
An Online Recommender System for Large Web Sites

Ranieri Baraglia and Fabrizio Silvestri
Information Science and Technologies Institute (ISTI)

National Research Council, Pisa, ITALY
{ranieri.baraglia, fabrizio.silvestri }@isti.cnr.it

Abstract

In this paper we propose a WUM recommender system,
called SUGGEST 3.0, that dynamically generates links to
pages that have not yet been visited by a user and might be
of his potential interest. Differently from the recommender
systems proposed so far,SUGGEST 3.0does not make use
of any off-line component, and is able to manage Web sites
made up of pages dynamically generated. To this purpose
SUGGEST 3.0incrementally builds and maintains histori-
cal information by means of an incremental graph partition-
ing algorithm, requiring no off-line component. The main
innovation proposed here is a novel strategy that can be
used to manage large Web sites. Experiments, conducted
in order to evaluateSUGGEST 3.0performance, demon-
strated that our system is able to anticipate users’ requests
that will be made farther in the future, introducing a limited
overhead on the Web server activity1.

1 Introduction

The continuous and rapid growth of the Web has led to
the development of new methods and tools in the Web rec-
ommender or personalization domain [4], [2]. In [7] the
goal of the Web personalization is defined as “provide users
with the information they want or need, without expecting
from them to ask for it explicitly”.

Web Mining has shown to be a viable technique to dis-
cover information “hidden” into Web-related data [3]. In
particular, Web Usage Mining (WUM) is the process of
extracting knowledge from Web users access data (or clik-
stream) by exploiting Data Mining (DM) technologies [5].
It can be used for different purposes such aspersonaliza-
tion, system improvementandsite modification.

1This work was funded by the Italian Ministry of Education, Univer-
sity and Research (MIUR) as part of the National Project Legge 449/97,
1999, settore Società dell’Informazione: Technologies and Services for
Enhanced Contents Delivery (2002-2004)

Typically, the WUM personalization process is struc-
tured according to two components performed online and
off-line with respect to the Web server activity [5], [16],
[6], [1]. The off-line component is aimed at building the
knowledge base by analyzing historical data, such as server
access log files, that is then used in the online component.
The main functions carried out by this component arePre-
processing, i.e. data cleaning and session identification, and
Pattern Discovery, i.e. the application of DM techniques,
like association rules, sequential patterns, clustering or clas-
sification. The online component is devoted to the genera-
tion of personalized content. On the basis of the knowledge
extracted in the off-line component, it processes a request to
the Web server by adding personalized content which can
be expressed in several forms, such as links to pages, ad-
vertisements. The main limitation of this approach is the
loosely coupled integration of the WUM system with the
Web server activity. In fact, the use of two components has
the drawback of having “asynchronous cooperation” be-
tween the components themselves. The off-line component
has to be periodically performed to have up-to-date data pat-
terns but how frequently, is a problem that has to be solved
on a case-specific basis. On the other hand the integration
of the off-line and online component functionalities into a
single one, poses other problems in terms of the overall sys-
tem performance, which should have a very low impact on
user response times.

In this work, we present a WUM system, calledSUG-
GEST 3.0, which is designed to dynamically generated per-
sonalized content of potential interest for users of a Web
Site. It is based on an incremental personalization proce-
dure, tightly coupled with the Web server. It is able to up-
date incrementally and automatically the knowledge base
obtained from historical usage data and to generate a list
of page links (suggestions). The suggestions are used to
personalizeon-the-flythe HTML page requested. More-
over, the adoption of a LRU-based algorithm to manage the
knowledge base permits us to useSUGGEST 3.0also on
large Web sites made up of pages dynamically generated.
Thus, removing a limitation of previous system versions

that were able to manage Web sites with a fixed number
of pages. The system proposed was evaluated by adopting
the new quality metric we introduced in [13]. The metric
tries to estimate the effectiveness of a recommendation sys-
tem as the capacity of anticipating users requests that will
be made farther in the future.

2 Related Work

In the past, several WUM projects have been proposed
to foresee users preference and their navigation behavior. In
the following we review some of the most significant WUM
projects that can be compared with our system.

Analog [16] is one of the first WUM systems. It is struc-
tured according to an off-line and an online component. The
off-line component builds session clusters by analyzing past
users activity recorded in server log files. Then the online
component builds active user sessions which are then clas-
sified according to the generated model. The classification
allows to identify pages related to the ones in the active ses-
sion and to return the requested page with a list of sugges-
tions. The geometrical approach used for clustering is af-
fected by several limitations, related to scalability and to the
effectiveness of the results found. Nevertheless, the archi-
tectural solution introduced was maintained in several other
more recent projects.

In [11] Perkowitzet al. propose a WUM system, called
PageGather, that builds index pages containing links to
pages similar among themselves. PageGather finds clus-
ters of pages instead of clusters of sessions. Starting from
the user activity sessions, it builds theco-occurrencematrix
M . Each elementMij of M is defined as the conditional
probability that pagei is visited during a session given that
pagej has been visited in the same session. A threshold
minimum value forMij allows to prune some uninteresting
entries. The directed acyclic graphG associated toM is
then partitioned finding the graph’s cliques. Finally, cliques
are merged to originate the clusters. Page Gather main con-
cern is on the index pages creation. There is not an online
component of the WUM system, and the static index pages
are kept in a separate “Suggestion Section” of the site. One
important concept introduced in [11] is the hypotheses that
users behave coherently during their navigation, i.e. pages
within the same session are in general conceptually related.
This assumption is calledvisit coherence. SUGGEST 3.0
exploits this concept to obtain a measure of quality for a
WUM system.

In [5] and [8] B. Mobasheret al. presentWebPersonal-
izera system which provides dynamic recommendations, as
a list of hypertext links, to users. The analysis is based on
anonymous usage data combined with the structure formed
by the hyperlinks of the site. DM techniques (i.e. clustering,
association rules, and sequential pattern discovery) are used

in the preprocessing phase in order to obtain aggregate us-
age profiles. In this phase Web server logs are converted in
clusters made up of sequences of visited pages, and cluster
made up of set of pages with common usage characteristics.
The online phase considers the active user session in order
to find matches among the users activities and the discov-
ered usage profiles. Matching entries are then used to com-
pute a set of recommendations which will be inserted into
the last requested page as a list of hypertext links. WebPer-
sonalizer is a good example of a two-tier architecture for
personalization systems.

In [15] SpeedTracer, a usage mining and analysis tool,
is described. Its goal is to understand the surfing behav-
ior of users. Also in this case the analysis is done by ex-
ploring the server log entries. The main characteristic of
SpeedTracer is that it does not require cookies or user reg-
istration for session identification. In fact, it uses five kind
of information: IP, Timestamp, URL of the requested page,
Referral, and Agent to identify user sessions. Advanced
mining algorithms uncover users movement through a Web
site. The final result is a collection of valuable browsing
patterns which help webmasters better understand users be-
havior. SpeedTracer generates three types of statistics: user-
based, path-based and group-based. User-based statistics
pinpoint reference counts and durations of accesses. Path-
based statistics identify frequent traversal paths in Web pre-
sentations. Group-based statistics provide information on
groups of Web site pages most frequently visited.

In the past, several WUM projects have been proposed to
foresee users’ preference and their navigation behavior, as
well as many recent results improved separately the quality
of the personalization or the user profiling phase [9].

3 TheSUGGEST 3.0system

SUGGEST 3.0is a recommender system aimed to pro-
vide the users with useful information about pages they may
find of their interest. The personalization is achieved by
means of a set of dynamically generated page links.

SUGGEST 1.0was born as a two-tier system composed
by an off-line module which carried out the first stage by
analyzing the Web server’s access log file, and an online
classification module which carried out the second stage.
Its main drawback was the asynchronous cooperation be-
tween the two modules. In the next version,SUGGEST 2.0,
the two modules were merged into a single one that per-
forms the same operations but in a complete online fashion.
Putting together the two tiers into a single module pushed
aside the problem to estimate the update frequency of the
knowledge base.SUGGEST 2.0was designed to be usable
on Web sites made up of pages statically generated, i.e. Web
sites with a fixed number of pages. A list containing all the
information describing a Web site pages was required as

input bySUGGEST 2.0at its start-up time. Potential limita-
tion of SUGGEST 2.0might be: a) the memory required to
store Web server pages is quadratic in the number of pages.
This might be a severe limitation in large sites made up of
millions of pages; b) it does not permit us to manage Web
sites made up of pages dynamically generated.

In order to remove the above limitations inSUGGEST
3.0a solution that indexes a page when it is required is ap-
plied. This solution can leads to a large increasing of the
knowledge base. Therefore, to avoid that, a LRU-based al-
gorithm is adopted. According to this algorithm informa-
tion related to a page less recently accessed is replaced with
the information related to the one currently accessed. The
size of the used data structures is specified as a function
of some parameters such as the available resources and the
performance requirements.

As the previous version,SUGGEST 3.0is implemented
as a module of the Apache Web server [14], allowing an
easy deployment on potentially any kind of Web site cur-
rently up and running, without any modification of the site
itself.

Schematically,SUGGEST 3.0works as follows: once a
new request arrives at the server, the URL requested and the
session to which the user belongs are identified, the under-
lying knowledge base is updated, and a list of suggestions
is appended to the requested page.

In Algorithm 1 the steps carried out bySUGGEST 3.0
are presented. At each stepSUGGEST 3.0identifies the
URL u requested and the session to which the user belongs.
Successively, by using the session identifierid, it retrieves
the identifier of the URLv from which the user is coming
from, and thePageWindow containing the list of pages
accessed in the current session. According to the current
session characteristics, it updates the knowledge base and
generates the suggestions to be presented to the user. Ac-
cording to the sequence page accesses, suggestions for users
belonging to the same class may be different. All this steps
are based on a graph-theoretic model which represents the
aggregate information about the navigational sessions.

The session model.In SUGGEST 3.0user sessions are
identified by means of cookies stored on the client side. The
use of the cookie mechanism remove a drawback present in
SUGGEST 2.0that identified user sessions by applying a
heuristic based on the IP address and time-stamp. This so-
lution does not permit us to identify users behind proxies of
NATs2. In this case, in fact, those users appear as a single
one coming from the NAT (or gateway) machine. On the
other hand a user can disable cookies nullifying our mech-
anism.

The first time a user issues a Web page request,SUG-
GEST 3.0catches it, and sends back to the user, together
with the requested page, a cookie containing a counter of

2Network Address Translators.

the requested page. This mechanism initiate a protocol that
permits us to have, after a prefixed number of requests a
valid user session used to make the list of suggestions. Af-
ter a valid session has been identified a cookie containing a
keyto identify the session is sent back to the user together
with the request page. Once a key has been generated by
our module, it is used on successive requests to identify the
corresponding user session.

The keys are used to access a hash table which contains
the corresponding session identifiers (session id). There-
fore the computational cost of such operation is constant
(O (1)).

To catch information about navigational patterns,SUG-
GEST 3.0models the page accesses information as a undi-
rected graphG = (V,E). The setV of vertices contains the
identifiers of the different pages hosted on the Web server.
Based on the fact that the interest in a page depends on its
content and not on the order a page is visited during a ses-
sion [1], we assign to each edgeE a weight computed as:

Wij = Nij/max{Ni, Nj} (1)

where Nij is the number of sessions containing both
pagesi and j, Ni andNj are respectively the number of
sessions containing only pagei or pagej. Dividing by the
maximum between single occurrences of the two pages has
the effect of reducing the relative importance of links in-
volving index pages. Such pages are those that, generally,
do not contain useful content and are used only as a starting
point for a browsing session. Index pages are very likely to
be visited with any other page and nevertheless are of lit-
tle interest as potential suggestions. The data structure we
used to store the weights is an adjacency matrixM where
each entryMij contains the valueWij computed according
to Formula 1.

In order to manage large Web Sites that may require
an adjacency matrix that exceeds the maximum available
memory, we adopted a LRU-based strategy to store inM
only those pages that have been recently accessed by some
users. Obviously at some point, a requested page might not
be present inM (nor in L). Therefore, it must be inserted
into M (andL) by replacing the entry related to the least
recently accessed page. Therefore, a data structure, called
LRU map that maps the univocal page identifiers to en-
tries of both the matrixM and the clustering structureL is
adopted.

Clustering Algorithm. As in the previous version,
SUGGEST 3.0finds groups of strongly correlated pages by
partitioning the graph according to its connected compo-
nents. In Algorithm 2 the steps performed in this phase are
presented.SUGGEST 3.0actually uses a modified version
of the well known incremental connected components algo-
rithm [12]. Starting fromu a Depth First Search (DFS) on
the graph induced byM is applied to search for the con-

Internal state:

• The matrixM representing the current adjacency matrix for the
site;

• The listL of clusters;

• The listPageWindows indexed by session identifiers.

• The mapping functionLRU map used map page identifiers to
entries ofM andL.

Input : The URLu of the requested page.
Output : A list S of suggestions containing URLs considered important
with respect to the detected user session.

page idu = Identify Page(u);
� Retrieves the identifier of the URLu by accessing atrie built on top of all of the URLs considered.

updateLRU(LRU map, page idu);
� Performs the update of the LRU-based mapping structure.

session id = Identify Session();
� Retrieves the session identifier by using cookies.

page idv = Last Page(session id);
� Returns the page the user is coming from in the current session.

updateLRU(LRU map, page idv);
PW = PageWindows[session id];
� Retrieves theP ageW indow identifier by using the current session identifier.

if (!Exists(page idu, page idv , PW) then
� Exists returns true iff the pair (u,v) is already present inP ageW indows[session id].

M [LRU map[page idu], LRU map[page idv]]++;
if ((Wuv > minfreq) & (L[LRU map[page idu]] 6=
L[LRU map[page idv]])) then

MergeCluster(L[LRU map[page idu]],
L[LRU map[page idv]]);
� Merges the two clusters containingu and v.

end if
M [LRU map[page idu], LRU map[page idu]]++;
New L = Cluster(M , L, LRU map[page idu]); � Updates the knowl-

edge base.

L = New L;
end if
Push(u, PW);
S =CreateSuggestions(PW , L, LRU map[page idu]);� Generates the

list of suggestions.

return (S);

Algorithm 1: The operations performed bySUGGEST 3.0.

nected component reachable fromu. Once the component
has been found,SUGGEST 3.0checks if there are any nodes
not considered in the visit. If so, it means that a previously
connected component has been split, and therefore, it needs
to be identified. To do this the DFS is again applied by
starting from one of the nodes not visited. In the worst case,
when all the URLs are in the same cluster, the cost of this
algorithm will be linear in the number of edges of the com-
plete graphG. To reduce the contribution of poorly repre-
sented link, the incremental computation of the connected
components is driven by two threshold parameters. Aim of
these thresholds is to limit the number of edges to visit by:

1. filtering thoseWij below a constant value, called
minfreq. ElementsMij of M (i.e. links between
pair of pages) whose values are less thanminfreq are

poorly correlated and thus not considered by DFS al-
gorithm;

2. considering only components of size greater than
a fixed number of nodes, namelyminclustersize.
All the components having less thanminclustersize
nodes are discarded because considered not significant
enough.

In general, the incremental connected component prob-
lem can be solved using an algorithm working in
O (|V | + |E|A) time, whereA = α (|E|, |V |) is the inverse
of the Ackermann’s function3. This is the case in which we
have the entire graph and we would incrementally compute
the connected component by adding one edge at a time. Our
case is slightly different. In fact, we do not deal only with
edge addition but also with edge deletion operations. More-
over, depending on the value chosen forminfreq, the num-
ber of clusters and their sizes will vary, inducing a variation
in the number of edges considered in the clusters restructur-
ing phase.

Suggestions Building.After the clustering step,SUG-
GEST 3.0has to construct the suggestions list for the cur-
rent user request. This is done in a straightforward manner
by finding the cluster that has the largest intersection with
the PageWindowrelated to the current session. In Algo-
rithm 3 the steps performed in this phase are presented. The
final suggestions are composed by the most relevant pages
in the cluster, according to the order determined by the clus-
tering phase. The cost of this algorithm is proportional to
thePageWindowsize and thus is constant (O(1)).

4 Suggest Evaluation

Measuring the performances of recommendation sys-
tems poses more than one problem. It is difficult to charac-
terize the quality of the suggestions obtained and to quantify
how useful the system is. In order to evaluate both the effec-
tiveness (i.e. the quality of the suggestions) and efficiency
(i.e. overhead introduced on the overall performance of the
Web server) ofSUGGEST 3.0several tests were conducted.

All tests were run on a processor Intel Celeron 2,4
GHz with 256 MBytes of RAM, an ATA 100 disk with
30 GBytes, and operating system Linux Suse 8.2 (kernel
2.4.20).

TheSUGGEST 3.0effectiveness was evaluated by using
a performance parameter we introduced in [13]. Such pa-
rameter was based on the intersection of real sessions with
the corresponding set of suggestions. For every sessionSi

composed byni pages there is a set of suggestionsRi, gen-
erated by the module in response to the requests inSi. The
intersection betweenSi andRi is:

3Since Ackermann’s function grows extremely fast, its inverse is a very
slowly growing function.

Internal state:

• The mapping functionLRU map used map page identifiers to
entries ofM andL.

Input :

• The matrixM .

• The clustering structureL. L[i] = c iff the page identifieri is
assigned to the clusterc.

• The page identifieru.

Output : An updated clustering structure.

ret val = L; clust=L[LRU map[page idu]];
C = {n ∈ [1..|L|] | L[n] = clust};
� C is the set containing all the nodes of the cluster identified byclust.

h = pop(C); � Extracts the first element from C.

ret val[h] = h; � Setsh equal to the cluster identifier for h.

clust = h;
F = ∅;
while h 6= NULL do

for all (i ∈ C s.t. Whi > minfreq) do
remove(C,i); � Removes the nodei from the setC.

push(F ,i); � Inserts the nodei into F .

retval[i] = clust; � Assigns the nodei to cluster clust.

end for
if F 6= ∅ then

h = pop(F);
else

if (C 6= ∅) then
h = pop(C);
clust = h;

else
h = NULL;

end if
end if

end while

return (ret val);

Algorithm 2: The clustering phase: Cluster(M , L,
LRU map[page idu]).

ωold
i =

| {p ∈ Si| p ∈ Ri} |
ni

(2)

With this measure we are not able to capture the potential
impact of the suggestions on the user navigational session.
For example, if a page that the user would visit at the end of
the session is instead suggested at the beginning of the ses-
sion, the suggestion in this case could help the user finding
a shorter way to what she/he is looking for. Therefore we
extend expression 2 taking into account the distance of the
suggestions generated with the actual pages visited during
the session.

For every user sessionSi, we split the session into two
halves. The first halfS1

i is used to generate a set of sugges-
tionsR1

i , the second half is used to measure the intersection
with the suggestions. For every pagepk that belongs to the
intersectionS2

i ∩R1
i and appears in positionk within S2

i , we

Internal state:

• The mapping functionLRU map used map page identifiers to
entries ofM andL.

Input :

• ThePageWindow related to the current session.

• The clustering structureL. L[i] = c iff the page identifieri is
assigned to the clusterc.

• The page identifierpage idu.

Output : A list of URL identifiers.

clust= 0; max rank= 0; ret val = ∅;
for (i = 0; i < |PageWindow|; i++) do

rank[i] = |{n ∈ PageWindow| L[n] = L[PageWindow[i]]}| + 1;
� If the number of nodes shared by thePageWindowand the cluster is maximum and if the size of the

cluster containingPageWindow[i] is larger than minclustersize.

if ((rank[i] > max rank)
&(|{n ∈ L | L[n] = L[PageWindow[i]]}| > minclustersize))
then

max rank = rank[i];
clust=L[PageWindow[i]];

end if
end for
C = {n ∈ L | L[LRU map[page idu]] = clust};
� Returns the page which have not been visited before.

for all (c ∈ C) do
for (i = 0; i < NUMSUGGESTIONS; i++) do

if ((c /∈ PageWindow) ∨(Wcu < Wu,ret val[i])) then
push(ret val,i); ret val[i] = c;

end if
end for

end for
return (ret val);

Algorithm 3: The suggestions building
phase: CreateSuggestions(PageWindow, L,
LRU map[page idu]).

add a weightf(k). We choosef so that more importance is
given to pages actually visited at the end of the session.

A different form forf could have been chosen. For ex-
ample to have the save coverage measure as used in [8] it
is sufficient to takef(k) = 1, or any constant value. For
instance, it is also possible to increase the importance of the
pages non linearly by takingf(k) = k2.

In conclusion, for the whole session log, the measure of
the quality of the suggestions is given by

Ω =
NS∑
i=1

∑ni/2
k=1 [[pk ∈ {S2

i ∩ R1
i }]]

f(k)
F

NS
(3)

whereNS is the number of sessions and[[expr]] is the
truth function equal to 1 ifexpr evaluates to true, 0 other-
wise.F is simply a normalization factor on the weights, i.e.
F =

∑ni/2
j=1 f(j).

We choose to takef(k) = k assuming, in this way, that
the weights assigned to pages into the session increase lin-

Dataset Time window Ns

NASA 27 days 19K
USASK 180 days 10K
BERK 22 days 22K

Table 1. Access log files used to measure the
suggestions quality.

early when the position occupied into the session increase.
To evaluate theSUGGEST 3.0effectiveness experimen-

tal evaluation was conducted by using three real life access
log files of public domain4: Berkeley, NASA, USASK, pro-
duced by the Web servers of the Computer Science Depart-
ment of Berkeley University, Saskatchewan University and
Kennedy Space Center, respectively. The characteristics of
the datasets we used are given in Table 1. For each test
we generated requests to an Apache server runningSUG-
GEST 3.0and recorded the suggestions generated for every
navigation session contained within the access log file con-
sidered.

For each dataset we measuredΩ varying theminfreqpa-
rameter. Figure 1 shows the results obtained. Moreover, we
also plotted the curve relative to the suggestions generated
by a random suggestion generator (labelled rnd in Fig. 1).
As it was expected, the random generator performs poorly
and the intersection between a random suggestion and a real
session is almost null. On the other hand, suggestions gen-
erated bySUGGEST 3.0show a higher quality, that, in all
the datasets, reaches a maximum forminfreq=0.2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

Ω

minfreq

NASA
BERK

USASK
rnd

Figure 1. Coverage of suggestions for the
NASA, BERK, USASK access log files, vary-
ing minfreq.

For low values of theminfreqparameter, good values are
obtained for the quality of the suggestions.

In order to evaluate the overhead introduced bySUG-
GEST 3.0on the overall performance of the Apache Web
server we conduced the experimental evaluation using a
“clone” (i.e. the same structure and pages) of the Web site

4www.web-caching.com

of the Computer Science Department of Berkeley Univer-
sity. To this end the Apache’sab5 benchmarking tool was
used. ab is able to carry out how many user requests the
server performs per second. In all the tests100, 000 user
requests were performed, and the number of requests per-
formed per second was changed by varying the number of
requests simultaneously issued. The three lines in the fol-
lowing graphs refer to standard Apache, Apache using the
SUGGEST 3.0, and to Apache using theSUGGEST 2.0.

In Figure 2, we plotted the execution time (expressed
in milliseconds) that a Apache process spends to satisfy an
HTTP request. We vary the degree of concurrency by sub-
mitting an increasing number of requests to the server.

Mean execution time

0
10
20
30
40
50
60
70
80
90

100

10 30 50 70 90 110
Simultaneous requests count

Ex
ec

ut
io

n
tim

e
(m

s)

Apache
Suggest 2.0
Suggest 3.0

Figure 2. Apache response time with and
without the SUGGEST module.

In all the three cases, as the number of concurrent re-
quests increases the request response time increases propor-
tionally. It is due to the mutual exclusive accesses to shared
memory areas by the Apache processes. However, the over-
head introduced bySUGGEST 3.0is relatively limited, and
it obtains good performance also when a high number of
requests is performed.

Figure 3 shows the number of HTTP requests served per
second. In all the tests,SUGGEST 3.0obtained perfor-
mance close to those obtained by the Apache server, and
better than those obtained bySUGGEST 2.0.

The performance improvement obtained bySUGGEST
3.0 is due to a better usage of the data structures. Both
the versions use atrie (a data structure with logarithmic ac-
cess time in the number of its elements) to index the Web
pages.SUGGEST 2.0was usable only on Web sites with an
a priori known number of pages (i.e. elements to index),
and, therefore, with a fixed page access time. Instead, since
SUGGEST 3.0is able to manage Web sites with dynamic
pages it will obtain the performance similar to those obtain-
able bySUGGEST 2.0on the same site when the number of
accessed pages reaches its maximum value.

These experimental results show that the impact ofSUG-
GEST 3.0on the Web server is relatively limited, both in

5http://httpd.apache.org/docs/programs/ab.html

Throughput (satisfied requests per second)

0

200

400

600

800

1000

1200

1400

1600

10 30 50 70 90 110
Number of simultaneous requests

R
eq

/s Apache
Suggest 2.0
Suggest 3.0

Figure 3. Apache throughput with and without
the SUGGEST module.

terms of throughout and in terms of the time need to serve a
single request. This limited impact on performance makes
SUGGEST 3.0suitable to be adopted in real life production
servers.

5 Conclusions

In this work we have presented a new WUM recom-
mender system, calledSUGGEST 3.0, that is able to dy-
namically generated personalized content in order to make
easier the Web user navigation. The proposed system is
composed by a single component, tightly integrated with
the Apache Web server. It is based on an incremental proce-
dure, that is able to update incrementally and automatically
the knowledge base obtained from historical usage data and
to generate a list of links to pages (suggestions) of poten-
tially interest for the user. The suggestions are used to per-
sonalizeon-the-flythe HTML page requested. The adoption
of a LRU-based algorithm to manage the knowledge base,
permits us to use our system also on Web sites that exploit
pages dynamically generated (i.e. Web site made up of a
not fixed number of pages). Experimental results show that
SUGGEST 3.0is able to generate valid suggestions with a
limited overhead on the Web server. Moreover, the exploita-
tion of the suggestion can lead to reduce the average session
length improving the performance of the Web server.

As future work we are planning to evaluateSUGGEST
3.0 when running on real Web sites. Moreover, we are
going to extend the suggestions creation phase by finding
the most ”interesting” pages among those present in the se-
lected cluster. This ”interestingness” property should be
evaluated by computing a sort of PageRank value of the
pages in a Web site. To this end we think to extend the
classical PageRank algorithm [10] to evaluate the page rel-
evance using both the information about the site linkage
structure, and the information extracted from the historical
Web usage data (i.e. in our case stored in the adjacency
matrixM).

6 Acknowledge

The authors would like to thank Paolo Palmerini who
originally developed the seminal ideas on Suggest. Next,
we thank Paolo Nicolai, Iliano Riccardi, and Massimo Ser-
rańo for the contribution given to develop this project during
their master thesis work.

References

[1] R. Baraglia and P. Palmerini. Suggest: A web usage mining
system. InProc. of IEEE Int’l Conf. on Information Tech-
nology: Coding and Computing, April 2002.

[2] M. Deshpande and G. Karypis. Item-based top-n recom-
mendation algorithms.ACM Trans. on Information Systems,
22(1):143–177, January 2004.

[3] R. Kosala and H. Blockeel. Web mining research: A survey.
ACM SIGKDD, 2(1):1–15, July 2000.

[4] E. Magdalini and M. Vazirgiannis. Web mining for web per-
sonalization. ACM Trans. on Internet Technology, 3(1):1–
27, February 2003.

[5] B. Mobasher, R. Cooley, and J. Srivastava. Automatic per-
sonalization based on web usage mining.Communications
of the ACM, 43(8):142–151, august 2000.

[6] B. Mobasher, N. Jain, E.-H. S. Han, and J. Srivastava. Web
mining: Pattern discovery from world wide web transac-
tions. TR 96-050, University of Minnesota, 1996.

[7] M. D. Mulvenna, S. S. Anand, and A. G. Buchener. Person-
alization on the net using web mining.Communication of
ACM, 43(8), 2000.

[8] M. Nakagawa and B. Mobasher. A hybrid web personaliza-
tion model based on site connectivity. InProc. of WebKDD,
pages 59–70, 2003.

[9] O. Nasraoui and C. Petenes. Combining web usage mining
and fuzzy inference for website personalization. InProc. of
WebKDD, pages 37–46, 2003.

[10] L. Page, S. Brin, R. Motwani, and T. Winograd. The Pager-
ank Citation Ranking: Bringing Order to the Web. Technical
report, Stanford University, 1998.

[11] M. Perkowitz and O. Etzioni. Adaptive web sites: Concep-
tual cluster mining. InInt’l Joint Conf. on AI, pages 264–
269, 1999.

[12] J. G. Siek, L. Lee, and A. Lumsdaine.Boost Graph Library,
The: User Guide and Reference Manual. Addison Wesley
Professional, 2001.

[13] F. Silvestri, R. Baraglia, P. Palmerini, and S. M. On-line gen-
eration of suggestions for web users. InProc. of IEEE Int’l
Conf. on Information Technology: Coding and Computing,
April 2004.

[14] R. Thau. Design considerations for the Apache Server API.
Computer Networks and ISDN Systems, 28(7–11):1113–
1122, 1996.

[15] K.-l. Wu, P. S. Yu, and A. Ballman. Speedtracer: A web
usage mining and analysis tool.IBM Systems Journal, 37(1),
1998.

[16] T. W. Yan, M. Jacobsen, H. Garcia-Molina, and D. Umesh-
war. From user access patterns to dynamic hypertext linking.
Fifth International World Wide Web Conference, May 1996.

