions 
 
We have introduced, in two steps, a conceptual framework for assessing formal specification 
languages with respect to their ability to model complex system behaviours.  The framework 
explicitly handles the primitive concepts of state, event, and five types of constraint.  Event-event, 
state-state, and state-event constraints correspond to the various constructs offered by specification 
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languages for decomposing system specifications into manageable chunks (schemata, rules, 
processes, blocks…).  We believe that recognizing explicitly these fundamental and different ways 
of thinking about system behaviours before selecting a formal specification model should help in 
making more conscious decisions in the upper phases of software development.  Our experience 
indicates that often software engineers and computer scientists express their opinions and 
preferences on modeling techniques without referring explicitly to the simple ideas and options that 
we have tried to distill into the ‘st.eve’ framework. 
 
Several questions are posed by this paper, and left open. Is the most general form of constraint – 
type 5 of Figure 4 – any useful?  In other words, are there advantages, in terms of expressive 
flexibility, in working with specification units that may share simultaneously state variables and 
events?  We suspect that the increased expressive potential offered by this mix might not be of 
much practical use, since specifiers would miss the divide-and-conquer strategies based on event 
types or, separately, on state encapsulation, and would be left with no clear guidance for 
specification decomposition.  For this reason, many methods only admit constructions of type 3 or 
type 4, that are proper sub-cases of type 5: the apparent limitation is indeed adopted for promoting 
discipline in writing specifications (this reminds us of a saying attributed to the French composer 
Pierre Boulez: ‘When everything is allowed, nothing is possible’).  
 
In the very early phases of system conception, it may happen that constraints of mixed types are 
incrementally produced.  For example, after a very abstract, stateless specification given in terms of 
pure events, one may provide a refined specification involving the state structure and a refinement 
of the events with data parameters.  Much remains to be investigated about the practical usefulness 
of these mixed specifications, and about the associated consistency and verification problems. 
 
On a longer run, an attractive problem is the relation between natural language descriptions of 
system requirements and the different formal specification paradigms.  Appropriate restrictions of 
natural language are likely to facilitate one or the other type of formalisation. 
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