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Abstract

The existence, public availability, and widespread acceptance of a stan-

dard benchmark for a given information retrieval (IR) task are beneficial

to research on this task, since they allow different researchers to experi-

mentally compare their own systems by comparing the results they have

obtained on this benchmark. The Reuters-21578 test collection, together

with its earlier variants, has been such a standard benchmark for the

text categorization (TC) task throughout the last ten years. However,

the benefits that this has brought about have somehow been limited by

the fact that different researchers have “carved” different subsets out of

this collection, and tested their systems on one of these subsets only; sys-

tems that have been tested on different Reuters-21578 subsets are thus not

readily comparable. In this paper we present a systematic, comparative

experimental study of the three subsets of Reuters-21578 that have been

most popular among TC researchers. The results we obtain allow us to

determine the relative hardness of these subsets, thus establishing an in-

direct means for comparing TC systems that have, or will be, tested on
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these different subsets.

1 Introduction

The existence, public availability, and widespread acceptance of a standard

benchmark for a given information retrieval (IR) task are beneficial to research

on this task, since they allow different researchers to experimentally compare

their own systems by comparing the results they have obtained on this bench-

mark.

The Reuters-21578 test collection, together with its earlier variants, has been

such a standard benchmark for the text categorization (TC) task throughout

the last ten years1. Reuters-21578 is a set of 21,578 news stories appeared in

the Reuters newswire in 1987, which are classified according to 135 thematic

categories, mostly concerning business and economy. This collection has several

characteristics that make it interesting for TC experimentation:

• similarly to many other applicative contexts, it is multi-label, i.e. each

document di may belong to more than one category;

• the set of categories is not exhaustive, i.e. some documents belong to no

category at all;

• the distribution of the documents across the categories is highly skewed,

in the sense that some categories have very few documents classified under

them (“positive examples”) while others have thousands;

• there are several semantic relations among the categories (e.g. there is a

category Wheat and a category Grain, which are obviously related), but

1While a new Reuters corpus has recently been made available for TC research [27, 20],

its takeup has been somehow slow, and also hindered by terms of use that are not universally

acceptable by interested parties. For instance, it has been reported that some universities in

the US are not willing to sign the “licence of use” agreement with Reuters on the ground that

the agreement requires that all legal disputes be settled in England. This de facto prevents

researchers from these universities to experiment on this corpus.

2



these relations are “hidden” (i.e. there is no explicit hierarchy defined on

the categories).

This collection is also fairly challenging for TC systems based on machine learn-

ing (ML) techniques, since several categories have (under any possible split

between training and test documents) very few training examples, making the

inductive construction of a classifier a hard task. All of these properties have

made Reuters-21578 the benchmark of choice for TC research in the past years.

Unfortunately, the benefits to TC research that Reuters-21578 has brought

about have been somehow limited by the fact that different researchers have

“carved” different subcollections out of this collection, and tested their systems

on one of these subcollections only. The most frequent direction for extracting

a subcollection out of Reuters-21578 has been that of restricting the attention

to a subset of categories only. The subsets that have been most frequently used

in TC experimentation are2:

• the set of the 10 categories with the highest number of positive training

examples (hereafter, R(10));

• the set of the 90 categories with at least one positive training example and

one positive test example (hereafter, R(90));

• the set of the 115 categories with at least one training example (hereafter,

R(115)).

Systems that have been tested on these different Reuters-21578 subsets are thus

not readily comparable. In this paper we present a systematic, comparative

experimental study of the above-mentioned three subsets of Reuters-21578. We

test the relative hardness of these subsets in a variety of experimental TC con-

texts, generated by two different term weighting policies, three different fea-

ture selection functions, three different “reduction factors” for feature selection,
2As for which Reuters-21578 documents are used as training examples, we here refer to

the “ModApté split”, a partition of the collection into a training set and a test set that has

almost universally been adopted by TC experimenters. See Section 3 for more details.

3



three different learning methods, and two different experimental measures, in

all possible combinations. Our results allow us to obtain a reliable estimation

of the relative difficulty of these subsets, thus establishing an indirect means for

comparing TC systems that have, or will be, tested on these different subsets.

This paper is structured as follows. Section 2 briefly introduces the TC

task and the related terminology, thus setting the stage for the description of

our experimental work. In Section 3 we describe in some detail the Reuters-

21578 test collection and the subsets of it that have been used most often in

TC research. Section 4 presents a systematic experimental study in which we

test the relative hardness of these subsets and give theoretical justifications for

these results. Section 5 concludes.

2 Preliminaries: an introduction to text catego-

rization

Text categorization (TC – aka text classification) is the task of approximating

the unknown target function Φ : D×C → {T, F} (that describes how documents

ought to be classified) by means of a function Φ̂ : D × C → {T, F} called the

classifier, where C = {c1, . . . , c|C|} is a predefined set of categories and D is a

domain of documents. If Φ(dj , ci) = T , then dj is called a positive example (or

a member) of ci, while if Φ(dj , ci) = F it is called a negative example of ci.

Depending on the application, TC may be either single-label (i.e. exactly one

ci ∈ C must be assigned to each dj ∈ D), or multi-label (i.e. any number 0 ≤ nj ≤
|C| of categories may be assigned to each dj ∈ D). A special case of single-label

TC is binary TC, in which, given a category ci, each dj ∈ D must be assigned

either to ci or to its complement ci. Multi-label TC under C = {c1, . . . , c|C|} is

usually tackled as |C| independent binary classification problems under {ci, ci},
for i = 1, . . . , |C|. A classifier for ci is then a function Φ̂i : D → {T, F} that

approximates the unknown target function Φi : D → {T, F}. Multi-label (and,

as a consequence, binary) TC, rather than single-label TC, will be the focus of
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this paper.

We can roughly distinguish three different phases in the life cycle of a TC

system: document indexing, classifier learning, and classifier evaluation. The

three following paragraphs are devoted to these three phases, respectively; for

a more detailed treatment see Sections 5, 6 and 7, respectively, of [28].

2.1 Document indexing

Document indexing denotes the mapping of a document dj into a compact repre-

sentation of its content that can be directly interpreted (i) by a classifier-building

algorithm and (ii) by a classifier, once it has been built. The indexing meth-

ods usually employed in TC are borrowed from IR, where a text dj is usually

represented as a vector �dj = 〈w1j , . . . , w|T |j〉 of term weights. Here, T is the

dictionary, i.e. the set of terms (aka features) that occur at least once in at least

one document, and 0 ≤ wkj ≤ 1 quantifies the importance of tk in characterizing

the semantics of dj .

An indexing method is characterized by (i) a definition of what a term is,

and (ii) a method to compute term weights. Concerning (i), the most frequent

choice is to identify terms either with the words occurring in the document (with

the exception of stop words, which are eliminated in a pre-processing phase), or

with their stems (i.e. their morphological roots, obtained by applying a stem-

ming algorithm). Concerning (ii), either statistical or probabilistic techniques

are used to compute terms weights, the former being the most common option.

One popular class of statistical term weighting functions is tf ∗idf , where two in-

tuitions are at play: (a) the more frequently tk occurs in dj , the more important

for dj it is; (b) the more documents tk occurs in, the less discriminating it is (i.e.

the smaller its contribution is in characterizing the semantics of a document in

which it occurs). Weights computed by tf ∗ idf techniques are often normalized

so as to contrast the tendency of tf ∗ idf to emphasize long documents.

In TC, unlike in IR, a dimensionality reduction phase is often applied so as

to reduce the size of the document representations from |T | to a much smaller,
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predefined number |T ′| � |T |; the value ξ = |T |−|T ′|
|T | is called the reduction

factor. Dimensionality reduction has both effects of reducing overfitting (i.e.

the tendency of the classifier to better classify the data it has been trained on

than new unseen data), and of making the problem more manageable for the

learning method, since many such methods are known not to scale well to high

problem sizes. Dimensionality reduction often takes the form of term selection:

each term tk is scored by means of a scoring function f(tk, ci) that captures

its degree of (positive or negative) correlation with ci, and only the highest

scoring terms (i.e. the most highly correlated with ci) are used for document

representation. The TC literature discusses two main policies to perform term

selection: (a) a local policy, according to which different sets of terms T ′
i ⊂ T

are selected for different categories ci, and (b) a global policy, according to

which a single set of terms T ′ ⊂ T , to be used for all categories, is selected by

extracting a single score fglob(tk) from the individual scores f(tk, ci) by means

of some “globalization” policy.

2.2 Classifier learning

A text classifier for ci is automatically generated by a general inductive process

(the learner) which, by observing the characteristics of a set of documents pre-

classified under ci or ci, gleans the characteristics that a new unseen document

should have in order to belong to ci. In order to build classifiers for C one thus

needs a corpus Ω of documents such that the value of Φ(dj , ci) is known for

every 〈dj , ci〉 ∈ Ω × C. In experimental TC it is customary to partition Ω into

two disjoint sets Tr (the training set) and Te (the test set). The training set is

the set of documents observing which the learner builds the classifier, while the

test set is the set on which the effectiveness of the classifier is finally evaluated.

Sometimes the engineer extracts a validation set V a from Tr before training,

for fine-tuning purposes: the learner builds the classifier by observing only the

documents in Tr − V a, and then the engineer may fine-tune the classifier by

choosing, for a parameter p on which the classifier depends (e.g. a threshold),
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the value that has yielded the best effectiveness when evaluated on V a. In both

the validation and test phase, “evaluating the effectiveness” means running the

classifier on a set of preclassified documents (V a or Te) and checking the de-

gree of correspondence between the output of the classifier and the preassigned

labels.

Different learners have been applied in the TC literature, including proba-

bilistic methods, regression methods, decision tree and decision rule learners,

neural networks, batch and incremental learners of linear classifiers, example-

based methods, support vector machines, genetic algorithms, hidden Markov

models, and classifier committees. Some of these methods generate binary-

valued classifiers of the required form Φ̂ : D × C → {T, F}, but some others

generate real-valued functions of the form CSV : D×C → [0, 1] (CSV standing

for categorization status value). For these latter, a set of thresholds τi needs to

be determined (typically, by experimentation on a validation set) allowing to

turn real-valued CSVs into the final binary decisions.

2.3 Classifier evaluation

Both training efficiency (i.e. average time required to build a classifier Φ̂i from

a corpus Ω), classification efficiency (i.e. average time required to classify a

document by means of Φ̂i), and effectiveness (i.e. average correctness of Φ̂i’s

classification behaviour) are measures of success for a TC system. However, ef-

fectiveness is considered the most important criterion, since in most applications

one is willing to trade training time and classification time for correct decisions.

Also, it is the most reliable one when it comes to comparing different learners,

since efficiency depends on too volatile parameters.

In binary TC, effectiveness is always measured by a combination of precision

(πi), the percentage of documents classified into ci that indeed belong to ci, and

recall (ρi), the percentage of documents belonging to ci that are indeed classi-

fied into ci. When effectiveness is computed for several categories, the results

for individual categories must be averaged in some way; here, one may opt for
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Microaveraging Macroaveraging

Precision (π) π =

∑|C|
i=1

TPi
∑|C|

i=1
TPi + FPi

π =

∑|C|
i=1

πi

|C|
=

∑|C|
i=1

TPi

TPi + FPi

|C|

Recall (ρ) ρ =

∑|C|
i=1

TPi
∑|C|

i=1
TPi + FNi

ρ =

∑|C|
i=1

ρi

|C|
=

∑|C|
i=1

TPi

TPi + FNi

|C|

Table 1: Averaging precision and recall across different categories; TPi, TNi,

FPi and FNi refer to the sets of true positives wrt ci (documents correctly

deemed to belong to ci), true negatives wrt ci (documents correctly deemed not

to belong to ci), false positives wrt ci (documents incorrectly deemed to belong

to ci), and false negatives wrt ci (documents incorrectly deemed not to belong

to ci), respectively.

microaveraging (“categories count proportionally to the number of their posi-

tive test examples”) or for macroaveraging (“all categories count the same”),

depending on the application. The former rewards classifiers that behave well

on frequent categories (i.e. categories with many positive examples), while clas-

sifiers that perform well also on infrequent categories are emphasized by the

latter. Table 1 displays the mathematical definitions of precision and recall, in

both their microaveraging and macroaveraging variants. Since a classifier can

be tuned to emphasize precision at the expense of recall, or viceversa, only com-

binations of the two are significant, the most popular combination nowadays

being F1 = 2πρ
π+ρ [19].

Measuring effectiveness requires a test collection; in multi-label TC, this

consists of a set of documents each of which is labelled with zero, one, or several

categories from a prespecified set. The following section will discuss in detail

the test collection which is the object of study of this paper.
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3 The Reuters-21578 collection and its subsets

The data contained in the “Reuters-21578, Distribution 1.0” corpus consist of

news stories appeared on the Reuters newswire in 19873. The data was originally

labelled by Carnegie Group, Inc. and Reuters, Ltd. in the course of developing

the CONSTRUE text categorization system [12], and was subsequently collected

and formatted by David Lewis with the help of several other people. A previous

version of the collection, known as Reuters-22173, was used in a number of

published studies up until 1996, when a revision of the collection resulted in the

correction of several other errors and in the removal of 595 duplicates from the

original set of 22,173 documents, thus leaving the 21,578 documents that now

make Reuters-21578.

The Reuters-21578 documents actually used in TC experiments are only

12,902, since the creators of the collection found ample evidence that the other

8,676 documents had not been considered for labelling by the people who man-

ually assigned categories to documents (“indexers”). In order to make different

experimental results comparable, standard “splits” (i.e. partitions into a train-

ing and a test set) have been defined by the creators of the collection on the

12,902 documents. Apart from very few exceptions, TC researchers have used

the “ModApté” split, in which 9,603 documents are selected for training and the

other 3,299 form the test set. In this paper we will always refer to the ModApté

split.

There are 5 groups of categories that label Reuters-21578 documents: EX-

CHANGES, ORGS, PEOPLE, PLACES, and TOPICS. Only the TOPICS group

has actually been used in TC experimental research, since the other four groups

do not constitute a very challenging benchmark for TC.

The TOPICS group contains 135 categories. Some of the 12,902 “legitimate”

documents have no categories attached to them, but unlike the 8,676 documents

removed from consideration they are unlabelled because the indexers deemed
3The Reuters-21578 corpus is freely available for experimentation purposes from

http://www.daviddlewis.com/resources/testcollections/~reuters21578/
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that none of the TOPICS categories applied to them. Among the 135 cat-

egories, 20 have (in the ModApté split) no positive training documents; as a

consequence, these categories have never been considered in any TC experiment,

since the TC methodology requires deriving a classifier either by automatically

training an inductive method on the training set only, and/or by human knowl-

edge engineering based on the analysis of the training set only.

Since the 115 remaining categories have at least one positive training ex-

ample each, in principle they can all be used in experiments. However, several

researchers have preferred to carry out their experiments on different subsets of

categories. Globally, the three subsets that have been most popular are4

• The set of the 10 categories with the highest number of positive training

examples (hereafter, R(10)). Among others, this has been used in [3, 4, 9,

23, 26, 30].

• The set of 90 categories with at least one positive training example and one

test example (hereafter, R(90)). This appears to be the most frequently

chosen subset; among others, it has been used in [1, 6, 7, 11, 14, 16, 22,

24, 29, 31, 33].

• The set of 115 categories with at least one positive training example

(R(115)). Among others, this has been used in [2, 5, 9, 10, 25].

It follows from this discussion that R(10) ⊂ R(90) ⊂ R(115).

Reasons for using one or the other subset have been different. Several re-

searchers claim that R(10) is more realistic since machine learning techniques

cannot perform adequately when positive training examples are scarce, and/or

since small numbers of positive test examples make the interpretation of ef-

fectiveness results problematic due to high variance. Other researchers claim

instead that only by striving to work on infrequent categories too we can hope

to push the limits of TC technology, and this consideration leads them to use
4Note that the three subsets, although differing in the number of categories considered,

contain the same 12,902 documents.
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R(90) or R(115). The only clear fact is that the 10 most frequent categories pro-

vide an easier testbed than the other two sets, although it is not clear exactly

how easier. Furthermore, it is not clear at all whether R(90) is any easier than

R(115). The experiments that we describe in this section are exactly aimed

at answering these two questions, and in general at establishing the relative

difficulty of the three relevant Reuters-21578 subsets.

4 Experiments

The experiments we have conducted test the relative hardness of the three above-

mentioned Reuters-21578 subsets in all experimental TC contexts corresponding

to any combination of the following choices:

• As for the learning methods, we have used a choice among (i) a standard

Rocchio method [13] for learning linear classifiers, (ii) a standard k-NN

algorithm [33], and (iii) the support vector machine (SVM) learner as

implemented in the SVMlight package (version 3.5) [15]. For reasons of

brevity we do not discuss these methods in detail; the interested reader

will find detailed presentations of them in [8].

• As for the term selection functions, we have used a choice among the

three functions {χ2, IG,GR}, whose mathematical forms are detailed in

Table 2. The first two (chi-square and information gain) are standard

tools-of-the-trade in the term selection literature, while the third is an

entropy-normalized version of information gain whose use as a term selec-

tion function was first proposed in [8]. Each of the three functions has been

used according to the global policy described in Section 2.1, essentially for

efficiency reasons5. Globalization has been achieved by means of the fmax

5For instance, recall that the k-NN learner computes, for each test document dj , its simi-

larity with each training document, and then ranks these training documents in terms of the

computed similarity score. This process is extremely costly from a computational point of

view. While this process needs to be performed only once if the global policy is used, it needs
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function, the globalization function of choice in the TC literature, defined

as fmax(tk) = max|C|
i=1 f(tk, ci).

• As for the reduction factors for feature selection, we have used a choice

among the three values ξ ∈ {0.90, 0.50, 0.0}, where a 0.0 reduction factor

means no reduction at all.

• As for the term weighting policies, we have used a choice between a stan-

dard, cosine-normalized form of tf ∗ idf , or a supervised term weighting

policy [8], consisting in replacing the idf component of tf ∗ idf with the

function that, in the same experiment, has been previously used for term

selection (this yields e.g. cosine-normalized tf ∗GR if GR has been previ-

ously used for feature selection). For reasons of brevity we do not discuss

these policies in detail; the interested reader will find detailed presenta-

tions of them in [8].

• As for the effectiveness functions, we have considered both the microav-

eraged and macroaveraged version of the F1 function. Note that when

all documents are “true negatives” of the category ci (i.e. when, for each

document dj , it is the case that Φ(dj , ci) = Φ̂(dj , ci) = F , in which case

F1 is technically undefined), we have opted for a value of F1 = 1, since

the classifier always returns the correct decision [21].

In all the experiments discussed in this paper, stop words have been removed us-

ing the stop list provided in [18, pages 117–118], punctuation has been removed,

all letters have been converted to lowercase, numbers have been removed, and

stemming has been performed by means of Porter’s stemmer.

4.1 Experimental results

The results of these experiments are reported in Figures 1 to 6. Each table in-

cludes six plots: the leftmost plots concern microaveraging, while the rightmost

to be performed |C| times if the local policy is used, since in this case the same document has

|C| different representations, and similarity scores (and rankings) thus vary across categories.
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Function Denoted by Mathematical form

Chi-square χ2(tk, ci)
[P (tk, ci)P (tk, ci) − P (tk, ci)P (tk, ci)]

2

P (tk)P (tk)P (ci)P (ci)

Information Gain IG(tk, ci)
∑

c∈{ci,ci}

∑

t∈{tk,tk}

P (t, c) log2

P (t, c)

P (t)P (c)

Gain Ratio GR(tk, ci)

∑

c∈{ci,ci}

∑

t∈{tk,tk}

P (t, c) log2

P (t, c)

P (t)P (c)

−
∑

c∈{ci,ci}

P (c) log2 P (c)

Table 2: Term selection functions used in this work.

concern macroaveraging; results obtained with the Rocchio, k-NN, and SVM

learners are displayed in the top, mid, and bottom row, respectively. Each in-

dividual plot includes three curves, each corresponding to a feature selection

function (chosen among IG, GR, and χ2). The six figures report these re-

sults for each combination of a term weighting policy (chosen among tf ∗ idf

and supervised term weighting) and a feature reduction factor (chosen among

ξ ∈ {0.90, 0.50, 0.0}).
Figure 7 summarizes these results by averaging them for each studied tech-

nique; for instance, the curve marked “SVM” reports average results of all

experiments run with the SVM learner, thus averaging across all term weight-

ing policies, feature selection policies, feature selection functions, and reduction

factors for feature selection. Separate plots for microaveraging and macroaver-

aging are given. Table 3 reports figures obtained by averaging across all the

reported experiments; each numeric value is the result of averaging across 48

different experiments, and can thus be considered fairly representative. Finally,

Table 4 reinterprets the results of Table 3 in terms of the relative hardness of

the three Reuters-21578 subsets studied.

The fact that emerges most clearly from these experiments is that R(10) is

the easiest subset, regardless of the choice of learning method, feature selection

function, effectiveness function, etc. This was largely to be expected, given that
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Microaveraged F1 Microaveraged F1

R(10) 0.85223540 0.72393364

R(90) 0.78707075 0.52659655

R(115) 0.78421640 0.57822156

Table 3: Effectiveness averaged across all the text classifiers tested in our ex-

periments on the three Reuters-21578 subsets.

Microaveraging Macroaveraging

R(10) R(90) R(115) R(10) R(90) R(115)

R(10) – +8.2% +8.6% – +37.4% +25.2%

R(90) -7.6% – +0.3% -27.2% – -8.9%

R(115) -7.9% -0.3% – -20.1% +9.8% –

Table 4: Values of relative hardness of Reuters-21578 subsets as derived from the

average effectiveness values of Table 3. The value in a given entry measures how

easier the subset in the row proved with respect to the subset in the column.
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its categories are the ones with the highest number of positive examples, and as

such allow taming the “curse of dimensionality” more effectively.

On average, the decrease in performance in going from R(10) to R(90) is

much sharper for macroaveraging (-27.2%) than for microaveraging (-7.6%).

This can be explained by the fact that microaveraged effectiveness is dominated

by the performance of the classifiers on the most frequent categories. In fact

(see Table 1):

• Microaveraged recall is the proportion of correct positive classification de-

cisions that are indeed taken, and most correct positive classification deci-

sions by definition concern categories that have many positive test exam-

ples, which in Reuters-21578 are (unsurprisingly, given that the train/test

partition was obtained by a random split) the same categories that have

many positive training examples. Note that the 10 categories in R(10) have

altogether 2787 test examples, while the other 80 categories in R(90) have

altogether just 957 of them; this shows that the former set of categories

contributes three times as much as the latter in determining microaveraged

recall on R(90).

• Microaveraged precision is the proportion of the positive classification de-

cisions taken that are indeed correct, and it can be expected that most

positive classification decisions taken concern categories that have many

positive test examples, which are, as noted above, the same categories that

have many positive training examples6.

As a result, the microaveraged performance obtained on R(90) is heavily in-

fluenced by the performance obtained on the 10 most frequent categories, and
6Note also that in optimizing the thresholds for our learners (see Section 2.2) we have used

the well-known proportional thresholding method [17, 32], according to which for the threshold

τi we choose the value such that the proportion of validation examples that are classified into

ci is as close as possible to the proportion of training examples that are classified into ci. This

means that the fact that most positive classification decisions taken concern categories that

have many positive test examples, rather than being just an intuitively likely fact, is a fact

that our thresholding policy explicitly seeks to bring about.
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much less heavily by the performance obtained on the remaining 80 categories.

This explains why the above-mentioned decrease in microaveraged effectiveness

is not very sharp. Instead, macroaveraged effectiveness is, by definition, not

dominated by any category in particular. Since each of the 80 least frequent

categories counts the same as any of the 10 most frequent ones, the fact that the

former categories are more difficult than the latter7 weighs heavily on macroav-

eraged effectiveness, and the decrease in performance is more marked.

A second fact that also emerges clearly from the experiments is that R(115) is

not significantly harder than R(90) when effectiveness is computed through mi-

croaveraging (-0.3%), while it is even easier (+9.8%) if macroaveraging is used.

Both facts seem, on the surface, surprising, since the 25 additional categories

have on average much fewer training examples (2.52 each) than the other 90

(107 each). However, arguments similar to the ones expoused above show that

there is indeed a rationale for this. Microaveraged effectiveness is marginally

hurt by the performance obtained on the 25 additional categories, since these

categories contain no positive test examples: this means that microaveraged

recall is by definition unaffected, while microaveraged precision is (for the same

reasons discussed below re: macroaveraged precisions) hurt only scarcely.

The fact that macroaveraged effectiveness even benefits from the added 25

categories is less obvious, but can be explained by two facts:

• Macroaveraged recall is trivially equal to 1 on all of these categories.

• Macroaveraged precision is 1 for each category ci on which no negative test

examples are incorrectly classified in ci (it is 0 otherwise). In order for this

to happen, the threshold τi needs to be set high enough that for no test

document dj the CSV will exceed it. This indeed happens frequently, since

the validation set on which τi is tuned (see Section 2.2) also contains very

few positive examples (if any – these 25 categories have, on average, 2.52

training or validation examples); this means that, in order to correctly

7The 10 most frequent categories have, on average, 719.3 training examples each, while the

80 least frequent ones have, on average, 29.9 training examples each.
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classify the validation examples, high values for τi tend to be chosen.

A third fact that also emerges clearly (see Figure 7) is that these conclusions

are largely independent of the techniques employed, regardless of whether they

are concerned with learning, or feature selection, or weighting, etc. While for

macroaveraging some exceptions to the general trend do exist (e.g. the Rocchio

learner performs worse on R(115) than on R(90)), microaveraging displays little

or no variance among different techniques.

5 Conclusion

We have presented a systematic, comparative experimental study of the three

most popular subsets of Reuters-21578, itself the most popular test collection

of text categorization research. We have carried out experiments on a variety

of experimental contexts, including all possible combinations of three learning

methods, three term selection functions, three term selection reduction factors,

two term weighting policies, and two effectiveness functions. The results we

have obtained are thus fairly representative of the relative hardness of the three

Reuters-21578 subsets, also as a result of the fact that the design choices that

we have tested are widely different among each other and, at the same time,

widely used in the text categorization literature. We have also presented the-

oretical, a posteriori justifications for these results, in particular explaining (i)

why the decrease in performance that can be expected in going from R(10) to

R(90) is sharper for macroaveraging than for microaveraging, and (ii) why in

going from R(90) to R(115) we may expect almost no decrease in microaveraged

performance, and even an increase in macroaveraged performance.

The cumulative results we have obtained, which are conveniently summa-

rized in Table 4, finally allow the comparison, albeit indirect, of different text

classifiers which, in individual experiments, had been or will be tested by their

proponents on different Reuters-21578 subsets.
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Figure 1: Plots of micro-averaged F1 (leftmost) and macro-averaged F1 (right-

most) obtained with tf ∗ idf weighting and a ξ = 0.90 reduction factor.

Plots indicate results obtained with Rocchio (top), k-NN (middle) and SVMs

(bottom). The X axis indicates the three subsets of Reuters-21578 described in

Section 3.
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Figure 2: Plots of micro-averaged F1 (leftmost) and macro-averaged F1 (right-

most) obtained with tf ∗ idf weighting and a ξ = 0.50 reduction factor.

Plots indicate results obtained with Rocchio (top), k-NN (middle) and SVMs

(bottom). The X axis indicates the three subsets of Reuters-21578 described in

Section 3.
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Figure 3: Plots of micro-averaged F1 (leftmost) and macro-averaged F1 (right-

most) obtained with tf ∗ idf weighting and a ξ = 0.0 reduction factor.

Plots indicate results obtained with Rocchio (top), k-NN (middle) and SVMs

(bottom). The X axis indicates the three subsets of Reuters-21578 described in

Section 3.
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Figure 4: Plots of micro-averaged F1 (leftmost) and macro-averaged F1 (right-

most) obtained with supervised weighting and a ξ = 0.90 reduction fac-

tor. Plots indicate results obtained with Rocchio (top), k-NN (middle) and

SVMs (bottom). The X axis indicates the three subsets of Reuters-21578 de-

scribed in Section 3.

27



0.57

0.6

0.63

0.66

0.69

0.72

0.75

0.78

0.81

0.84

0 10 90 115

M
ic

ro
av

er
ag

ed
 F

1

Categories

Rocchio

Tf*Chi
Tf*IG

Tf*GR

0.26
0.29
0.32
0.35
0.38
0.41
0.44
0.47

0.5
0.53
0.56
0.59
0.62
0.65
0.68
0.71

0 10 90 115

M
ac

ro
av

er
ag

ed
 F

1

Categories

Rocchio

Tf*Chi
Tf*IG

Tf*GR

0.72

0.75

0.78

0.81

0.84

0.87

0 10 90 115

M
ic

ro
av

er
ag

ed
 F

1

Categories

Knn

Tf*Chi
Tf*IG

Tf*GR

0.4

0.43

0.46

0.49

0.52

0.55

0.58

0.61

0.64

0.67

0.7

0.73

0 10 90 115

M
ac

ro
av

er
ag

ed
 F

1

Categories

Knn

Tf*Chi
Tf*IG

Tf*GR

0.8
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

0 10 90 115

M
ic

ro
av

er
ag

ed
 F

1

Categories

SVM

Tf*Chi
Tf*IG

Tf*GR

0.37
0.4

0.43
0.46
0.49
0.52
0.55
0.58
0.61
0.64
0.67

0.7
0.73
0.76
0.79
0.82
0.85
0.88

0 10 90 115

M
ac

ro
av

er
ag

ed
 F

1

Categories

SVM

Tf*Chi
Tf*IG

Tf*GR

Figure 5: Plots of micro-averaged F1 (leftmost) and macro-averaged F1 (right-

most) obtained with supervised weighting and a ξ = 0.50 reduction fac-

tor. Plots indicate results obtained with Rocchio (top), k-NN (middle) and

SVMs (bottom). The X axis indicates the three subsets of Reuters-21578 de-

scribed in Section 3.
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Figure 6: Plots of micro-averaged F1 (leftmost) and macro-averaged F1 (right-

most) obtained with supervised weighting and a ξ = 0.0 reduction factor.

Plots indicate results obtained with Rocchio (top), k-NN (middle) and SVMs

(bottom). The X axis indicates the three subsets of Reuters-21578 described in

Section 3.
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Figure 7: Plots of micro-averaged F1 (leftmost) and macro-averaged F1 (right-

most) obtained by averaging across term weighting policies, feature selection

policies, feature selection functions, reduction factors for feature selection, and

learning methods. The X axis indicates the three subsets of Reuters-21578

described in Section 3.
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