
 1

EAI: concepts and trends

N. Aloia, C. Concordia, G. Weinbach*
CNUCE – CNR Via G. Moruzzi, 1 56100 Pisa (Italy)

* Objet Direct 38 Rue Copernic, 75116 PARIS

E-mail: cesare.concordia@cnuce.cnr.it

Abstract
The ever-increasing growth and penetration of Application Integration technologies and
market is bringing about significant changes in how Enterprise Information Systems are
organized and managed. Moreover, the increasing reliability of tools and techniques
stemming from the “Internet revolution” is rendering it ever more convenient to base the
development of new applications on this technology, especially because of the great
advantages it affords in terms of scalability and distribution.
These two principles lead to development of computer systems highly scalable and whose
different components should be integrated allowing information exchanges between them.
The main technique adopted to achieve this aim is the so-called Enterprise Application
Integration (EAI). The present paper deals with the fundamental characteristics and
current trends of Application Integration and related technologies and illustrates the
problems that need to be tackled in development and management of an integrated and
flexible enterprise information system.

Introduction: Enterprise Information Systems and urbanization
An information system (IS) is a set of organized procedures, manual and automated,
providing the means to run an organization. According with Kenneth C. and Jane P.
Laudon [LA] an information system is a set of interrelated components that collect (or
retrieve), process, stores, and distribute information to support decision-making, co-
ordination, and control, in an organization. The computer system is the component of the
information system, which handles the automatic processing of information. Over years
information systems have evolved mainly because of the new sense enterprises give to
“information” per se. Enterprises (and in general organizations) want to use all
information collected to add value to their product and services especially to be
competitive with Web revolution.
Traditional information systems don’t explicitly accomplished this task, they are used for
facilitating the realization, communication and processing of the information, and, often,
are constrained by the organizational structure, as well as the hardware and software
architectures adopted. To respond to new exigencies, more flexible systems are needed.
The computer systems cannot be monolithic; the different components should interact in
a clever way to accomplish each function needed to reach the requested equi- finality
[SC].
The main solutions emerged over last years to align enterprises information needs and
computer systems are the openness and the “urbanization” of the information systems.
These two principles lead to development of computer systems highly scalable and whose
different components are integrated allowing information exchanges between them. The
main technique adopted to achieve this aim is setting “middleware” between different

 2

applications, the scope of this software is to intelligently translate and route data between
applications. This is called Enterprise Application Integration (EAI).
It is rarely the case that a commercially available application offering will address totally
organization’s requirements, and no cross-function application suite can address all of the
requirements found in large structures. Therefore is true that almost all systems have
some integration needs.
Common sense argues that different kinds of integration problems call for different
integration approaches.
There is no lack of information on EAI. A simple search on the Web will bring many
documents on different technologies and tools. Not many documents, however, deal with
general concepts on design and implementation. In this paper are collected and ordered
information on these topics.

Application Integration Patterns
Introducing patterns in integration technology allow analysts and designers to move from
mere concepts to concrete design and architecture fields. Moreover patterns can provide a
basis to address the current landscape of Enterprise Application Integration. In practical
terms, patterns in software development could be considered as recurring actions,
techniques or logical organization. Dealing with the domain of application integration,
there are several categories of patterns that should be assessed as part of the analysis and
design phase of the project. IBM offers a set of reusable assets for help developers in
building applications with integration features [IB], Grosh introduced a taxonomy based
on “behavioral patterns for EAI” [GR], Yee’s patterns are classified according to their
role in the architecture of the system (User, Integration, Adapter)[YE] etc.
To achieve our purposes however we’ll use a more pragmatic approach [RU]. In this
taxonomy, the word “pattern” is not intended to mean “patterns of design or code”, or
“patterns of operational processes for an integration project”, instead, a “pattern” defines
a type of integration problem, a solution, as well as parameters applied for e-Business
Integration. Structurally, these patterns are built considering user requirements, enterprise
organization, legacy systems and data. Integration patterns identify patterns of how
integration solutions are designed. The following taxonomy covers most of the common
integration scenarios implemented today:

•Monolithic applications: self-contained systems, usually built using traditional
programming methods. In these systems different application are tightly bound
each other.

•Data consistency: applications and systems that coordinate their behavior by
exchanging data via shared data stores. That means: there is a common data meta-
model and different applications must translate data in their native model.

•Multi-step: applications that coordinate their behavior through the asynchronous
exchange of transactions exemplify the multi-step integration pattern. An
intermediate broker (for example a Message Oriented Middleware, MOM)
transforms and routes the right data to the right applications, according to the
input requirements of each target. Some authors distinguish between Single-Step
Application Integration (SSAI) and Multi-Step Application Integration (MSAI)

 3

the latter addresses many-to-many integration, which SSAI cannot, by providing
the so-called “sequential logical processing”.

•Composite applications: systems that implement their behavior through method calls
to external application services adhere to the composite application pattern. The
idea behind the composite application pattern is to create “meta-applications”,
whose capabilities are a composite of encapsulated services and integration logic.
The services themselves may be implemented with independent components,
wrapped applications, or even combinations of several applications or
components.

•Autonomous distributed: the autonomous distributed integration pattern is
characterized by the combination of application services to produce a composite
behavior, as in the composite application pattern, but it goes a step further by
exploiting frameworks for service discovery and dynamic method binding,
enabling integration to occur at runtime (e.g. web services).

Currently data consistency is yielding to multi-step as the most widely used integration
pattern, but probably there will always be problems for which data consistency is the best
approach. And despite the current hype around service-oriented architectures and web
services, the composite application and autonomous distributed patterns are not
replacements for the data consistency and multi-step approaches.

Integrating applications
There are two main views on integration: from inside the enterprise (A2A integration or
Enterprise Application Integration (EAI)), and view from the outside (B2B integration
(B2Bi)). For most organizations the main issue is to integrate consistently intra-
organization and inter-organization aspects of their activities. In both views (Fig. 2):
integration end-points are applications services and data, end-points are accessed either
directly or via middleware using resource-specific adapters. The core of both integration
views are the services that determine how native interfaces combine resource, inputs and
integration logic to produce the desired behavior for a given step, that are: routing,
transformation, messaging and transaction services. How core services are implemented
strongly depends from the integration patterns adopted. Most organizations have
integration problems that fit more than one pattern, including some with hybrid

Asynchronous communication /
loosely coupled

Monolithic
applications

Data Consistency

Store Multi step
Composite Autonomous

Synchronous communication /
tightly coupled

Figure 1 Integration patterns

 4

requirements; there is an increasing need for integration solutions that offer a complete
functional “stack”.

Integration Technology: state of art
As previously stated, data consistency and multi-step integration patterns are currently
dominating integration practice. The “messaging capabilities” are now a commodity, and
products like WebSphere MQ (formerly MQ Series) and Java Message Service (JMS) are
today considered as de facto standards. Therefore innovation is pursued elsewhere,
application integration solution providers are more and more offering tools whose aim is
to merge B2B integration with A2A integration. As an example, products like
WebSphere Process Manager (IBM) or TIB/InConcert (TIBCO) allowing users to define
and manage business processes and workflow, are completely integrated into IBM’s and
TIBCO’s EAI suite offers. That means intra-enterprise and extra-enterprise integration
strategy could be implemented using a unique approach, therefore avoiding duplication of
adapter, transformation, management, and other elements. Another element that strongly
influenced integration’s evolution is the Internet. The opportunity to use this environment
for implementing information systems offers considerable benefits, while at the same
time posing new problems. Internet-based, hosted integration services are emerging as a

Routing,
Tranformation,

Messaging,
Transaction

functions

Adapters

DBMS

Repository

Applications

Adapters

Intranet

EAI

B2B
Integration

B2B services

Applications

DBMS

XML

EDI

Proprietary

Extranet

Figure 2 B2Bi and EAI

 5

cost-effective way for small and medium companies to participate in integration. Smaller
players can participate in value chains with much larger partners, for ins tance iPlanet
(Sun) or WebLogic Integration (BEA) offers many facilities to implement an Internet
scale application integration approach, but also other solution providers furnish native
software modules to include Internet advantages to their products.

Integration strategy
Designing an integration technology’s strategy is not easy. Aside from knowing the
specific organization’s needs the designer should have a clear point of view about how
integration should work. In our opinion the main point here is to enable users to deal
separately with functional (business) and implementation (computer system)
requirements, without sacrificing processes completeness or services performance. The
aim is to build an information systems flexible and scalable that easily adapts to the
eventually changed organization exigencies, granting at the same time coherence and
consistency of services and functionality. To achieve this aim the complexity of
integration problems must be tackled at three levels:

•Process view: organization activities must be analyzed and all so called strategic and
organizational invariant [JE] processes must be singled out. Invariant processes in
an organization are processes that represent the main organization’s tasks and that
are supposed to be stable “enough” over time.

•Information system view: this view includes all tasks that can be automated.
Enterprise’s semantic of each task must be clearly described using a set of rules or
standards and tasks’ relationships must be represented in explicit form. The main
goal in this view is to remove ambiguity and redundancy defining responsibilities
and roles. An accurate settlement of this view offers two important advantages:
allows developer and system architects to refers to structured and coherent
information in building computer system and, above all, make easy to maintain
information and data compatibility in case of system or interfaces evolution.

•Computer system views: the implementation of the different tasks singled out in the
information system views. The aim is to build a system where each task, defined
in information system view, could be implemented using an appropriate tool
independently from its compatibility with others products. Considering this, the
correct EAI solution must be chosen to lay the foundation of the computer system.

 6

Separating IS specifications and system implementation enables integration deliverables
reusability. This principle allows reducing the effort of building and maintaining
integration solutions in multiple runtime environments. The quality (completeness and
non ambiguity) of the IS process modeling, combined with the use of integration tools
(such as EAI) might allow automatic generation of some part of the computer system
view (i.e. transformation, routing and workflow information), providing a high level of
maintainability and global coherence.
There are some principles that lead each phase of view’s definition, choosing an
integration solution:

•Maintain environment independence: customers should be able to change
completely or partly the information systems choices he made to adequate IS to
organization evolving requirements. Open technical solution allowing use of de
facto standard messaging services, Internet protocols, multi platform
programming languages (e.g. Java) and standard interface to storage mechanisms
(DBMSs and file systems) are preferred to achieve this goal. This principle
ensures continued system viability in the face of change and enables maximum
advantage to be realized from existing IT infrastructure.

•Manage functionality through abstraction: abstraction is used to allow users to deal
with different application and resources at functional level. Dealing with
resources through abstraction simplifies maintenance and make it easy to specify
systems that can be implemented in different environments with minimum
changes.

•Model the system completely and deploy from the model: that is Model-Driven
Integration, in which systems are specified and maintained using diagrams,
abstractions, and rules, has received great attention in the market[OM]. Building
solution conformed to this principle simplifies system configuration, maintenance
and management.

Process view Information System view Computer System view

Invariant
Process

Task Application EAI system
Workflow

Figure 3 Strategies

 7

•Use a single set of tools and services to support EAI and B2Bi: in theory a common
set of runtime services and design-time tools can be used to solve several
integration problem. The goal is to build an infrastructure that supports both EAI
and B2Bi needs. This principle can be implemented only if services are combined
with the right set of abstractions and architectural layering.

Integration trends
Both integration technology and the integration market are evolving rapidly, therefore in
this paragraph we try to do a snapshot of current trends.
Integration is today pervasive. As commercial offerings mature and organizations gain
experience with start up projects, integration technology is being widely applied. All the
patterns defined above are present in the current integration scene, reflecting the
increasing scope and impact of integration practices. Integration features are being
embedded in application server platforms, messaging systems, portal servers, and other
infrastructure technologies, as well as commercial application products. However most of
these offerings provide limited integration services, offering little value beyond their
intended problem spaces. Organizations in specific industry sectors have particular
integration needs that are not supported by most off- the-shelf integration solutions.
Purpose-built solutions may address specific needs, but they offer limited support for
broader enterprise integration requirements. In larger organizations, this can lead to a
multi-vendor integration problem. However today, thanks mainly to cross platform
technology, a middle road is emerging, in which divergent industry-specific offerings are
implemented on common architectural foundations. In early implementations, the
integration emphasis was on applications interaction. The missing components were
support for manual process steps and a common process view tha t could provide a basis
for modeling requirements at a business level, as well as for tracking and managing
process status. New solutions are emerging that support the ability to capture and model
process integration requirements at the business level, including long-duration processes
that span organizational and system boundaries, like collaborative product design. But
they also realize faster implementation of interfaces to back office applications, Web
applications, enterprise data stores, trading partner systems, and other IT resources, and
the ability to monitor and manage the operational result using business-level process
models.

Web services
The “web services” framework is emerging as an important “dynamical” integration
model. This vision of dynamic integration is enabled by a standards-based framework
that supports web services discovery (Universal Description, Discovery, and Integration
- UDDI), service formulation and instantiation (Web Services Description Language -
WSDL), and service invocation (Simple Object Access Protocol — SOAP). These
standards can be used together, or separately, to support different levels of integration
automation. Each service provider implements the web services themselves as purpose-
built applications, agents, or wrappers around existing applications. Web services are
potentially important in a number of areas, including enterprise portals and online
exchanges. Enterprise portals could exploit web services not only for publishing and

 8

implementing services for internal and external applications, but also for personalization
of services based on user identity, history, and runtime circumstances. Private and public
exchanges might use web services to exploit these same opportunities, but could also use
them to dynamically bind buyers and sellers, according to exchange-specific heuristics.
The foundation for implementing the web services model is mostly in place, but few real-
world implementations exist today. Like the other application patterns we’ve examined,
the autonomous distributed pattern, based on the web services framework, will seek its
own level beside other integration patterns, as business models evolve to take advantage
of this new approach.

Integration technology and Information Technology
As more organizations discover the advantages of implementing new systems by
integrating existing applications and services, integration technology is becoming a
fixture of modern IT architecture. As the scope of integration projects increases from few
connected systems to hundreds or thousands, integration is becoming mission-critical.
This trend imposes new requirements on integration technology, aimed at ensuring the
availability, reliability, and performance of integrated systems. The main architectural
challenges posed by these requirements are to avoid single points of failure, ensuring the
integrity of transactional processes, and managing dynamic workloads. During the past
several years, integration brokers have moved beyond simple client/server architectures
to support a “federated static” approach. In the federated static model, two or more
servers are distributed in a network, and applications are bound to specific server
instances. Federated static implementations generally provide static workload
management and some transaction integrity. Because they still present a single point of
failure for some portion of the integration workload, they don’t adequately address the
availability requirement. The next evolutionary step in integration broker architectures is
the “federated dynamic” approach [LI]. In the federated dynamic model, two or more
servers implement a distributed integration service in which applications are not bound to
a specific server instance. No single point of failure exists, because application requests
can be redirected in the case of individual server failures. The integrity of distributed
transactions is maintained across server instances through transparent sharing of
transaction and state information. Dynamic workloads are allocated to server pools
according to availability, capacity, and resource affinity. An initial step toward federated
dynamic architecture occurs in the form of cluster-based distribution. Clusters provide a
convenient basis for implementing dynamic fail-over and load balancing on a single
platform. Ultimately, however, achieving federated dynamic behavior across multiple
platforms and locations will require that integration brokers implement the federated
dynamic model natively.

Conclusions
There is no lack of information on EAI. A simple search on the Web will bring many
documents on different technologies and tools. Few documents, however, deal with
general concepts on design and implementation. In this paper, we indicate what we
believe to be the key concepts, the strategies and trends of application integration
technologies; keeping in mind that the dynamic nature of integration technology (and

 9

market) can make some of the technologies and solution described above quickly
outdated.

References
[IB] http://www.ibm.com/developerworks/patterns/
[JE] “Urbanisation du business et des SI”, G. Jean, Hermes 2000
[LA] “Management Information Systems” Kenneth C. and Jane P. Laudon, 4th ed.,
Prentice Hall, 1996
[LI] For complete definition and details see the interesting article: “ Making EAI Scale”
by David S. Linthicum http://www.intelligenteai.com/feature/010416/linthicum.shtml
[OM] The Model Driven Architecture (MDA) is the new strategy of the OMG:
http://www.omg.org/mda/executive_overview.htm
[RU] William Rue has established this taxonomy. Other taxonomy can be found in
literature. An interesting book on this topic seems to be “Patterns for e-business: A
Strategy for Reuse” IBM Press 55 US$, but I only saw a sample chapter of this book
[SC].”Management Systems”, P. Schoderbek, Wiley 1977

[YE] “Making EAI Work in the Real World: EAI Patterns” A. Yee,
http://eai.ebizq.net/enterprise_integration/yee_3.html
[GR] “Data Imperative: patterns in EAI behavior” eAI Journal, September 2001 pp22-28

