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Abstract

The aim of this paper is to present a system for the automatic identification of musical tones from a
monophonic music melody in progress, among available alternatives of a library of the same previously
recorded tones.

This study was born by the demand to have a tool based on a comparison criterion to measure the
fidelity of reproduction of some musical tones during a musical piece in execution.

The algorithm is realized in two main distinct steps. At first, digital processing techniques are used
with the purpose to obtain a pattern vectors from the original waveform. Thanks to the analysis techniques
of Short-Time Fourier Transform, it has been possible to extract these patterns, so that they could to reflect
precise energy-dependent features of the original signal, relevant to the identification.

This resulting patterns are, subsequently, elaborated using the Theory of the Least Squares Optimal
Filtering. The Least Squares Criterion is, here, regarded as purely deterministic, that is there is no presumed
knowledge of the statistical properties.

Therefore the algorithm has several desirable features. There is no upper limit on the frequency search
range, so the algorithm is suited for high-pitched tones. The algorithm is relatively simple and may be
implemented efficiently and with low latency on DSP processors.

A preliminary investigation of the problem was developed in cooperation between the Norwegian
University of Science and Technology of Trondheim and the National Research Council of Pisa, in Italy, in
the framework of a stage at NTNU within the European Project “Mosart” (2003).
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1. Introduction.

It is well known that sounds of a musical instrument are listened and identified on the basis
of musical characteristic attributes, like loudness, pitch, timbre.
The task to build a mathematical model, deciding which physical parameters are suitable to
be identified by an automatic recogniser and how to combine them is not straightforward.
It is important to estimate attributes that reflect unique characteristic of musical signal, that are
more measurable and easy to identify by an automatic identification machine.
This cognitive task is performed by high-skilled human musicians.
The solution proposed in this article attempts to recognize boundaries corresponding to the
presence of the individual tones in a given melody in progress.
The work is divided in two main parts:
e To analyse the energy-dependent features of the corresponding waveform of the musical
tones, using the spectrographic method of Short-Time Fourier Transform.
e To identify the musical tones.
From a careful study, based on the Short-Time Fourier Transform, the authors have decided to
define a model based on the amplitude and frequency deviation of the energy samples available by
a spectrographic analysis of the tones.
The choice of this strategy has been confirmed by the fact that the human ear is sensitive to the
energy changes of the acoustic field near it.
The extracted deviation pattern vectors is compared among available alternatives of a library of
previously recorded sounds, using the .Least Squares Criterion.
The solution proposed in this article has been developed considering the tones of three
wind instruments, flute [1,2], clarino, oboe.
The source material analysed in this article is anechoic monophonic.



The characteristics of the musical tones analysed are shown in fig.1, fig. 2, fig. 3.

2. Preliminary Theoretical Issues.

2.1. — The Short-Time Fourier Transform [3].

A visual inspection of a musical signals shows that the properties of the sound waveforms
change markedly as a function of time.
Looking at fig.1, relative to a flute tone, it is possible see that:
e the waveforms changes between musical regions and plosive' events.
e there is a significant variation in the peak amplitude of the sound (envelope evolution).
This time-variation characteristics correspond to highly fluctuating spectral features
over the time. A single Fourier Transform of the signal cannot capture this time-varying frequency
content (non-stationary signal).
The Short-Time Fourier Transform is a valid tool for revealing the time-variation of the
frequency.
The Short-Time Fourier Transform is given by

> X(f, t) =X s(n, to) exp?*™
where
S(l’l, to) = S(n) W(Il, t())

and w(n,ty) represent a temporal window centred at t = tp and s(n, tp) the windowed sound
segment.
A peculiarity of the Short-Time Fourier Transform, is that the Square Magnitude, given

by
> Y (£, to) = | X( £, to) |

can be thought of as a two dimensional (2-D) energy-density. As we move from plosive events to
tone sounds, this energy-density describes the relative energy content in frequency at different
times.

A spectrogram is a graphical display of the square magnitude ¥ (f; to).
It shows the trend of the frequency content of the signal over time.
The possibilities to choose a window w(n, tp) among different shapes (Hamming, Hanning,
Blackman, etc.), to choose the window  w(n, to) short in time (good time resolution) or longer in

time ( good frequency resolution) enables us to achieve the objectives in the best possible way °.

" The plosive events can be a result of imperfect closing of the flute key. Note that plosive waveforms are
characterized by high frequency content.
? Note: Time-Frequency objectives cannot be met simultaneously due to Heisenberg’s uncertainty principle.
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Fig. 1 — Flute Tone Signals

Two Flute anechoic tones have been analysed.

The first is the flute tone F#2 (~740 Hz);

The second is the flute pattern tones F#2, G2, A2, (~740 Hz) (~784 Hz) (~880 Hz)

The recording is monophonic (single channel), the sound signals are sampled at Fc-=44.1 KHz and quantized
on Qp, = 16 bits (quantization level).

The size of the first file containing the tone F#2 has LENGHT = 9411 [Sample] so the time duration of the tones
is Dy = LENGHT / F¢ = 213 msec.

The size of the file containing the three tones has LENGHT = 27159 [Sample] so the time duration of the tones
is Dy = LENGHT / F¢ = 616 msec.
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Fig. 2 — Clarino Tone Signal

One Clarino semi-anechoic tones have been analysed.
It is the clarino tone .... (~100 Hz);
The recording is monophonic (single channel), the sound signals are sampled at F.=44.1 KHz and
quantized on Qy, = 16 bits (quantization level).
The size of the first file containing the tone .... has LENGHT = 30000 [Sample] so the time duration of
the tones is Dy = LENGHT / Fc = 680 msec.

1
One Oboe semi-anechoic tones have been analysed.
It is the oboe tone (~ 560 Hz);
The recording is monophonic (single channel), the sound signals are sampled at Fc=44.1 KHz and
quantized on Q, = 16 bits. (quantization level).

The size of the first file containing the tone .... has LENGHT = ..... [Sample] so the time duration of the
tones is Dyt =LENGHT / Fc=...... msec.
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Fig. 3 — Oboe Tone Signal



2.2. — Least Squares Optimal Filtering [4].

Optimal filtering deals with design of filters to process a class of signals with
statistically similar characteristics (stochastic process). The topic is based on mean-square
estimation as applied to signal processing.

There are various forms of optimal filtering. Linear prediction is a simple kind of
optimal filtering problems. A more general type of optimal filtering is known as Wiener
filtering.

The Optimal Filtering Theory is well lent to solve system identification design
problems. In this case is required to make an absolute identification among N elements of a
population [5].

The problem to estimate a desired sequence s(n) from a related sequence x(n) is
essentially of the form:

choose the event x;(n) such that p;(x) > p(s) ; i=12,.... N

In this section we consider the optimal filtering problem from a slightly different
point of view. The problem is here regarded as purely deterministic. There is no presumed
knowledge of the statistical properties beforehand.

It is assumed that a typical data sequence for both s(n) and x(n) has been measured and
recorded and that these sequences can be used to design the filter.

If a causal FIR filter of length P is used, then the estimate for the given data sequence
is

P-1

S(n) = Z h(n) x(n-k) (1)
k=0
and the error can be defined as
g(n) =s(n) - §(n). 2
The approach here is to design the filter to minimize the sum of squared error
s=2 (). 3)
[nl, nF]

where n; and nr are some initial and final values of n over which the minimization is
performed.

The criterion (2) is called a Least Squares Criterion and could be regarded as purely
deterministic.

Differentiating (3) * one finds the taps of the FIR filter:

h=X's 4)
where

X" =X"x)"'x" (5)

1s known as the Moore-Penrose Pseudoinverse matrix.

? The proof is not shown here.



3. Analysis and Results.

In the aim to find attributes that reflect unique characteristics of the musical tones the
mathematical model adopted is based on two quantities:
Loudness Stability and Tone Frequency Stability (fig. 4).

The Loudness Stability refers to the energy variations of each harmonic of the
stochastic process obtained with the Short-Time Fourier Transform.

The Tone Frequency Stability refers to the frequency deviation that occurs between
two consecutive harmonics of the stochastic process obtained with the Short-Time Fourier
Transform.

-

Fig. 4 — Meaning of Loudness Stability and Tone Frequency Stability.
In the aim to find attributes that reflect unique characteristics of the musical tones two quantities has
been analysed:

e Loudness Stability

e Tone Frequency Stability.
The Timbre Stability refers to the energy variations of each harmonic of the stochastic process obtained
with the Short-Time Fourier Transform.
The Tone Frequency Stability refers to the frequency deviation that occurs between two consecutive
harmonics of the stochastic process obtained with the Short-Time Fourier Transform.

To measure the Timbre Stability of one pitch, a good choice seemed to consider the
values along the row’s elements in the spectrographic matrix (fig. 5).

The Tone Frequency Stability can be measured as the phase differences between two
consecutive column elements (fig. 6).

The frequency analysis of the signals has been developed in Matlab. The Matlab code
( Appendix A ) calculate the Spectrograms of the Musical Tones, the Strong Foundamental
Frequency, shows the Analysis of the Timbre Stability with the Short-Time Fourier
Transform and with the Tristimulus Method [6] and the, the Analysis of the Frequency
Stability with the Short-Time Fourier Transform.

The spectrograms of the musical tones are shown in fig. 7-9.



Fig. 5— Loudness Stability on the spectrographic matrix

Fig. 6 — Frequency Tone Stability on the spectrographic matrix
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Fig. 7 — Flute Tones Spectrograms

RESULTS : best results has been obtained using an Hamming Window of 1024 sample (~23 sec. @ 44.1
KHz), an overlap of 10 % and an FFT of 1024 sample. This choices guarantees that both the Timbre
Stability and the Tone Frequency Stability are quite constant long the entire duration of the signals. An
energetic measure showed that the first harmonic is the energy-strong fundamental harmonic.
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Fig. 8 — Clarino Tone Spectrograms

RESULTS : best results has been obtained using an Hamming Window of 1024 sample (~23 sec. @ 44.1
KHz), an overlap of 70 % and an FFT of 1024 sample. This choices guarantees that both the Timbre
Stability and the Tone Frequency Stability are quite constant long the entire duration of the signals. An
energetic measure showed that the first harmonic is the energy-strong fundamental harmonic.
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Fig. 9 — Oboe Tone Spectrograms

RESULTS : best results has been obtained using an Hamming Window of 1024 sample (~23 sec.
@ 44.1 KHz), an overlap of 50% and an FFT of 1024 sample. This choices guarantees the Timbre
Stability. The Frequency Stability improves to increase the FFT by points which is calculated up. An
energetic measure showed that the first harmonic is the energy-strong fundamental harmonic.
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It is important to observe how the signals are quite stationary. This result suggests
recurring LMS algorithm to make the automatic recognition. This algorithm, in fact,
assures a good convergence degree’ if the signal is slowly changing time. that is the
eigenvalues of the signal autocorrelation matrix are similar.

4. A proposal solution for the identification system.

A general representation of a system of sound recognition is shown in fig. 10.

As seen in this figure a representation of the sound signal is obtained using digital
signal processing techniques which preserve the features of the sound signal that are relevant
to tones identity.

The resulting pattern is compared to a reference database (library) of same previously
prepared tones, using the LMS Algorithm [7] ( see fig.11 ). A subsequent decision logic is
used to make a choice among the available alternatives [8].

This section proposes the implementation of the automatic identification system
relative to flute musical tones from a flute melody in progress. This is depicted in fig. 12.

As seen in this figure, digital processing techniques are the first step of the system.

In the light of the results obtained in the analysis shown in previous sections, the
flute melody incoming, s(t), has been divided in Hamming windows of 10244 samples and
an overlap of 80%.

A length of 10244 samples has been chosen because better match with the length of the
signal of the library.

The windows are preliminary stored in a memory buffer of the DSP so to be available for the
subsequent computation and also to allow the real-time elaboration.

For each frame of 10244 sample the spectrogram is computed using Hamming windows of
1024 sample, an overlap of 10% and FFT of 1024 sample compute the spectrogram.

The spectrogram input to a features extraction block so to extract the Loudness
Stability of each frame.

At this point the objective is to decide which note model, from a known set of tone
models (library), best correlate the actual note.

* The measure of the degree of convergence of the LMS algorithm consists in verifying that the eigenvalues of
the autocorrelation matrix are similar.

12
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Fig. 10 - General Representation of a sound recognition system
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Fig. 11 - The Least Square Optimal Filtering
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4. Conclusion and Future Work

Audio identification system is still an active research area.
A least squares optimal filter has been used to estimate the Loudness Stability.
Much work needs to be done in different directions to optimise the present project.
The database of the reference tones can be easily implemented as multi-array form so to
extend the identification on the entire scale of musical tones.
Improving the LMS algorithm for the detection of flute notes for signals recorded in normal
or reverb chamber.
At the end, the identification strategy developing pre-processing techniques for the noise
suppression can be optimised by an estimation of the background noise level and filtering of
the noisy sources from the sound regions.
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