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Abstract 
 
This paper deals with an analytical model for the steady-state temperature mapping of electronic devices and system 
boards. It is devoted to solid structures which can be schematically modelled as a stack of several homogeneous layers 
of different materials and different sizes, also with various degree of asymmetry, and with two-dimensionally 
distributed heat generations. This mathematical model was implemented to replace conventional finite-elements (FEM) 
thermal simulators for fast thermal mappings, accurate within 1% and able to run in interaction with electrical and 
electro-thermal automatic design tools. His convenience in terms of speed and calculation amounts is due to the 
required 2-D meshing grids only at the interfaces instead of 3-D. The implemented thermal simulation program was 
validated by comparing the results of some virtual samples with the corresponding temperature and heat flux maps 
obtained with the FEM analysis. The amount and the origin of the error percentages with respect to the FEM analysis 
were also investigated as a functions of the free input parameters of the model. 
 

 
 
 

Introduction 
 

The thermal analysis of electronic devices and circuits 
and their packaging structure can be usually performed 
using the finite-element based (FEM) thermal 
simulation, which is a general purpose, widely used and 
reliable tool also for complex three-dimensional 
structures. As known, it is based on the discretisation of 
the thermal conduction equations within a close net of 
solid elements. Therefore the FEM analysis needs a 3-D 
meshing of the solid system, which generally is not 
uniform, so that the model preparation for optimum 
results may be complex and overall it requires some 
qualified capabilities by the operator. 

Furthermore the heat conduction dissipation 
properties of a system are usually due to both the device 
package, assembled by the device manufacturers, and to 
a second part assembled by the user or the system 
producer. Therefore the maximum temperature within 
the devices is caused by two designing steps realized by 
different industrial subjects, which generally may use 
different thermal analysis methodologies with different 
accuracy. Instead the importance of the thermal problem 
from  the reliability point of view, not only for the  

 
FIG.1 : Planar device with its stacked assembling 
 
electronic device and system producer but also for the 
manufacturing users, would require less expensive, less 
time consuming and more easily programmable thermal 
simulation tools in order to perform fast and equally 
reliable analyses. 

Most of electronic assemblies (both devices and 
boards), especially for high and very high power 
handling, can be described by simple structures consisting 
of stacks of homogeneous layers of different materials 
and dimensions, directly connected by means of thin 
soldering or attaching layers. The power dissipation may  



 
FIG.2 : Exploded cross-section of a stacked mounting 
and its heat generation and resistive elements. 
 

 
FIG.3 : Thermal parameters in the single-slab case. 
 
be assumed as two-dimensional on one or more 
interfaces and with the bottom side generally connected 
to a constant temperature heat sink, directly or through a 
thermal convection coefficient. These structures, quite 
similar to an asimmetric step pyramid, are shown in the 
Fig. 1 as a perspective view. 

If the above simple geometrical configuration is 
suitable to represent the whole assembling structure, the 
steady-state thermal simulations may be performed 
using dedicated mathematical models with explicit 
analytical relationships [1] which can be implemented in 
faster and easily programmable simulation tools. 

The analytical approach to the thermal problem has 
in general the following advantages with respect to the 
conventional FEM analysis. As it will be shown later, 
the analytical model can operate with a 2-D 
rectangular meshing at the interfaces instead of 3-D 
volumetric meshing. This implies a decrease of the 
number of the unknown variables, therefore leading to 
a shorter computing time. Furthermore, all the 2-D 
interface grids may be uniform, i.e. composed by 
square cells with the same area, so that the pre-
processing procedure and the model construction can 
be fully automatic. All these properties make the 
analytical simulation tool suitable to interact with CAD 
programs for the design of both electronic devices and 
system assemblies.  
Another important feature is that this tool, thanks to its 
speed and reduced complexity, is particularly suitable 
to be used as a thermal solver in cyclic electro-thermal 
simulation programs based on the mutual interaction 
between the device electrical characteristics and the 
temperature distributions. A typical situation needing 

this type of tool is the so-called ‘hot-spot’ phenomenon 
occurring in high power bipolar transistors [2,3]. 

In this communication, an analytical thermal 
simulation tool for the steady-state of electronic systems 
is presented. In the following it will be addressed as 
DJOSER model. It can be used for planar electronic 
systems and it is able to well represent a wide range of 
electronic assembling configurations such as integrated 
circuits encapsulated in power packages, flip-chip or 
BGA mounted devices, hybrid circuits, multi ‘naked’ 
chip assemblies, printed electronic boards assembled in 
surface mounting technology or on multi-layer metal 
interconnecting substrates. The condition needed is that 
the active power dissipation must be two-dimensional, 
not volumetric, and must be located at the top surface or 
at an interface between two layers. At present, this 
hypothesis can be taken in the most practical cases of 
electronic industry. Buried power generations within the 
body of a die may be modelled by dividing the single 
slab into two or more layers. 

However this model cannot be used, or could be only 
roughly approximated, when the slabs or the interfaces 
do not have uniform thermal properties on the horizontal 
plane or there are some localized dissipating details, as 
for instance vertical dissipaters, the external pins of an 
encapsulated integrated circuit, or when the layers in the 
structure are not homogeneous or their thermal 
conductivity depends on the horizontal position. An 
example is the presence of large thermal vias, usually tin 
filled, connecting two metal planes in multi-layer metal 
interconnecting substrates. In the following sections the 
mathematical background of the model is briefly 
presented and the results of thermal simulation runs on 
some virtual test structures are shown in comparison 
with those obtained using the standard FEM analysis. 
The error differences between the two methods are 
shown as a function of the input simulation parameters. 
The main goal of the present work is to achieve thermal 
evaluation mapping within an accuracy of 1%. 
 
 
Theory 
 

Fig. 2 shows the physical structure of a stacked 
assembly with all the thermal elements taken into account 
by the DJOSER model. This structure looks like a 
rectangular step pyramid with any degree of asymmetry 
and with the base in contact with a constant temperature 
heat sink. ‘Step pyramid’ means that the lateral sizes of 
each layer must be larger or equal to those of the layer 
above and smaller or equal to the sizes of the layer below. 
Each slab is thermally homogenous and isotropic and may 
be considered thermally insulated both on the lateral 
vertical surfaces in contact with the environment and on 
the top surface not directly connected with the layer 
above. The thick lines between two adjacent layers in Fig. 
2 have the following meanings. The continuous lines 
marked with the label R* indicate the presence of a zero-
thick distributed thermal resistance per unit area (its value 
is set to zero in the case of not resistive interface), 
expressed in K/m2W as the reciprocal of a heat transfer 

 



coefficient and whose value is uniform over the whole 
interface area. This parameter is able to take into 
account the thermal effect of soldering or attaching 
layers which are much thinner than the bulk material 
slabs. The thermal resistance at the bottom of the lower 
layer may be also used to take into account an eventual 
convection heat exchange with the bottom environment. 

The dashed lines marked with the label p(x,y) and 
p*(x,y) represent top or internal active heat generation 
densities located at any interface, with any continuous 
distribution or arranged in clusters or heating islands. 
p(x,y) are the heat generations placed below the contact 
thermal resistance, while p*(x,y) are placed above it. 
This second type of heating power density can 
represent, for instance, the case of a silicon die mounted 
in flip-chip configuration, in which the electrical power 
is dissipated on the bottom side of the die, just above the 
thin underfilling layer. 

The problem of heat conduction corresponding to the 
above-defined boundary conditions is the calculation of 
the temperature and heat flux distributions at all the 
interfaces between the layers under the steady-state 
regime. The resolution of this problem, which is 
practically an extension and an improvement of other 
models cited in literature [4,5], is based on the 
resolution of the single slab whose cross-section is 
shown in Fig. 3. Its thermal steady-state regime is ruled 
by the following set of linear equations holding under 
the hypothesis of adiabatic lateral walls:  
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where T is the temperature, k is the thermal 
conductivity, the functions q (x, y) e T (x, y) are the top 
heat flux and the bottom temperature respectively, R* is 
the contact distributed thermal resistance between this 
slab and the lower one. The functions p(x,y) e p*(x,y) 
are also drawn in the Fig. 3. The single slab solution can 
be obtained by means of the variable separations and 
superposition techniques, so that the upper temperature 
at z=0 and the heat flux at z=L

ˆ ˆ

z are expressed by the 
two following integral relationships: 
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The spatial functions G(x’,y’|x,y) are Green functions 
consisting of double harmonic Fourier series [6]. Using 

the coordinates system shown in Fig. 3, the G functions 
are just cosine and may be defined as follows : 
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where Cij(n,m) are suitable coefficients containing the 
geometrical data of the layer, its thermal conductivity 
and the eventual bottom contact thermal resistance. The 
eigenvalues are given by:  
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Furthermore, the following relation holds:  
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If we turn back to the case of a multi-layer step 
pyramid, it is quite evident that for a single slab of the 
stack the functions q (x, y) and T (x, y) are not really 
known, being the thermal flux coming from the above 
layer and the temperature distribution of the contact area 
with the lower layer respectively. Obviously in the top 
layer of the stack the heat flux is known and it is 
represented by the function p(x,y), while the 
corresponding (x, y) is zero. On the other hand the 
temperature (x, y) at the bottom of the lowest layer is 
still known and corresponds to the assigned heat sink 
temperature. Therefore the set of relations (2) and (3) for 
all the layers are an integral system with 2(Ns-1) 
equations and 2(Ns -1) unknown variables, Ns being the 
number of slabs belonging to the whole structure. This is 
the mathematical core of the DJOSER model. 

ˆ ˆ

q̂
T̂

However, since all the thermal functions are 
continuous and spatially two-dimensional, the real 
implementation of the method requires the use of 
suitable numerical approximations. In equations (2) and 
(3), by substituting the Green functions with their 
expression in (4), all the terms of the sums in the second 
members can also be re-written in the following form: 
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where Φ(n,m) is given by 
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Here the function Φ(x,y) indicates any of the four 
involved functions p(x,y), R*p*(x,y), q(x,y) and T(x,y). 

The double integrals in equation (8) and (2-3) must be 
practically calculated by means of two dimensional 
quadrature formulas. This implies that all the interfaces of 

 



the structure must be divided into regular two-
dimensional grids of cells and the continuous functions 
must be known by means of their values in a rectangular 
grid: each value (Φi) is relative to the centre of a single 
cell or to one of its corners depending on the type of 
quadrature formula chosen. Therefore, equation (8) can 
be approximated by 
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where N is the total number of cells and B(n,m) is a 
coefficent which depends on the type of quadrature 
formula. In particular, if the numerical approximation of 
the functions is the rectangular one (the function is 
constant within the cells having 2a and 2b sizes), eq. 9 
becomes: 
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where xi and yi are the coordinates of the centre of the 
cells. 

Using these approximations, the system of equations 
given by (2) and (3) for the single slab case can be re-
written in a compact form as follows which gives the 
temperature values at z=0 and the flux at z=Lz in any 
point of the two surfaces respectively. 

 

 
where N and M are the total number of grid values in 
the top and bottom surface respectively. The functions 
ψj, φb, φj and ωb are defined by the following relations 
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Here the indices j and b mean that the integrals are 

done on the upper and lower surfaces respectively. 
In the case of a multi-layer structure we can build a 

set of interlaced equations similar to those in (11), 
where the temperatures and fluxes are evaluated in the 
coordinates of the cell grids in every interfaces. 
Therefore this set of equations constitutes a large linear 
system where the unknown data to be found are all the 

values of temperature and fluxes in the cells while the 
known data are all the heat generation densities data, the 
heat sink temperature distribution at the bottom of the 
structure and the heat flux data at the top surface of the 
first layer which corresponds to the top heat generation if 
the heat convection exchange is disabled. Therefore the 
total number Ne of equations and unknown variables is 
given by the following relationship: 
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where Ns is the number of layers of the structure and 
nx(s) and ny(s) are the arrays containing the lateral 
dimensions of the interface cell grids. 

The resolution of the linear system yields the 
knowledge of the temperatures and fluxes at the 
interfaces only within the point grids defined by the 
cells. However the temperature and fluxes mapping in 
any point of the interfaces may be achieved using eq. 
(11) with any resolution. 

The errors in the temperature and flux evaluation are 
due to the two main numerical approximations. The first 
source is due to the truncation error of the double sums 
in eq. (12-15) which can be evaluated only for a finite 
number of eigenvalues. In the present study we used a 
square set of eigenvalues, being Nnm a free parameter 
indicating the maximum number of the indices n an m 
used for the x-axis and y-axis eigenvalues respectively. 

 The second source of error is related to the quadrature 
approximation of the continuous temperature and flux 
functions and it depends on both the degree of 
quadrature chosen and on the cell densities in which the 
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In the following sections the rectangular quadrature 
approximation was used, beside the Cavalieri-Simpson 
formulas may also be used in order to decrease the 
number of cells, the system matrix dimensions and 
hence the calculation time. 

Beside the DJOSER model is here solved under the 
hypothesis of adiabatic surfaces; nevertheless it can be 
also used in presence of a convective heat exchange with 
a given environmental temperature, but only if the 
convection occurs on the horizontal surfaces in contact 
with the environment. The lateral sides must be still 
taken as adiabatic, otherwise the problem becomes again 
3-D. 

The contribution of the heat convection exchange may 
be implemented in the following iterative way. In the 
first step the structure is considered adiabatic and the top 
conduction flux is equal to the heat generation densities 
at the top surface or on the uncovered surfaces. The top 
temperature values are calculated in the standard way. 
The knowledge of these data and of the environment 
temperature allows to calculate the convection fluxes. 
They are subtracted to the top heat generations in order 
to set the new input conduction thermal fluxes. 

 



 
FIG.4 : Surface grid, power distribution (upper left) and cross-sections of the three samples. 

 
 

The linear system is solved again with the new 
boundary conditions. Note that the coefficients of the 
system matrix do not depend on the flux and 
temperature boundary conditions so that there is no need 
to recalculate the matrix. This procedure, which easily 
converges for usual heat convection coefficients, must 
be stopped when the top temperatures reach stable 
values. 
 
 
Test samples 

 
The DJOSER analytical simulation program, 

implemented in MATLAB 5.0, was tested on a 
purposely-designed multi-layer model representing an 
almost typical assembling structure of a packaged 
power electronic integrated chip. The geometrical and 
thermal conductivity data of the main sample model 
(Q0) are shown in the table I. 
 

TABLE I : Numerical data for the sample Q0. 
LAYER k (W/m°C) Lx (mm) Ly (mm) Lz (µm) 
Silicon 135 6.2 4.4 500 
Silver 419 9 7 200 
Alumina 24 14 10 500 
Copper 386 30 24 2000 

 
This structure was designed with a sequence of high 

and low thermal conducting layers in order to test the 
effects of the different heat flux spreading capabilities 
induced by different thermal conductivities. The first 
layer is a rectangular silicon die; the top heat 
generation density (total power 17.4 W) is organized in 
square islands, each having its own uniform power 
density. The whole silicon surface was divided into a 
grid of 31x22 square cells, 0.2 mm wide. The other 
layers are a thin and narrow silver conductive film, an 
insulating alumina slab and a wider copper base acting 
as a heat-spreading submount. All the top and lateral 
surfaces were supposed to be adiabatic except the 
bottom one which is in contact with an ideal heat sink 

whose temperature was set constant to the value of 0 °C. 
The other models used for the test simulations were 
obtained by increasing the thickness of the insulator 
layer (P0) or inserting a large degree of asymmetry 
between the layers (Q3). This last geometrical 
configuration was also used in order to observe the 
effects on the top temperature distribution of different 
properties of the lower layers representing the packages 
or the heat spreaders. Fig. 4 shows the top dissipating 
power distribution on the clusters and the structure of the 
basic axisimmetrical model Q0 and the other samples . 

In order to establish a reference for the DJOSER result 
validation, all the designed models were also simulated 
using the standard and consolidated finite element 
method performed using the program MARC and the 
pre-post-processor MENTAT, both by Mac Neal 
Schwendler Comp. The FEM simulations were carried 
out using a very dense 3-D meshing grid, (more than 
64000 nodes) in order to avoid as much as possible the 
temperature and flux calculation error with respect to the 
reality. As an example, the silicon and the silver layers 
have been modelled using cubic elements with a side 
length of 0.1 mm, the half of that used by the analytical 
simulator DJOSER. 

 
 

Temperature mapping results 
 
Simulation results:  

 
The results of the temperature mapping performed 

using the DJOSER program are shown in Fig. 5. Here the 
temperature maps on the top silicon layer for the samples 
Q0, P0 and Q3 are shown in the same colour scaling. 
Furthermore, Fig. 6 shows the comparison among the 
temperature plots of the three samples along the two cross 
sections shown in Fig. 5 and crossing the points where the 
higher temperature values occur. As can be seen, the plots 
in fig. 6 show quite different temperature distributions for 
the three samples, despite they were obtained with the 
same heat generation. These differences are  due  and are 

 



 
FIG. 5 : Surface temperature maps for the three samples 
drawn with the same grey color scaling. 
 

 
FIG. 6 : Surface temperature plots along the cross 
sections in the top of Fig. 5 for the three samples. 
 
perfectly consistent with the different geometrical 
configurations of the layers below the silicon die acting 
as heat spreaders. In fact, P0 shows a temperature 
distribution which is quite the same of Q0, but increased 
by a factor greater than one due to the double thickness 
of alumina, which is the most thermal resistive layer of 
the stack. The plots of Q3 show not only an increase 
with respect of Q0 but also a deformation. In this case 

the distortion of the temperature field is quite evident in 
the left lower corner of the Q3 map in Fig. 5. The 
different heat flux displacement across the layers is 
caused by the large asymmetry of the structure which is 
responsible for this different behaviour. In fact, the 
location of the upper power source at a corner of a slab, 
practically avoids the lateral spreading of the heat flux, 
thus increasing here the upper temperature because of the 
higher flux concentration. The showed examples testify 
how the thermal simulation system is well sensitive also 
to the package geometrical configuration. In Fig. 7 the 
temperature and heat flux maps at all the interfaces of 
sample Q0 are also shown in normalized grey scale. 

 
 

Comparison with the FEM method:  
 
The accuracy of the DJOSER thermal simulation was 

verified by comparing the silicon surface temperature 
data with those obtained from the FEM thermal analysis. 
This comparison is here presented in terms of relative 
error percentage plots, shown in the Fig. 8, referred to 
the maximum temperature within the corresponding 
FEM maps and along the same two orthogonal cross-
sections shown in the Fig. 5. All the errors data were 
obtained by subtracting the temperature values 
calculated by the DJOSER model in the same nodes of 
the FEM grid. As can be seen, the error percentage is 
everywhere within the 1% limit which is just the main 
goal of the present simulation model.  

Despite this good results, it is still necessary to study 
the accuracy of the model as a function of the simulation 
parameters and consequently of the calculation time. 

 
 

Simulation error discussion 
 
The evaluation error on the top surface temperature 

maps is mainly caused by two different factors: i) the 
truncation approximation on the infinite harmonic series 
included in the integral system coefficients (see 
equations 4 and 12-15) and ii) the quadrature of the 
temperature and flux functions within the inner surfaces 
needed for the integral evaluations. 

As far as the first cause is concerned, the relationships 
(12-15) are double infinite harmonic series defined by a 
two-dimensional unlimited array of eigenvalues βn and 
µm. These series are typically slowly convergent and the 
truncation error function has generally a decreasing but 
irregularly oscillating behaviour. In the present case 
these series were calculated for square matrices of 
eigenvalues whose side is defined by the number Nnm. 
This parameter, which must be separately and differently 
set for each layer of the structure is one of the free input 
data of the simulation model. In order to show the 
typical error behaviour induced by this factor, the 
temperature error percentage was calculated for a wide 
range of Nnm in a simpler structure composed by the 
silicon layer of sample Q0 only, with the same power 
distribution, and  where all the  other layers of the stack 

 



 

 
FIG. 7 : Gray-scale maps of temperature (upper row) and heat fluxes (lower row) at the interfaces of sample Q0. 
In each map the color scale is normalized to its own maximum value. The cell grids are traced in the flux maps. 

 
were replaced by a uniformly convective heat exchange 
coefficient of suitable value on the bottom side. This 
model is quite different from the original one and, 
beside it is very faster, generally leads to a worse 
accuracy greater than 6%, due to the lack of information 
about the internal heat flux displacement. However it 
allows us to verify the error function for a single layer 
and in a single point of the silicon surface using a very 
high number of eigenvalues. 

Fig. 9 shows the plots of the error percentage as a 
function of Nnm and calculated in two single points of 
the surface: the centre (curve A) and the border (curve 
B) of the smallest dissipation island. In multi-layer 
cases, the total error in the temperature evaluation is due 
to the superposition of the series truncations in each 
slab. In order to study the cumulative effect on the 
truncation error, many simulation runs were carried out 
on a two-layer structure, composed by a square silicon  

 

 
 

FIG. 8 : Relative error percentage plots of the DJOSER 
simulations with respect to the corresponding FEM data 
along the cross sections of Fig. 5. 

die on a larger aluminium slab (see top of Fig. 10), 
changing the values of the parameter Nnm (equal for the 
two layers) in the range 30-110. The simulations results 
are showed in the Fig. 10 in term of bar diagrams of the 
average absolute error percentage and maximum absolute 
error percentage over the whole silicon surface. As can be 
seen, in the bar diagram the height of the bars is not 
monotonically decreasing with increasing Nnm as 
expected, but it has higher peaks caused by the irregular 
and oscillating nature of the truncation error. Those cases 
probably correspond to the situation in which the errors in 
all the layers have the same sign, so that the algebraic 
averaging effect does not occur. 
The second cause of error in the temperature evaluation is 
due to the discretisation of the 2-D temperature and flux 
functions into a regular matrix of values relative to the 
centre of the cells. The cell sizes influence the accuracy of 
the integral calculations. Furthermore the error due to the 
function discretisation generally depends on the local 
 

 
 

FIG. 9 : Error percentage plots for a single layer structure 
(silicon) as a function of the maximum number of 
eigenvalues per series. A) centre of the smallest cluster; 
B) boundary of the same cluster. 

 



 
FIG. 10 : Average and maximum error for the two-layer 
structure shown above, as a function of the parameter 
Nnm. The total calculation time is also shown. 

 
gradients. The use of a not uniform cell grid, denser 
where high temperature variations occur, may be useful 
to better dominate this error, but in this way the model 
construction and pre-processing would be more 
complicate and the easy preparation advantage of the 
DJOSER model would be lost. On the other hand, the 
decreasing of the number of cells in the interfaces 
without active power dissipation implies the total 
calculation time decreasing. The effect of this second 
type of error can be seen in the Fig. 11, which shows the 
relative error percentage calculated in several runs of 
simulation performed on the same sample. In the 
samples, the number of cells per side (nx=ny) on he 
bottom of the two layers was changed in the range 5-43, 
taking constant the cell density of the top silicon surface 
where the power is dissipated. These second couple of 
bar diagrams show a quite regularly decreasing 
behaviour with increasing cell density except a small 
peak occurred in the middle of the range, perhaps due to 
a sort of resonance with the chosen value of the 
maximum number of the eigenvalues used. 

In the Figs 10 and 11, the plots of calculation times on 
a Pentium 4 (1.5 Ghz) personal computer are also 
reported. However these data cannot be directly used for 
speed performance comparison with the FEM analysis. 
This is because at present the DJOSER program was not 
yet compiled, working as interpreted MATLAB routine 
and further work has to be done in the improvement of 
the programming structure for increasing speed. 
Furthermore  most  (about 75%)  of  the  CPU  time  is 

 
FIG. 11 : Average and maximum error for the two-layer 
structure versus the number of cells per side. The total 
calculation time is also shown. 
 
devoted to the construction of the linear system matrix 
coefficients which do not depends on the boundary 
conditions: In fact, the coefficients matrix can be stored 
and used for other simulations with different heat source 
distributions and boundary conditions. However, taking 
into account an average speed increase due to the 
compilation of the routines and on the basis of a rough 
and provisional estimation, the DJOSER working time is 
about less than 10% of the time used by the FEM 
analysis. The employed memory dimension is also 
reduced by about the same factor. 
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