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Abstract

To minimize the execution time of a parallel application running on a hetero-
geneous computing distributed system, an appropriate mapping scheme to allocate
the application tasks to the processors is needed. The general problem of map-
ping tasks to machines is a well known NP-hard problem and several heuristics
have been proposed to approximate its optimal solution. In this paper we propose
a static graph-based mapping algorithm, called Heterogeneous Multi-phase Map-
ping (HMM ), that permits a suboptimal mapping of a parallel application onto
a heterogeneous computing distributed system by using a local search technique
together with a tabu search meta-heuristic.HMM allocates parallel tasks by ex-
ploiting the information embedded in the parallelism forms used to implement an
application. We compare HMM with three different leading techniques and with
an exhaustive mapping algorithm. We also give an example of mapping of a prati-
cal application where HMM verified its usefulness. Experimental results show that
HMM performs well demonstrating the applicability of our approach.

Categories and Subject descriptors: D.4.1 [Operating System]: Process Man-
agement; D.4.1 [Operating System]: Process Management- Metacomputing/Grid
computing/Heterogeneous computing.

Key Words: Parallel processing, static mapping, task mapping, optimization,
performance evaluation.

1 Introduction

Heterogeneous Computing(HC) is a set of techniques enabling the use of different
interconnected machines to provide a variety of computational capabilities to execute
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collections of application tasks that have different requirements [1, 2]. There are many
types of heterogeneous systems [3]. In this paper we refer to a HC system as a hetero-
geneous suite of independent machines connected by high-speed networks, and used
as a single HC distributed system [1]. This kind of HC system is also known asMeta-
computer[4] or asGrid [5]. To run on a metacomputing environment an application
has to be decomposed into computationally homogeneous tasks that can either be se-
quential or parallel. Applications that require the use of different computational types
(Sequential, SIMD, MIMD, etc.) are the best candidates to exploit the potential of a
metacomputer.

An important goal of HC is to find an assignment schema to determine the machine
on which every task is to be executed and the task execution scheduling order to mini-
mize the execution time of an application. The assignment-scheduling process is called
mapping. Factors such as machine and network power and loading, task computational
requirements, data dependences between tasks, matching between task computational-
machine type, have be considered to optimize the mapping process [6].

The general problem of mapping tasks to machines has been shown to be NP-
complete. Mapping algorithms are usually classified as static or dynamic [26]. In the
former the mapping decisions are taken before executing an application and are not
changed until the end of the execution. In the latter the mapping decisions are taken
while the program is running. Since the static mapping does not imply overheads on
the execution time of the mapped application, more complex mapping solutions than
the dynamic ones can be adopted. Static mapping heuristics can be used to plan the
work on a HC system, and, in any case, an efficient static mapping constitutes a good
first step in implementing a dynamic mapping heuristic.

This paper deals with static graph-based mapping algorithms. In general, these
kinds of algorithms use a directed acyclic graph to model a parallel application, and an
undirected graph to model the system. Moreover, they assume that the task computa-
tional cost and the communication patterns among tasks are known a priori.

In this paper we propose Heterogeneous Multi-phase Mapping (HMM ), a static
graph-based mapping algorithm, that allows a suboptimal mapping of a parallel appli-
cation onto a metacomputer to minimize its execution time.HMM allocates parallel
tasks by exploiting the information embedded in the parallelism forms used to imple-
ment an application. Moreover, it uses a local search technique together with the tabu
search meta-heuristic [27].

Most of the parallel programs are designed using parallelism forms (farm, pipeline,
geometric, etc.) [15, 16] which can be used by adopting models that allow arbitrary
computation structures (unrestricted programming model) [17, 28] and also models
that restrict the forms in which computation may be expressed (restricted programming
model) [18, 20].

Various coordination languages have been proposed [21, 22,?, 19, ?] in which a
set of parallel constructs (parallelism forms) are used as program composition forms.

Parallelism forms allow the implementation of parallel computations in which the
communication patterns are structured and well defined, and, in general, a significant
amount of communication is concentrated within a parallelism form. Therefore, in
order to reduce the communication cost, it is usually convenient to allocate the tasks
inside a parallelism form on the same parallel machine.
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A parallel application, implemented using both restricted or unrestricted program-
ming models, can be modeled by using a DAG.

HMM takes in input a parallel program modeled by a DAG. If the parallel pro-
gram has been designed using a restricted parallel programming model, the DAG’s
nodes included in parallelism forms are managed as a hierarchical nodes (clusters of
tasks) that can be handled recursively. It has the advantage of driving the mapping of a
parallelism form to an individual parallel machine.

This paper is organized as follows. Section 2 describes some related works. Section
3 gives a description of the problem, and Section 4 describes our algorithm. In Section
5 the algorithm time complexity is evaluated. Section 6 outlines and evaluates the
experimental tests. Finally, we summarize our work in Section 7.

2 Related Work

A number of static graph-based mapping algorithms for heterogeneous computing en-
vironments have been proposed [8, 23, 3, 24, 25, 30, 31, 7], and evaluated [13], to
approximate the optimal mapping solution.

In [3] M. Eshaghian et al. proposed theCluster-Mand theAugmented Cluster-
M mapping algorithms that are based onCluster-Mprogramming model. Cluster-M
uses a direct graph and undirected graph to represent a meta-application and a meta-
computer, respectively. The direct graph is horizontal and vertical partitioned. The
horizontal partitioning builds layers (clusters) of tasks that can be executed in parallel.
Vertical partitioning allows consecutive layers to be merged or embedded in order to
minimize communication costs. The undirected graph is represented in a multilayered
format such that each layer includes a set (cluster) of completely connected process-
ing units. Clusters of communication-intensive tasks are then mapped onto clusters of
communication-efficient processing units by running Cluster-M. The latter presents a
time complexity equal toO(MP ), whereM is the number of tasks belonging to an
application graph, andP = max(M,N), with N numbers of processors belonging to
a metacomputer graph.

Augmented Cluster-M is an extension of Cluster-M. Since it treats the task com-
putational type-machine type affinity, that drives the mapping of a task onto a machine
with the same computation type, it is more suitable for heterogeneous computing. The
major drawback of this solution is the need of to re-computing the clustering of the
system graph when the metacomputer configuration changes. Metacomputer are dy-
namic computing environment on which the availability of computational units cannot
be established a priori. Moreover, the machines and networks workload can lead to
different mapping for different time requests of the same application execution.

In [8] V. M. Lo proposes a max-flow min cut algorithm to find a mapping of task
modules on heterogeneous processors that is an extention of the Stone’s model [9].
The algorithm combines recursive invocations of Max Flow/Min Cut Algorithm with
a greedy algorithm to find suboptimal assignment of task modules on heterogeneous
processors. It has a complexity equal toO(M2N |Ep|logM ) whereM , N andEp are
the number of parallel tasks, processors and communication links between processors,
respectively. This algorithm presents two main drawbacks, a high time complexity and
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Figure 1: Directed Acyclic Graph representing a parallel application.

it does not treat the task data dependences.
In [10] C. Shen and W. Tsai propose theA∗ Searching algorithm that exploits a

graph matching model called weak homomorphism to map a task graph to a system
graph. The search of the optimal weak homomorphism corresponds to the task as-
signment with minimum task turnaround time. It is formulated as a state-space search
problem, solved using theA∗ algorithm [11]. The latter is a Branch & Bound algo-
rithm, and, therefore, due to its time complexity it is suitable for small problems.

3 Problem Description

A parallel application, is represented by a Directed Acyclic Graph (DAG) denoted as
TG = (N,E) whereN is a set of nodes andE is a set of directd edges. A node
represents a computational task (homogeneous computation) that can be sequential or
parallel, calledatomicandhierarchicalrespectively.

Atomic nodes are indivisible units of execution, and have associated a weight repre-
senting the computation amount, that is the number of clock cycles required to execute
the associated task on a baseline machine [3]. Hierarchical nodes are sets of atomic
and/or hierarchical nodes structured according to the parallelism forms used to imple-
ment a parallel program. Parallelism forms can be nested each other.

Hierarchical nodes are represented with a DAG as well, and its structure respects
the order in which the parallelism forms are used in a parallel task. From the task
mapping point of view a hierarchical node is considered to be atomic.

In Figura 1 an example of DAG representing a parallel application is shown.
We assume that loops and conditional branches are contained inside an atomic

node.
The application DAG is considered structured inS layersthat represent the depth

of nested levels. In the first layer it consists of only a hierarchical node which is consid-
ered to be atomic, and in the next layers it could consist of atomic and/or hierarchical
nodes represented with a DAG denoted asTGs with 1 ≤ s ≤ S. In the last layer all
nodes are atomic.
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Figure 2: Layers inside aTG graph representing a parallel application.

A generic node, atomic or hierarchical, belonging to a graphTGs is identified as
ns

i with 1 ≤ i ≤ Ns with Ns number of nodes at the layers. In Figure 2 an example
of a three-stage expansion of a hierarchical node is given. The first layer consists of a
hierarchical node; the second layer is represented by a task graph of four nodes, one
atomic and three hierarchical (a pipeline and two task-farms), and in the last layer the
task graph includes fourteen atomic nodes.

An edgeei,j represents a data dependence between the nodesns
i andns

j with i 6= j,
and it has an associated weight specifying the amount of data exchanged between the
nodes.

We assume that theTG graph and the node and edge weights are produced at
compile-time.

A metacomputer is represented by a fully connected indirect graph denoted asMG.
Each node ofMG represents a metacomputer machine which is denoted asmi with
1 ≤ i ≤ M , whereM is the number of machines in the metacomputer. To each node
is associated a number that specifies the machine computational speed and each edge
denotes a link between two machines, and has an associated value which specifies its
communication bandwidth.

To find out at any time the processors available on a machinemi, a vectorVmi , with
a size equal to the number of processors ofmi, is associated with each machine. The
u-th entry of this vector contains the time value at which theu-th processor ofmi will
be available to execute new work.HMM updates the vectorVm on the basis of the
workload due to the application processes allocated on each processor of the machine
mi.

To enable a more realistic mapping it is useful to characterize both the application
and the machine by relating them to some real-world parameters such as the amount of
memory required, the computational model adopted, software required, architectural
class, number of processors and network bandwidth.

This enables us to compute a value calledaffinity that identifies which machine in
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the metacomputer is most suitable for executing a component of a parallel application
[3, 12, 1].

In HMM the affinity parameter can assume values from 0 to 1. It assumes 0
when the computational resources of a machine do not allow the execution of a task.
Otherwise, it assumes a value> 0 and≤ 1 with respect to the best matching between
the task computational requirements and the machine’s computational features.

To reduce the mapping complexity aTGs is horizontally divided intoP phases,
which are executed sequentially (top-down) one at a time. The nodes in the first phase
do not have parents, and the nodes in phasep, with 2 ≤ p ≤ P , are those which have at
least one parent among the nodes in phasek with 1 ≤ k ≤ p− 1. By structuringTGs

into phases the precedence relations among its nodes reflect the execution sequence
of the phases in the application graph, and the mapping problem is simplified because
HMM finds the initial suboptimal mapping solution by operating on each phase sep-
arately. The initial problem is thus decomposed into more manageable subproblems.
Since the phases are linked by the edges to map theh-th phaseHMM considers the
data exchanged between the nodes belonging to the phaseh and the nodes of the phase
k with k < h. The nodes in a phase can be executed in parallel, and a node in a phase
is executed when all its predecessors have been completed and it has received all the
data needed for its execution.

The introduction of thelayer concept allows us to carry out the layer whose map-
ping guarantees the shortest execution times of the nodes in it contained on the meta-
computer used. This is achieved by adopting the following strategy: starting from node
n1

1 (node at layer one)HMM finds the most suitable metacomputer machine for its ex-
ecution on the basis of the machine processor power, the machine workload, the tasks
exchanged data, and the node-machine affinity value.

HMM estimates the execution time of the task graphTG1, that consists of the
noden1

1, on the selected machine, and thenTG1 is expanded in the next layer pro-
ducing the task graphTG2. To carry out a better mapping ofTG2, it is divided into
phases, and starting from the first oneHMM finds the most suitable machine to exe-
cute each node contained in a phase by using the machine parameters seen before and
the communication between the node and its parents. Then, the estimated execution
time of TG2 is compared with the one found forTG1. The shortest one leads to the
current initial partial mapping solution. This process is repeated for all the remaining
S − 2 layers of the application graph to find an initial mapping solution by selecting
theTGs to which a shorter execution time corresponds to. Then, to refine the initial
mapping solution a local search algorithm together with the tabu search meta-heuristic
[27] is adopted.

The suboptimal mapping solution is found by keeping the tasks communication
cost as low as possible, and by trying to make a good trade-off between the communi-
cation costs and the workload by balancing among the metacomputer machines.

4 Algorithm Description

HMM takes in input theTG andMG graphs, which represent a parallel application
and a metacomputer, respectively. The algorithm is structured according two phases.
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In the first one an initial mapping solution is carried out. In the second one, to improve
the intial solution quality a local search function is applied to the atomic nodes in the
critical path ofTGs to which the initial solution corresponds to.

Figure 3 shows the pseudo-code of theHMM first phase which operates according
to the following steps:

Figure 3: Pseudo-code of the first phase of HMM.

Step 1computes the affinity value of allns
i . The affinity value of a hierarchical

node is computed by considering both the required computational resources and the
adopted computational model by all the hierarchical and atomic nodes in it contained.
The affinity value of a hierarchical nodens

i is 0 if ns
i contains at least an atomic node

which has no affinity with all metacomputer machines.HMM ends if at least an
atomic node has affinity equal to 0 with all metacomputer machines.

Step 2divides all nodes of aTGs into P phases.
Step 3arranges in descending order the nodes in a phasep with respect to their

computational workload.
Step 4 selects, according to the ordering given by the previous step, a nodens

i

which has not yet been analyzed and checks whether there is at least one machinemi

that can perform it. This selecting order improves the probability of heavier hierarchi-

7



cal nodes to be allocated.
The selection of a machine is based on the value:

max(Aff(ns
i ,mk)× Smk

× (1− Wmk

100
)−

Dc(ns
i , n

s
ī
)

100
) (1)

k = 1, ..,M and (ns
ī ) ∈ BS(ns

i )

in which Aff(ns
i ,mk) is the affinity ofns

i with respect tomk; Smk
is the com-

putational power ofmk andWmk
is the workload ofmk. Dc is the communication

cost of the nodens
i with the nodens

ī
belonging to its backward starBS(ns

i ) (i.e. its
parents).Dc is zero ifns

i and its parent with which it has the highest communication
cost can be allocated on the same machine. Otherwise it is equal to the amount of data
exchanged with the parent with which it has the highest communication cost.

The machine which the maximum value computed by (1) corresponds to is selected
to allocate the nodens

i . When the maximum value corresponds to several machines,

HMM selects the machinemk which the smallest value of the ratio
Wmk

Smk
corresponds

to.
If any machine is found, the hierarchical nodens

i is flagged “not allocated”, and the
next node is analyzed. Otherwise, step 5 is executed in order to estimate the execution
time ofns

i on the candidate machine.
Step 5estimates the overall completion timeTe of a nodens

i on mk. Te is com-
puted according to its execution precedence relations and is given by:

Te(ns
i ,mk) = Tw(ns

i ,mk) + Tx(ns
i ,mk) (2)

whereTw(ns
i ,mk) is the time that the nodens

i has to wait before executing on the
machinemk, andTx(ns

i ,mk) is the execution time ofns
i onmk.

TheTw(ns
i ,mk) is given by:

Tw(ns
i ,mk) = max{Tc(BS(ns

i )), Ta(ns
i , p̄mk

)} (3)

whereTc is the waiting time due to the communications ofns
i with the nodes be-

longing toBS(ns
i ) andTa(ns

i , p̄mk
) is the time spent waiting to get thēp processors

of the machinemk needed for thens
i execution.Ta is obtained from the vectorVmk

in which are stored the processors in increasing orders with respect to the completion
time of the task being executed on them. Theu-th entry ofVmk

stores the time at which
theu-th processor becomes available.

The waiting timeTc(BS(ns
i )) is given by:

Tc(BS(ns
i )) = max

{
Tend(ns

j) +
Dc(ns

i , n
s
j)

Bmk,mn

}
(4)

∀ j with (ns
j) ∈ BS(ns

i )
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whereBmk,mn is the communication bandwidth between machinemk on whichns
i

will be allocated and the machinemn on which thens
j has been allocated.Tend is the

time at which the nodens
j ended its execution. If bothns

i andns
j are allocated on the

same multiprocessorsBmk,mn
is the processors interconnection network bandwidth.

Tx(ns
i ,mk) is equal to

Cns
i

Wm
, whereCns

i
is the computational workload ofns

i . If ns
i

is a hierarchical node, to compute its execution time the equation (2) is recoursively
applied to all the atomic nodes in it contained.

When the list of nodes to analyze is empty, step 6 is performed.
Step 6. HMM checks whether there are some nodes flagged “not allocated”. If

there are, by adopting the procedure described in steps 4-5, these nodes are allocated
in the order established in step 3. The search for the most suitable machine to allocate
a not yet allocated node starts from the first layer greater thans-not allocated layer
for which there is a machine that can execute each node belonging to it. If there are
no nodes flagged “not allocated”, this process ends by carrying out the initial partial
solution of the phasep analyzed, and the execution continues from step 3 to elaborate
the next phase.

Step 7analyzes all initial mapping partial solutions to find the layer completion
time (Ss) which corresponds to theTGs node which ends its execution last.Ss is then
compared with the best initial mapping solutionSinit carried out in a previous layer.
If Ss is better thanSinit it becomesSinit, and the execution continues from Step 2
to analyze the next layer. When all the layers has been evaluated, the algorithm ends
returningSinit.

Figure 4 shows the pseudo-code of theHMM second phase. It considers all the
nodes in the current solution as atomic, and analyzes the neighborhood ofSinit to
search a better solution. We say that a neighborhood of a solution is the set of solu-
tions obtainable by moving a node of the critical path from the processorpi

mk
(current

allocation) to a processorpj
mh

with i 6= j. The choices carried out by the local search
algorithm for mapping a node consider the data exchanged between nodesns

i belong-
ing to the phaseh andns

j of phasek with k < h.
The new processorpj

mk
of the metacomputer machinemk is selected according to

the following criterion:

max
{

Aff(ns
i ,mk)× Spj

mk

}
(5)

whereSpj
mk

is the computational power of the j-th processor of the machinek.

If several processors are selected, the one with the smallest value of the fraction
W

p
j
mk

S
p

j
mk

(Wpj
mk

is the processor workload) is selected. If there is not a processor able

to allocatens
j , the node is not moved, and the process continues by selecting the next

node in the critical path. Otherwise, the selected node is moved, andHMM estimates
the cost of the new solution by adding the computing and communication times of the
nodes belonging to critical path of the new solution. This cost represents the application
execution time.
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Figure 4: Pseudo-Code of the second phase of HMM algorithm.
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When all the nodes on the critical path have been analyzed the local search algo-
rithm carries out a new solution. If it is better than the initial solution, it becomes the
current solution.

The search for a suboptimal solution is an iterative process.HMM ends by return-
ing the final mapping solution, when one of the following conditions is verified: a) the
total number of iterations performed reaches a user-defined threshold, b) the number of
iterations performed without improving the solution reaches a user-defined threshold.

4.1 Mapping Example

To show the choices taken byHMM an example of mapping of a real quantum chem-
istry application on three different metacomputer configurations (see Figures 5(b), 8(b),
and 9(b))is given. The chemistry application deals with the integration of a two-
dimensional Schrodinger equation using a sector-diabatic coupled-channel approach
[32].

In the following figures the application tasks are represented in a task graph by
nodes labeledti. The number inside each circle representing an atomic node speci-
fies the computationl cost of the task, and the communication cost is specified by the
number associated to each edge. In a system graph the nodes labeledpi represent the
processors inside a machine. The number inside each circle specifies the processor’s
computational power, and the communication bandwidth of the channel linking two
processors or two machines is specified by the number associated to each link between
them.

Figure 5(b) shows the metacomputer configuration in which all machines have pro-
cessors with equal computational power, and equal communication bandwidth. In Fig-
ures 8(b) and 9(b) are represented the two other configurations in which the machines
m1, and them1, m2, m3, m4, respectively, have processors with half computation
speed and half communication bandwidth with respect to the same machine in the
metacomputer graph of Figure 5(b). This situation can happen, for example, when a
machine is workloaded at 50%, and therefore we can suppose that its computational
power is cut down of a half.

In Figures 5, 8, and 9, the arrows together with the grey levels indicate the layer
at which the initial mapping solution (Sinit) was carried out, and the machines onto
which the tasks were mapped. The affinity parameter was computed as function of the
number of processors own by each metacomputer machine.

Figure 5 shows the case in which the metacomputer has the machinem1 large
enough to carry out the application mapping at layer 1 at whichSinit is equal to 69.

In Tables 6 and 7 are shown the values of the affinity parameter (Aff ), the machine
computational power (Sm), the nodes data exchanged (Dc), and the machine workload
(Wm) used to compute the expression (1). Table 6 shows the values computed to
allocate at layer 1 the task graph of the example of Figure 5, and Table 7 shows the
same values computed to allocate at layer 2 the same task graph on the metacomputer
of Figure 8. In the same way the expression (1) was computed to allocate at layer 3 the
task graph of the example shown in Figure 9. In all the examples the mapping at which
the smallest value ofSinit corresponds to was chosen.
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Figure 5: Mapping carried out at layer 1.

In Figures 5 (c), 8 (c), and 9 (c) the final suboptimal mapping solutions obtained
after the local search process are shown.

5 Algorithm Complexity

To evaluate the algorithm time complexity we consider the number of operations per-
formed to carry out the initial mapping solution and to run the local search algorithm.

5.1 Initial Solution

The costC(Sinit) of the initial solution is computed according to the number of op-
erations executed to allocate the atomic and/or hierarchical nodes within all layers of
TG. The costC(TGs) to allocate theNs nodes of aTGs (a graph expanded at layer
s) is given by:

C(TGs) =
N3

s

3
+ P ×Nslog2Ns + Ns ×M (6)
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Figure 6: Values computed by HMM to evaluate the mapping at layer 1 of the applica-
tion graph on the metacomputer shown in Figure 5.

Figure 7: Values computed by HMM to evaluate the mapping at layer 2 of the applica-
tion graph on the metacomputer shown in Figure 8.

where N3
s

3 is the number of operations performed to dividedTGs into P phases,
Nslog2Ns is the number of operations performed to sort the nodes within a phase (we
suppose that in each phase there are allTGs’s nodes), andNs × M is the number of
operations executed to choose a machine on witch to allocate theNs nodes.

Since the worst case on which there are as many layers as the number of the atomic
nodes is rare to take place, to computeC(Sinit) we consider the average case on which
TGs is structured inlog2N + 1 layers and each layer includes2(i−1) nodes with1 ≤
i ≤ log2N + 1. In this caseC(Sinit) is given by:

C(Sinit) =
log2N+1∑

i=1

C(TGi) (7)

Since everyTGi includes2i−1 nodes the expression (7) can be written as

C(Sinit) =
log2N+1∑

i=1

(2(i−1))3

3
+ P × 2(i−1)log22(i−1) + 2(i−1) ×M (8)
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Figure 8: Mapping carried out at layer 2.

which is equal to

C(Sinit) =
log2N+1∑

i=1

23(i−1)

3
+ 2(i−1) × log22(i−1) + 2(i−1) ×M (9)

which is equal to

C(Sinit) = N3 + N × lnN + N ×M (10)

5.2 Local Search

The costC(LC) of the local search is computed according to the number of operations
executed at each iteration to re-allocate the atomic nodes in the critical path of a new
solution. It is computed by:

C(LC) =
N3

3
+ Nlog2N + K × (

N(N − 1)
2

) + Nc × PE + N (11)
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Figure 9: Mapping carried out at layer 3.

where N3

3 is the number of operations executed to divide into phases the atomic
nodes ofTGinit, Nlog2N is the number of operations performed to sort the nodes
within a phase (we suppose that in each phase there areN nodes),K × (N(N−1)

2 )
is the number of operations to find the critical path (K is the number of iterations),
Nc × PE are the operations executed to re-allocate theNc nodes in the critical path
onto PE metacomputer processors, andN is the cost payed to compute the ended time
of all atomic nodes belonging to a new solution.

Since the expressions (10) and (11) can be approximate toO(N3), the algorithm
time complexity, in the average case, results to beO(N3).

6 Performance Evaluation

Comparing mapping heuristics is generally a difficult task because of the different un-
derlying assumptions in the original studies of each heuristic [13].

To evaluateHMM it was compared with three other graph-based mapping al-
gorithms, the Cluster-M Mapping Algorithm (CM ), Augmented Cluster-M Mapping
(ACM ), Lo’s Max-Flow/Min-Cut (MFMC), Shen and Tsai’sA∗ Searching (AS),
and with an exhaustive mapping algorithms (EM ). EM carries out all possibleMN

mappings, whereN is the number of atomic tasks of an application, andM is the
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Figure 10: Application DAG and metacomputer graphs used in test 1, 2, and 3.

number of machines in a metacomputer. Moreover, the mapping of a quantum chem-
istry application carried out by HMM was compared with that found by simulating the
execution of the application on the same HC system.

The first four tests used as input the application DAGs and the metacomputer graphs
from [3], and the results are shown in Gantt charts. For each taskti the machinemj

on which it was allocated and the unit of time required for its execution (the numbers
at the top of the chart) are shown.

Figure 10 shows the application DAG and the metacompurer graphs used in the
first three tests conduced to compareHMM with CM , andEM .

Figures 11(a), (b), and (c) show the mapping of the application DAG of Figure
10(a) on the metacomputers 1, 2, and 3 of Figure 10(b), respectively.

In the first test (see Figure 11(a)) HMM converges to the optimal solution by an-
alyzing only 25 mappings of the 2187 possible mappings analyzed byEM . It was
obtained allocating the graph expanded at last layer. In order to reduce the task com-
munications,t0 andt1 were allocate onto the same processorp0.

In the second test (see Figure 11(b)) HMM found a suboptimal mapping to which
corresponds a total application execution time of 15.1 units, which is worse than the
optimal mapping by about 0.7%. It was carried out by allocating onto the same proces-
sor the more communicating tasks. HMM converges to the suboptimal solution after
27 possible mappings have been analyzed.

In the third test (see Figure 11(c)) HMM converged to the optimal solution after
16 possible mappings by allocating all the application tasks onto the highest speed
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Figure 11: Gantt charts describing the mapping carried out in test 1, 2, and 3.

processor. In all the three tests the HMM execution required about 10 ms.
Figure 12 shows the application and the metacomputer graphs used in test four to

compare HMM withCM , ACM , MFMC, andEM . The application consists of an
MIMD code and a vector code (Gaussian elimination). The metacomputer used in the
test models an MIMD and a vector machines. As in [3] we define theHMM affinity
parameter so that the MIMD code was allocated on the MIMD machine and the vector
code on the vector machine. To obtain a better view on the total application execution
time we put together in the same Gantt the execution time of both the code types, even
if MFMC, AS, EM do not treat heterogeneity in computation and machine types.
Their mapping results were obtained by mapping separately the MIMD and Vector
code onto the correspondent type of processor.

As shown in Figure 13,HMM andACM carried out the same mapping to which
corresponds to a total application execution time of 25.67 units with a worsening of
1.6% with respect to the optimal mapping.

To map the vector codeEM analyzed 16,384 possible mappings to seek the optimal
solution corresponding to a total application execution time of 25.17 units.HMM
converges to the suboptimal solution by analyzing only 19 of the possible mappings.
TheHMM execution required 40 ms, the EMA execution required 1350 ms.

Mapping the MIMD codeHMM converged to the suboptimal solution by analyz-
ing only 21 of the 19,683 possible mappings analyzed byEM . TheHMM ’s sub-
optimal solution has a worsening of 3.6% with respect to the optimal mapping. The
HMM execution required 10 ms, theEM execution required 600 ms.

The longer execution time required by the exhaustive algorithm to map the vector
code with respect to the MIMD code is due to the longer execution time required to
compute the overall application execution time of the vector task.

The last test was conduced to evaluated HMM when used to map the real parallel

17



Figure 12: Application DAG and metacomputer graph used in test four.

quantum chemistry application cited in Section 4.1 (but implemented using a different
parallel programming model). The application execution times and the machines uti-
lization obtained by mapping the application using HMM were compared with those
obtained by simulating the execution of the application on the same target metacom-
puter. The chemical simulation is composed by a set of independent processes each
of them computes the propagation of particles in environments with different physi-
cal and chemical conditions. In Figure 14 the DAG represented the parallel program
used to perform a simulated process is shown. A detailed description of this parallel
application can be found in [33].

In the DAG the computational cost associated to each task was deduced analyzing
previous works [33, 34], and the computational and communication costs of the tasks
labeledt7 ÷ t11 and the related edges, respectively, vary of±20% with respect to the
value of physical entities (i.e. energy) used in a simulation.

The metacomputer used for conducing our experiments consisted of an 8-node ma-
chine with processor power of 35 MFlop/s fully connected at 8 Mbit/s, a 64-nodes
hypercube multicomputer with processor power of 6 MFlop/s, and a network band-
width of 2.4 Mbit/s, and a cluster of four workstations with processor power of 25
MFlop/s. All the machines were connected by a 0.25 Mbit/s LAN.

Previous works [33, 34] demonstrated that, for this application, good execution
times were obtained performing the application structured according to a task farm
programming model on clusters of processors. Therefore, for our tests we used the
following configuration: (a) 8-node machine, partitioned into 2 clusters of 4 nodes
each (machine 0), (b) 64-nodes hypercube multicomputer, partitioned into 4 clusters of
16 nodes each (machine 1), (c) 1 cluster of 4 workstations (machine 2).
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Figure 13: Gantt charts describing the mapping carried out in test 4.

To simulate the application execution on this metacomputer configuration a pro-
gram (called Task-Farm) which implements a task farm to dynamically assign the par-
allel tasks to the clusters, and estimates the application execution time has been used.

Figure 15 shows the execution times obtained by both HMM and the Task-Farm
program elaborating problems of dimension from 1 to 32 chemical processes. Since
the values assigned to the taskst7÷t11, and the related edges were randomly generated
according to a normal distribution in the interval±20% each run was performed 10
times, and the average execution time related to each problem dimension was plotted.
It can be seen (Figure 15) that the application execution time noticeably smooths when
the problem dimension increases, and with dimension equal to 32 (18.8) using HMM
we have an application execution time equal to 255 units with respect to 660 units
obtained by using the Task-Farm program.

In Figures 16 and 17 the workload distribution on the metacomputer machines is
shown. When the number of processes is greater than 16 the use of HMM leads to a
smaller utilization of the more power machine 0 and a higher utilization of the other
machines. This better workload distribution leads to a smaller execution time with
respect to that obtained simulating the application execution.

All tests were conduced on a dual processors Pentium III 800 Mhz with 512 MBytes
of RAM.
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Figure 14: DAG representing the chemical parallel application.

Figure 15: Application execution times obtained by using HMM and Task-Farm.

7 Conclusions

In this work we have presented a new static graph-based mapping algorithm, which
allows us to find a suboptimal mapping of a parallel application onto a metacomputer
in order to minimize the total application execution time. The algorithm exploits the
information embedded in the parallelism forms used to implement an application, and
uses the local search technique together with the tabu search meta-heuristic.

To evaluate the quality of the mapping carried out, several tests were conducted
by using: (a) case studies previously used to evaluate other static mapping algorithms
which use different leading techniques, (a) a quantum chemical application, (c) an
exhaustive mapping algorithm. The metric used to compare the mappings obtained
was the application execution time.

The tests’ results show that our algorithm performs better than or the same as the
other mapping algorithms, and that it has obtained good result mapping a large real
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Figure 16: Machines utilization obtained by mapping the application using HMM.

Figure 17: Machines utilization obtained by simulated the application execution.

application on an heterogeneous platform composed of many processors. The com-
parisons with the mapping obtained by an exhaustive mapping algorithm showed that
our algorithm always carried out mapping very near to the optimal solution. This is
becauseHMM allocates parallel tasks in a way that optimizes the execution of each
form of parallelism used within a parallel application.

The mapping quality carried out byHMM can be enhanced by introducing several
improvements such as the exploitation of the native mapping mechanisms available on
each metacomputer machine, and a better estimation of the code-machine affinity val-
ues, by using data from specific benchmarks. In addition, the introduction of dynamic
mapping functionalities to permit the migration of parallel tasks among the metacom-
puter machines can enhance the metacomputer’s throughput.
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