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Abstract

Objective knowledge of tissue density distribution in CT/MRI brain datasets can be related to
anatomical or neuro-functional regions for assessing pathologic conditions characterised by slight

differences. The process of monitoring illness and its treatment could be then improved by a suitable

detection of these variations. In this paper, we present an approach for three-dimensional (3D)

classification of brain tissue densities based on a hierarchical artificial neural network (ANN) able to
classify the single voxels of the examined datasets. The method developed was tested on case studies

selected by an expert neuro-radiologist and consisting of both normal and pathological conditions.

The results obtained were submitted for validation to a group of physicians and they judged the

system to be really effective in practical applications.
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1. Introduction

The nature of a brain pathology observed through the analysis of tomographic scans can

be associated with tissue density variations since the radiation absorption of biotissue is

directly related to its density. As tissue density is related to water concentration, in a

number of relevant cases, a neuropathology presents biological alterations related to

density modifications, such as the appearance of a hypodensity area due the growth of
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interstitial water. Moreover, it is well known that a brain tumour is characterised by several

cell proliferations that strengthen their concentration in a volume unit. As a consequence, a

hypodensity region may not be clearly distinguishable in a tomographic image compared to

a normal tissue. Moreover, there are numerous cases of possible uncertainty, such as low

degree malignant neoplastic forms, brain tissue early ischemic lesions or oedema. In this

context, the ability to measure even slight tissue density variations in MRI/CT brain scans

could help to make the subject’s analysis more objective, especially when an integration of

both three-dimensional (3D) morphological and densitometric features can be performed

to increase the effectiveness of the measurements themselves, since this would refer to a

more complete brain model [7,10,16]. Starting from well-defined cerebral regions, a

densitometric property can be locally measured and then assigned to a given class in order

to characterise a specific tissue. Each class can be then considered to assess modifications

occurring in different 3D models of the brain, assuming that the same brain or different

brains have been made spatially corresponding and analogous encephalic structures can

thus be compared [2,3]. The 3D brain data derived from the tomographic scans, can be

organised into a knowledge base in order to automatically compare the densitometric

features of an unknown brain, when possibly damaged regions cannot be recognised

accurately by visual examination.

In this paper, we present an approach for brain tissues density analysis and classification

using artificial neural networks (ANN). In particular, the method developed is based on a

hierarchical ANN model applied to 3D brain volumes. The ability of ANNs to recognise a

set of inputs belonging to a given stimuli space is used here to classify sets of features

extracted from the voxels belonging to the volumes examined. The selection of the features

is a crucial aspect of the classification process and the problem faced does not allow us to

identify a unique optimal set a priori with any great certainty.

For this reason, an architectural network paradigm was taken to model different cases of

the same problem instantiation by adopting a two-level hierarchy of independent specia-

lised networks, the first one being suitable to map the feature sets, the second one capable

of performing a final classification of the voxels on the basis of the output given by the

previous net.

We started from the assumption that the use of a single ANN to model such a complex

problem, would entail retraining the entire network whenever the description of the

problem (i.e. the feature set) changed. In fact, as yet there is no knowledge available that

would predict the most accurate result.

On the other hand, the adoption of a multilevel ANN allows for specialisation and

adaptability at the same time, since its individual levels can be finely tuned to the

characteristics of the feature set and also the entire architecture can be easily modified

if the problem description changes, in particular by training only those levels involved in

the modification.

Furthermore, the approach followed allows us to optimise the computational complexity

of the individual levels independently. In particular, the addition of a new feature would

only have a partial effect on an individual level of the ANN architecture, making it easier to

work on the problem of density volume classification. These features are extracted taking

into account the 3D properties of the densitometric volumes, in such a way as to be able to

pursue a full 3D approach.



In the following, the hierarchical ANN developed to classify brain densities is presented

in detail. The results of the case studies selected by an expert neuro-radiologist, consisting

of both normal and pathological brain conditions, effectively demonstrated the proposed

method and encourage further improvements for developing a more complete tool capable

of supporting the analysis of disease diagnosis and follow-up.

2. Materials and methods

A 3D brain volume is defined by a dataset of parallel equidistant slices (i.e. brain scans)

assuming that the acquisition sampling rate is accurate enough to avoid any loss of

information.

As a first step, in order to significantly reduce the number of voxels to be analysed during

the classification process, the entire background region located outside the skull is

disregarded. For this purpose, an algorithm for the automatic segmentation of the internal

and external skull boundaries, based on a priori knowledge of the images’ characteristics,

was implemented [5]. This was done in such a way that the region belonging to the skull

had already been classified and the region of interest (ROI) to be analysed corresponded to

the region inside the internal boundary of the skull itself [4].

Once the algorithm has been applied to all the slices of the dataset, the set of ROIs

obtained define the volume of voxels to be classified (3D-ROI).

All the voxels are then processed to compute a set of features that are used to obtain the

classification of the voxels themselves. In the following, each voxel coordinate is computed

relative to the skull; in order to overcome problems related to the displacement of the skull

between slices.

Voxel density is classified using a hierarchical ANN architecture. Several ANN-based

approaches have been presented in the literature, including some that use hierarchical

structures [6,8,11,12,14,15].

Sahiner et al. [14] propose a convolution neural network with two-dimensional (2D)

weight kernels to classify density regions in mammograph images. Two different classi-

fication techniques are studied: classification by image subsampling and classification

based on two different sets of textural features which are extracted from the original images

either as ‘grey level difference statistics’ or as ‘spatial grey level dependencies’. The

features extracted are first arranged as texture images and then used as input for the net.

Ersoy and Deng [6] describe a hierarchy composed of one level of parallel error back-

propagation (EBP)-based networks, each of equal complexity. In this approach, there is

evidence of a global network consisting of small parallel EBP stages which converge faster

than a single EBP network of the same total size in terms of similar error performance.

Sajda et al. [15] introduce a hierarchical architecture composed of two levels of classical

EBP-based networks that is more accurate than a non-hierarchical architecture. The

architecture uses the output of the first network, together with extracted features of higher

resolution, such as a contextual input to the other network.

Reddick et al. [12] propose an interesting architecture based on a combination of a self-

organising map (SOM) [9] with an EBP network. The first net, composed by an input layer

of three neurons fully connected with nine output neurons, is used to segment the three



signal intensities from a single pixel in a T1-weighted, T2-weighted and PD magnetic

resonance images. The output neurons have a 3D weight vector that represents the input for

the second net that is composed by three inputs, seven hidden and output neurons. Each

output neuron corresponds to one of the seven different classification values.

Keem et al. [8] propose a parallel hierarchy of EBP networks, one specialised in the den-

sitometric analysis of the coronary arteriography and the other specialised in the geometric

aspect. Their system was developed to assist an observer in artery lesion detection.

Mavrovouniotis and Chang [11] give an overview of hierarchical neural networks and

a comparison of common three layer ANN architectures. Each of the sub-net within the

hierarchy is intended to capture specific aspects of the input data. A sub-net models a

particular subset of the input variables, but the exact patterns and relationships among

variables are determined by training the network as a whole. The advantages of the

hierarchy of sub-nets are summarised in two main points: the modular organisation makes

the networks easier to analyse and the hierarchy gives the network hints about the most

promising directions to look for patterns.

In our approach, we considered important to achieve the following:

� to exploit the differences among the extracted features to improve the classification

capability;

� to be able to easily change the number of features;

� to implement a full 3D approach, in terms of spatial geometric relations among the

neuro-functional structures.

To this end, a hierarchical ANN architecture was implemented as shown in Fig. 1.

In particular the recognition system uses two kinds of neural network that can be trained

separately to perform the basic recognition task. The implementation of the global network

by means of two independent network levels implies a rapid and efficient training of each

individual level.

This classification mainly consists of two phases: at a lower level, the classification of

the individual features extracted from each voxel is performed; at a higher level, the results

of the first phase are the input for the final classification.

Fig. 1. Hierarchical classification architecture.



The lower level (specialisation level) is composed of a set of different experts (i.e.

classifiers). Each expert is based on an unsupervised SOM model [9], and the training is

performed with the aim of clustering each input value into crisp classes, without using any

information related to the brain tissue class which the voxel belongs to. Each specific

feature is the input to only one classifier of the specialisation level; in this way, each SOM

can be individually optimised without affecting the other components of the global ANN

architecture. This is done in order to reduce locally the computational complexity and, at

the same time, to implement a flexible system.

The higher level (decisional level) is composed of a single final classifier based on an

EBP model.

In the following sections a detailed description of each step is given.

2.1. Classification features

Each 3D-ROI is classified on the basis of specific properties related to the voxels

themselves and their spherical neighbourhood.

The set of features chosen was selected in such a way as to reduce the probability of

having overlapping classification values from voxels belonging to different density classes.

To do this, we defined a set of independent features which represent both geometric and

densitometric properties of the 3D-ROIs to be classified.

The features described below include information related to the 3D spatial configuration

of the tissues modelled and they experimentally demonstrated a discriminating set to

effectively distinguish adjacent structures in the domain examined.

Assuming that the 3D-ROI is defined by the function RðVÞ ¼ ðxV ; yV ; zVÞ ¼ kV , where

kV is the grey value of V, the following set of features is computed [4]:

� grey level and position of V:

FpðVÞ ¼ ðkV ; xV ; yV ; zVÞ; (1)

� local mean grey value computed in a spherical neighbourhood S(V, r) with centre in V

and radius r :

FmðVÞ ¼
P

P2SðV ;rÞRðPÞ
jSðV ; rÞj (2)

where |S(V, r)| is the number of voxels in the sphere,

� difference between the local mean grey value computed in S(V, r) and the grey value

of V:

FdðVÞ ¼ jFmðVÞ � RðVÞj; (3)

� gradient computed in S(V, r):

FgðVÞ ¼ a~G (4)

a ¼ 1

jSðV; rÞj
~G ¼ ðGxðV ; rÞ;GyðV ; rÞ;GzðV ; rÞÞ
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Each voxel is represented by its set of features which are, in turn, used as inputs for the

specialisation level of the classifier. The classification of the features also implies the

classification of the corresponding voxel.

2.2. Classification process

Hierarchical classification is composed of different levels of parallel classifiers. Our

approach consists of two levels, the specialisation level gets as input the features computed

in the previous step and sends its output to the decisional level, whose task is to combine the

output values of the previous level and to perform the final classification.

Since there are two classifiers, the problem of combining their (possibly) conflicting

decisions arises. There are usually two main approaches: parallel and sequential. In the

parallel approach, the results of the two classifiers are merged by means of some kind of

voting mechanism. In the sequential approach, the simplest and thus more efficient

classifier is run first: if the input is recognised with a high confidence degree the second

classifier is not applied, otherwise the second classification is also performed and the two

results are merged [1].

The disadvantage of this last approach is that any misclassification performed by the first

classifier cannot be overruled by the second and, therefore, there must be a guarantee that

this classifier yields a very low error rate.

In the architecture proposed in this paper, the approach is slightly different: the two

classification levels have a complementary role to each other and they are always run

together. The specialisation level performs a partial classification, each of the experts

trying to separate the input data into crisp classes. This classification is performed

without using any information on the density class the voxel belongs to (i.e. unsupervised

learning), but using only the appropriate feature for each of the experts. The output of

the specialisation level is used to form the input pattern for the decisional level, which

refines the classification and gives a final response, i.e. the density class which the voxel

belongs to.

2.2.1. Specialisation level classification

This classification is performed by a series of modules, each implementing a SOM

model. The number of modules corresponds to the number of features to be recognised, i.e.

Fp(V), Fm(V), Fd(V), Fg(V).



SOMs are one-layer ANNs. This means that every output neuron receives the input

stimulus and is connected to the output neurons that are spatially close (i.e. in an interaction

range r).

Each SOM acts as an independent classification module, i.e. it gives a classification

value for each voxel of the dataset without taking into account the output of the other

SOMs. The input is different for each SOM: every module is trained and then used for the

classification of a specific feature, therefore its input is only one of the four processed

features (i.e. a quadruple for the first feature, a single value for the second and third feature,

and a triple for the last feature).

These SOMs are mono-dimensional (1D) networks, i.e. the only layer of the network is

composed of an array of neurons; this means that the dimension of the weights depends on

the feature: 1D for Fm(V) and Fd(V), and multidimensional for Fp(V) and Fg(V).

We chose to use 1D SOMs due to the high separability of the classes identified by the

features.

Furthermore, our system is very open to the addition of new computed features, which

could give more information about the classification of the voxels. In fact the addition of

new features does not influence the existing specialisation modules and only requires

minor changes to the decisional level: i.e. the addition of new 1D/2D SOM modules

dedicated to receiving the new evaluated features and to classifying them.

The weights in the networks are defined for the output neurons and are changed during

the training phase.

For each input feature Fk(V) (k 2 {m, d, p, g}), the neuron i that best proximates the

projection of the input itself into the network (in terms of Euclidean distance) is considered

to be the neuron most excited by the stimulus; its weights wi are modified in such a way as

to specialise i on the specific input. In addition, the weights of the neurons within a fixed

neighbourhood are modified in order to preserve the topological architecture of the net; in

other words neighbour neurons are excited by similar inputs [9].

At the end of the training, each network is able to recognise and to classify the values of a

specific feature.

The weights wj(it) of a generic neuron j at time it, for the input Fk(V) (k 2 {m, d, p, g}) are

modified as follows:

wjðit þ 1Þ ¼
wjðitÞ þ aðitÞ½FkðVÞ
 � wiðitÞ
 if j 2 NiðitÞ
wiðitÞ if j =2NiðitÞ

�
(5)

where

� wi(it) represents the weights at time it of the neuron i most excited by the stimulus;

� aðitÞ ¼ 1 � it�1
T

� 	� 	
2
0; . . . ; 1½ is the learning coefficient, and it depends on the

iteration number it, and on the maximal number of iterations T;

� Fk(V) is the value of the input feature computed for the voxel V;

� Ni(it) is the set of neurons in a fixed neighbourhood of radius r and centred in i,

influenced by the modification of wi(it).

The output of each SOM is the classification of the voxel on the basis of the specific

feature considered and it is identified as the number of the winning node for that voxel.



Therefore, the output of the specialisation level is a n-dimensional vector containing the

responses of the n SOMs (in this case n ¼ 4); this vector defines the input stimulus of the

decisional level.

The algorithm used to train a SOM to classify a generic feature Fk(V) is shown in Fig. 2.

After the SOMs have been trained over the set of voxels selected for the learning

process, they are ready to classify each input (see the algorithm in Fig. 3).

The number of neurons chosen in each SOM can be greater than the number of density

classes and then reduced (optimised) by applying a clustering algorithm based on distance

[16].

2.2.2. Decisional level classification

The set of classifications computed by the specialisation level is used as input for the top

level classifier implemented with an EBP network.

The algorithm implemented has the following parameters:

� The network used is a feed-forward back-propagation network,

� The training function updates weights according to a resilient back-propagation

algorithm [13],

� The dimension of the input stimuli corresponds to the number of different features taken

into account (in this case the input stimuli are defined by a four-dimensional (4D) array),

� The input layer is composed by nI neurons,

� The output layer is composed by nO neurons that correspond to the number of density

classes to be identified,

Fig. 2. Algorithm used to train the SOM network.

Fig. 3. Algorithm used to classify a generic feature with the SOM ANNs.



� The network is used with no hidden layer; experimental tests have shown that hidden

layers do not improve either the performance or the quality of the results,

Fig. 4 shows the architecture of the decisional level. The format of the input is an array

containing, for each voxel to be classified, the 4D response given by the specialisation level

to the specific feature extracted. Each array is used as an input stimulus for each of the nI

neurons of the input layer.

During the training phase of the EBP, a matrix is used for the input where every row

consists of the above mentioned array extended with a value Ci,T that represents the correct

classification value of the voxel Vi (target class). This last value is used to evaluate the error

signal, i.e. the difference between the network response and the correct classification value,

and then to modify the weights (i.e. the synapses) in order to better match the target class.

In order to have a significant training-set, an expert neuro-radiologist selected a set of

sample voxels from each image in such a way as to be representative of the class which they

belong to. Thus, the training-set is composed of a set of voxels specifically selected from

each image.

The supervised algorithm will be able to train the network by propagating backward the

resulting error dj(V). This error is calculated as a function of the neurons’ output and the

difference between the network output and the target class for the specific voxel V.

djðVÞ ¼
fj
0ðnetjðVÞÞðCV ;T � OjðVÞÞ if j 2 OutN

fj
0ðnetjðVÞÞ

X
k2OutN

ðdkðVÞwj;kÞ if j 2 InN

8<
: (6)

Fig. 4. EBP architecture. Ci;1; . . . ;Ci;4: input stimulus; WO
l;m; wI

k;j: weights; nI: number of input neurons; nO:

number of output neurons; Oj(Vi): final classification of Vi. In our case studies nI ¼ 25 and nO ¼ 8.



where Oj(V) is the output value of the neuron j for the input V, netj(V) is the weighted sum of

the ingoing signals to the neuron j for the input V, fj
0(netj(V)) is the derivative of an

activation function f used to compute the output; this function is usually defined as the

identity, OutN is the set of output neurons, and InN is the set of input neurons.

The output neurons propagate this error backwards to each input neuron. The error is

used by each neuron to update its weights on the incoming connections and to calculate the

error to be propagated back itself. Input neurons only update the weights of their

connections, without propagating the error.

Having an input V, the weights from neuron i to neuron j (i.e. wi;j) are updated by a value

Di,j(V) computed as follows:

Di;jðVÞ ¼ ZdjðVÞOiðVÞ (7)

where Z represents the learning rate and can be chosen either as a constant or a function of

the number of iteration, like in the SOM algorithm.

An outline of the EBP algorithm is shown in Fig. 5.

The network update procedure is iterated over the set of voxels until either an error

threshold is reached, or the number of iterations reaches a pre-defined value (which

depends on the specific domain under examination). After the training, the network can be

used as classifier (see Fig. 6 for the classification algorithm).

Fig. 5. Algorithm implemented to train the EBP network.

Fig. 6. Algorithm implemented by the EBP network to perform the final classification.



The low number of inputs and the absence of intermediate neurons allow the network

to be trainable in a very short time. The output of this network is the final classification of

the voxel processed.

3. Results

The model proposed was applied to real cases: 3D CT/MRI data sets relative to different

patients and representing both normal and pathological conditions were selected as study

cases by an expert neuro-radiologist.

The brain scans were acquired at the Neurosurgery Department of the University of Pisa,

with a GE Medical Systems machinery, model Genesis Jupiter.

Our study involved a set of 15 patients who were used to train the net, and a set of eight

patients used to test the hierarchical ANN (the two sets are separate). The training set

was composed of seven women and eight men, aged between 50 and 70 years old. Each

CT/MRI sequence had a number of slices varying between 15 and 23.

The CT/MRI slices were used to obtain a 3D representation of the volume to be

classified.

A graphical interface tool was also developed in order to assist the neuro-radiologist in

selecting the set of training stimuli, i.e. a set of voxels chosen as being representative of the

class which they belong to. The set of voxels extracted and used for the training phase

varied in the interval [10; . . . ; 70] thus obtaining a total number of 4500 learning stimuli.

The number of training iteration was fixed at 300.

The features described above were extracted from these voxels and used as inputs for the

SOMs.

The SOM network specialised on Fp(V) had a 4D input (i.e. hX-coord, Y-coord, Z-coord,

grey leveli); the SOM network specialised on Fg(V) had a 3D input, and the other two

SOMs had a 1D input (since the last two features had real values).

Since in our experiments eight different density classes were taken into account (see

Table 1), each SOM had a h8 � 1i neurons layer. Each voxel was firstly classified by each

of the four SOMs; the outputs were then used as inputs for the EBP network.

All these inputs were sent to all the 25 neurons which make up the input layer of the EBP

network; the output layer of the decisional level network is composed of eight neurons,

Table 1

Typology specification of density classes

Density class Typology

1 Bone

2 Grey matter

3 White matter

4 Liquor

5 Air

6 Hypodensity

7 Hyperdensity

8 Blood



corresponding to the number of possible density classes. The output neuron most excited

by the inputs represents the final classification.

The number of operations computed for each voxel is 148 for the features extraction

phase and 700 for the classification phase (132 computations are performed by the

specialisation level while 568 by the decisional level classifier).

The following examples refer to both normal and pathologic brain conditions. In both

cases a number of approximately 850,000 voxels were classified for a total number of about

720,800,000 operations computed in an average elapsed time of 20 s.

Figs. 7 and 8 show the 3D representations of two single density classes extracted from

the normal case volume, ‘‘grey matter’’ and ‘‘white matter’’, respectively. Fig. 9 shows

both densities simultaneously in the same portion of the brain. Reconstructions were

obtained using AV-ExpressTM software package by ‘‘Advanced Visual System Inc.’’.

Figs. 10 and 11 show examples of classification where all the eight different classes are

considered (see Table 1): a 3D section of a pathological case (Fig. 10) and a non-

pathological case (Fig. 11).

Fig. 7. Example of 3D reconstruction of a brain section relative to the density classified as grey matter. The

volume computed is 372 cm3.

Fig. 8. Example of 3D reconstruction of a brain section relative to the density classified as white matter. The

volume computed is 391 cm3.



Fig. 9. 3D density reconstruction of ‘‘white matter’’ (dark color) and ‘‘grey matter’’ (light color), in a normal

patient. The volume is shown with a vertical cut for better evidencing the different internal structures.

Fig. 10. 3D visualisation of the voxels classification in a pathological case of the encephalon (cerebral ischemia).

Fig. 11. 3D visualisation of the voxels classification in a normal case of the encephalon.



4. Conclusions

A diagnosis of cerebral anomalies is usually based on the examination and comparison

of digital scans of the tissues involved. This leads to qualitative evaluations of densito-

metric and volumetric modifications of the anomalies themselves. Although visually

inspecting tomographic scans performed by an expert physician is a fundamental step

when diagnosing pathologies, the automatic quantification of densitometric and volumetric

properties of a lesion is an important aid when a static evaluation of the perturbing agent is

not sufficient and the evolution of the pathology needs to be studied.

From a biological point of view, a cerebral lesion is characterised by two elements: its

size and tissue composition. From a radiological point of view these two aspects

correspond to the morphological and densitometric characteristics of the anomaly. The

volume of the lesion is undoubtedly a valuable measure of its morphological properties,

whereas a densitometric characterisation is more complicated to obtain.

An important point is that quantitative measurements related to the densitometric

properties of the tissues cannot replace a qualitative inspection of the digital scans.

However, they can integrate and complete the physical characterisation of a lesion and the

description of its temporal evolution. These measurements are aimed at differentiating the

pathologic tissues from the normal ones and can be computed by analysing the textural

properties and the grey level distribution of the digital scans.

In the light of this, we have defined a method for the textural characterisation of

anatomical soft tissues in order to support the diagnosis of cerebral pathologies. For this

purpose, real complex cases with evident anomalies were taken into account to test the

effectiveness of the approach.

We introduced a multilevel approach for the classification of tissue density in 3D image

data sets of the brain. This approach is based on the use of SOM and EBP networks to

classify a set of pre-defined features extracted from each voxel of the volumetric data set;

these features are considered as being representative of the voxel itself and thus lead to its

final classification.

CT/MRI data sets referring to both normal and pathological conditions, selected by an

expert neuro-radiologist, were used as case studies to test our approach.

The data set was selected by the experts in such a way as to avoid ambiguous conditions

and to be able to assess the objectivity of the model proposed. We are confident that

ambiguous conditions can be classified by introducing, at the first level of the architecture,

networks specialised in the analysis of those ambiguities (e.g. partial volumes). The

flexibility of our model allows new modules to be added with only slight changes to the

whole architecture.

The results obtained from the case studies were submitted for validation to a group of

physicians at the Department of Neurosurgery, University of Pisa. They judged the system

to be really effective in practical applications. This fact could be a basis for designing a

more complete instrument to support the analysis of disease diagnosis and follow-up.

Performance is a critical aspect of the architecture described, since the use of an EBP-

based network introduces a significant computational overhead. In order to improve

efficiency, specific algorithms for the reduction of the number of voxels to be examined

are currently being studied.



As for the EBP network, the performance can be improved by the exploitation of a

rejection rate. In fact, when more than one class can be assigned to an individual voxel, the

network could either try to refine the result or reject the input. In these cases, we found

advantageous to reject an individual voxel and optionally assign a default classification

value (e.g. blank) or direct the expert to that region, rather than accepting an erroneous

classification or trying to refine the result.
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