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Automatic coarse registration of range maps

Andrea Fasano, Paolo Pingi, Paolo Cignoni, Claudio Montani, Roberto Scopigno

Abstract—Range map registration is still the most time steps (range maps acquisition, registration, fusion, geom-
consuming phase in 3D scanning. This is because realetry simplification, color attributes recovery). Solutions
scanning set are composed of hundreds of range mapsfor a completely automatic scanning system have been
and their registratipn is still partially manual. We propose proposed, but either these systems are based on the use
a new method which allows to manage complex scan setsOf complex positioning machinery [13], [4], or adopts

acquired by following a regular scanner pose pattern. The . .
method makes proficient use of some initial considerations silhouette-based approaches which do not guarantee the

and auxiliary data structures, which allow to simplify Nneeded accuracy [27], [29]. An alternative approach is to
the range map registration problem. It is designed as an design new solutions for the classical scanning pipeline
iterative solution, where pairs of correspondent vertices Which would transform those phases into an unattended
are selected through the computation of a regularn x n process. Many innovative and efficient solutions have
kernel which takes into account vertex normals and is been recently proposed for the different phases of the
defined in the 2D space of the range map (representedscanning pipeline and, at present, it is possible to assert
in implicit 2D format rather than as a triangle mesh . the pottleneck of the whole process is represented
in 3D space). The shape-characterization kernel and the by the range maps registratiomhase, since this is the

metrics defined give a sufficiently accurate shape matching, v task wh iderable h int fi .
which has been proven to fit well the requirements of only task where a considerable human intervention 1S

automatic registration. The solution proposed has been Still requested.
tested on a number of complex scanning set and results The accurate acquisition of a real object requires to
are impressively better than previous solutions. take many range maps from different locations. If the
scanner location and orientation are not tracked, all those
range maps are produced in different coordinate spaces
(each one depending on the corresponding unknown
location and orientation of the scanner). The goal of the
range map registration phase thus consists in determining
HE increasing diffusion of 3D scanning deviceshe rigid geometric transformations able to bring back
and the design of new and efficient algorithms faall the coordinates of the acquired data into a unique
range data post-processing are at the base of a prog@asesian space. Registration is the fundamental precon-
where standard CAD tools are going to be replaced bijtion to merge all the data into a single and complete
a semi-automatic process based on the direct sampldigital model. The explicit registration of multiple scans
of real objects’ shape. Moreover, automatic acquisitiaran be simplified or even avoided by adopting different
of shape and appearance is no more confined to teehniques/devices which help in tracking the scanning
classical industrial applications (reverse engineering device (see Section Il). However, these solutions usually
quality control), but it is positively affecting new andincrease the overall cost of the scanner, support an
important fields. In this sense, Cultural Heritage (CHjccuracy which in some cases is much lower than the
is probably one of the most indicative and challengrominal accuracy of the scanning system, or introduce
ing applications. The availability of accurate 3D digitatonstraints on weight and working space which make
models is becoming a demanding requirement for ttieem hard to use in uncontrolled working environments
knowledge, conservation, restoration, and promotion (#.g. acquisitions done in museums or archeological
CH [13], [1], [20], [25], [12], [19]. sites). For these reasons, we are interested in avoiding to
Unfortunately, the creation of a digital 3D model fronmadd gantries or other devices to our standard scanner. Our
reality is still far enough from being as simple as photogoal is to design new solutions to make the alignment
raphy. The user has to manage many complex processifigange maps a nearly automatic process.

The registration of multiple range scans is imple-
Visual Computing Lab, Istituto di Scienza e Tecnologi . o
dell'Informazione (ISTI), Consiglio Nazionale delle Ricerche (CNR;?,nemed by adopting a software approach split in two

Via G. Moruzzi, 1, Pisa, Italy. Contact email: fasano@isti.cnr.it (,:_OmpUtational steps.,.. Ar_‘ initiatoarse registrationpro-
pingi@isti.cnr.it vides a rough positioning of the range maps, and a
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I. INTRODUCTION
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subsequenfine registrationbrings the scans into tightand future work.

alignment. In other words, coarse registration is con-
cerned primarily with determining which regions of

II. PREVIOUS WORK

two scans represent the same portion of the ObJeCtSThe alignment task is the most time-consuming phase

surface (the so called “overlapping”
registration is concerned with minimizing the mismatcn
between these corresponding overlapping regions.

The solutions proposed in the literature for tfiee
local registration (between two scans [2], [14]) fine
global registration (extended to the whole scanning s
[20]) are generally based on unattended iteration of the
ICP technique and by now they ensure performances’
and results extremely good. On the contracgarse
registration represents the real bottleneck. Despite the
number of solutions proposed (see Section Il), most
of the commercial software systems available on the
market implement the coarse registration adopting an
interactive solution; however, this manual process is
time-consuming. According to the experience of the
authors, a complex scanning set composed of some
hundreds of range maps can require some days of
hard and boring work to process the manual coarse
registration phase.

This paper presents an efficient and innovative auto-*
matic solution to the problem of the coarse registration.
With respect to the existing feature-based algorithms
(i.e. the solutions aiming at the heuristic location of
corresponding points in the common parts of the two
scans under examination, see Section Il) our method
presents some innovative aspects which make it par-
ticularly robust and efficient for practical 3D scanning
campaigns. In Section Ill we introduce the strategy
used to register multiple range maps, while Section IV *
contains the details about the alignment algorithm given
two overlapping range maps. The proposed algorithm
originates from the practical need to register hundreds

region), while fm%f the entire 3D scanning pipeline, due to the substantial
ser contribution required by current systems, since
range map registration is usually solved by adopting a
partially manual process. The standard approach is as
follows:

Ebcal pairwise phase

Overlapping range maps detectiofor each range
map R; in the scan sef, detect allR; in R which

are partially overlapping withR;. This pairwise
process can be considered as a graph problem: given
the nodes (i.e. the range maps), we have to select
a subset of arcs such that every node is linked to
some others if they are partially overlapping, and
thus have to be aligned togethgrdgph of overlapk

If the set of range maps is composed by hundreds
elements (the scanning of a 2 meters tall statue
generally requires from 200 up to 500 range maps,
depending on the shape complexity of the object),
then the user has a very complex task to perform;
Initial Coarse Registration provide a first rough
registration between each pair of overlapping range
maps (R;, R;). The initial placement is heavily
user-assisted in most of the commercial and aca-
demic systems. It usually requires the interactive
selection and manipulation of the range maps, either
to select a small set of corresponding point pairs
or to superimpose the range maps by means of
interactive rotations and/or translations;

Fine Pairwise Registratianthe scans are finely
aligned, usually adopting the Iterative Closest Point
process (ICP) [2], [6], [14] which minimizes the
alignment error between any pair of range maps;

of range maps rather than from theoretical considerZlobal registration

tions. For this reason, some of the operative choices we
adopted can appear disputable from a theoretical point
of view but they allowed us to obtain accuracies and
performances really good without losing the generality
of the algorithm. For example, our method to find corre-
sponding points on the surface of two overlapping scans
is not invariant to “heavy”changes of the up direction of
the scanning device. This is a limitation in the general

The pairwise registration produces good results but,
since the error minimization takes place sequentially
on mesh pairs, the error tends to accumulate and it
may result in significant artifacts after a number of
pairwise steps. A solution is to perform a global
minimization process which distributes the residual
error among all pairs in order to spread the error
evenly among all range map pairs [20].

case, but it does not represent a problem for standard 30'he precision of thecoarse registrationphase does
scanning, where rotating the scanner along his view axet need to be really high because the convergence of

is rather uncommon.

the successivéine registrationis ensured even when the

Finally, the results of empirical evaluations of our apaccuracy is low (e.g. a few millimeters of distance be-
proach on complex scanning set are presented in Steeen the two maps); however, the manual intervention
tion V. Section VI closes the paper with final remarkeequired for coarse registration is time-consuming and
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boring, since it may require some days of work on @espective SAls. A similar approach is tiepherical
complex scanning set. extent function30].

As already briefly discussed in the introduction, aHarmonic maps have been adopted as surface descrip-
orthogonal strategy to the one presented here is to adds, among others, by Funkhouser et al. [16]. They
a tracking subsystem to the scanning device, to allgwoposed thespherical harmonic representatiowhich
to track its position and orientation in the scanningrovides a rotational-invariant representation of a shape
space.Tracking solutionscan be based on: magnetiaescriptor based on spherical harmonics, enhanced in
trackers, optical trackers, or accurate mechanical systeg] by factoring out the contribution of anisotropy and
(like rotary platforms or robotic arms) for the controlledyeometry.
translation/rotation of the object/scanner. Just to give aOther registration techniques adopt the second
few examples: a laser scanner was mounted on a six D@#proach mentioned above (local characterization).
robotic arm to obtain an automatic scanning and rap@he important consideration is tha¢rtex-basedshape
reproduction station [4]; a computer-driven gantry hasharacterizations are more adequate tioaject-based
been designed for the Digital Michelangelo project [13hnes in the case of partial and incomplete knowledge
optical and magnetic tracking are used in commerci@hnge maps are a very incomplete representation of
scanning systems [18], [24]. Moreover, physical targetise overall shape and they overlap only in a small
can be introduced into the scene to be scanned or ostregion). Most of the methods proposed use some
the object under examination, to simplify the subsequestrt of evaluation of the curvature of the mesh (e.g.
software-based registration. bitangent curves are used in [31] to characterize mesh

Automatic coarse registratiowas investigated quite vertices).
intensively in the last few years, even if a completelgtein and Medioni [23] introduced theplash images
automatic and general-purpose solution is not yet fourige. small surface patches used to detect local changes
It is possible to distinguish different approaches to solwe the surface orientatiorSplash imagesre then used
the problem. It's not our intention to present here a coras primitives to measure the differences between surface
plete survey of the algorithms proposed in the literatur@rmal distributions (this proposal was one of the main
(a good survey paper is [5]); for the sake of concisenegsspirations for our work).
we will focus here only on some seminal proposals. Chua and Jarvis [7] proposed thmint signature, a

The main idea to perform automatic range mapspresentation invariant to rotation and translation that
alignment is tocharacterizethe shaperepresented by encodes the minimum distances of the points on a
the range maps and to use this characterization to fiBD contour (intersection of the surface with a sphere
the correspondences needed for automatic coarse regeitered in the point under analysis) to a reference
tration. Therefore, some solutions proposed in literatupdane. 3D point fingerprints[26] can be considered an
are very general (in some cases, can be conceived axtension of the previous approach. The point fingerprint
by product of theshape similarityresearch [28]), while is a set of 2-D contours that are the projections of
others are more specific. The latter approach is the ayeodesic circles onto the tangent plane.
we followed, since making profitable use of the peculiglohnson and Hebert [11] proposed the concepspf
characteristics of the range map registration probleémage a more descriptive structure in respectspifash
allows to solve it in a more efficient manner. imagesand point signaturesA spin imageis generated

General solutions define a mapping from the globabking oriented points - 3D points with directionsspin
surface model to some fixed-dimensional vector spadmageis a 2D histogram of the surface locations around
by taking into account the entire mesh (or range mag@. point. Matching points that rely on different views
Lucchese et al. [15] introduced a method operating in tloé the model have similaspin imagesso they can be
frequency domairto estimate the roto-traslation betweensed to find the correct correspondences.

a pair of meshes they propose a featureless algoritAilne availability of color or other surface attributes
which exploits the information about the geometric reggampled together with the geometry has been used
ularity captured by the Fourier transform. either to improve the accuracy of geometric registration
Delingette et al. ([9], [8]) developed th8pherical At- or to perform automatic coarse alignment [21].

tribute Image(SAI) method that defines a direct mapping

between an object surface and a spherical surface, thu®ur method has been devised to make a proficient
obtaining a unique representation of any non-convese of all the specific characteristics of the problem
object (or part of it); the correspondence between tvwomnsidered — the coarse registration of range maps. We
range maps can be obtained from a comparison of th@pose a newertex-basedhape characterization which
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Fig. 1. Range maps are taken in a row-wise order: an exampi@aefiar stripe around a statue’s head (left); an exampleaster-scan
scanning order adopted for the acquisition of a bas-relief (right).

works directly on the range map rather than on thgattern, some more arcs are usually needed (intercon-

associated triangle mesh. necting R; with all the overlapping range maps). Like
other alignment systems, we do not require the explicit
1. M ULTIPLE RANGE MAPS REGISTRATION creation of all these arcs but we usesatial indexing
PROBLEM technique to avoid the user to introduce all these arcs

The standard registration task can be simplified anually. Given a subset of links (where a single arc is

considering some practical aspects. First, detection nol/vn fc;_r eac?h nodet,] cofmput?d as Wi proposia tlndthe
of overlapping range map%an be reduced to a simplelnex Sec ![on), i Qgraph o O)é.er aptscan © cck))mpketg
task: 3D acquisitions are usually done by following an automatic manner. AlISCrele space bucketing

simple selection of the scanner poses. Users usu egia structure can be easily instantiated, holding for

acquire range maps stripes following either avertical, Ch. bucket (a small 3'.3 voxel) the set (_)f_r_ar!ge maps
horizonta| raster-scanor circular translation of the PaSSing through that region of space. The initialization of

scanning system (see Figure 1). The different types tgfs data structure requires the scan-conversion of every

stripes share some common properties: they contain '§RY€ Map In the d|_screte space. We can ea_sny retr_le_ve
ordered set o, range maps, such that range ma&p groups of overlapping range maps by a simple visit

holds a significant overlapping with at leagt_; and of the bucketing structure, and tell how significant are

R;11. Vertical, horizontal or raster-scan stripes are OﬂéEOSG overlap ext'ents.' Obwogsly, since we recon.stru'ct
produced when acquiring objects like bas-reliefs, waﬁ e occupancy grid using a discrete resolution Wh'Ch. IS
or planar-like items. Circular stripes are indeed moHeS“a”Y an orde_r of magnltude Iqwer tha_n the sp{;\tlal
useful when acquiring objects like statues, columns g?mpllng used n scanning, t_he information contaln_ed
cylindrical-shaped objects. In practice such coherencediyS an approximate overlapping graph and overlapping

not sufficient to successfully initialize ICP, so approaché@cmr’ but still sufficienty accurate for our purposes.

like the one in [22] that rely on straightforward applica—G'Ven the occupancy grid information and once a single

tion of ICP cannot be adopted alignment arc is provided for each range map, our

If we can assume that the acquisition has been perfom{ggistration library is able to introduce all ne_eded ares (in
using one of these stripe-based patterns, then we ompletely unattended manner, by selecting only those

search for overlapping and coarse registration on ea‘% ich sa_msfyha ?g:lglmlum-_or\]/erlz? factor) a;rfl'to p;ocess
pair of consecutive range maf®;, R;+1). From the them using the algorithm. Our todWfeshAlign [3],

point of view of the registration algorithm, all the stripes. plerlnents trtus typhe of s?ltifuon to provide automatic
pattern defined above are equivalent: an automatic r 'E—e alignment graph completion.

istration module can processes each couple R 1), In con_clusion, this approach reduceslaover n
to produce in output the roto-translation matfi that Problem into al over 1 problem (for each range map,
aligns R, to R;. find coarse registration matrices for all the overlapping

The subset of registration arcs defined above is usuaMjes in the set of. range maps).
sufficient for a successive ICP application, in order to The stripes approach can be seen as an efficient
obtain a fine registration of the range maps. Anywaworking strategy, in opposition to the more general task
depending on the shape of the object and the acquisitiondetermine a complete adjacency graph.
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IV. AUTOMATIC PAIR-WISE RANGE MAP ALIGNMENT v

Therefore, we restrict the general problem to the N /\
coarse pairwise alignment of two overlapping range
mapsRk,, Rp.

We assume that the two range maRs, R;, over-
lap on a reasonable portion of their surface (15-20%). SRXNRRXX
Like other surface matching algorithms, we look for a /
small set offeature pointswhich characterize the first
range mapR,: a point-based shape description kernel is
proposed in Section IV-A. Then, in a second step, for
each of the_Séj p0|_nts onR, we search for the POtentlaI Fig. 2. Example of silhouette edges or self occlusion between two
corresponding points on the second mé&ghSection IV-  syccessive view points.

B). Finally, out of those possiblé pairs we choose
the group of four matching points which gives the best
coarse alignment (Section IV-C); if the needed accurag§nere E is the average of each kernel:

is not reached, we iterate until convergence (Section IV- kfj
D). E[K"] =) -4 @

2y}
The variance is used to cluster all range map points
A. Starting points selection in buckets characterized by a similar surface curvature.
o ~ Low values ofs?(KP) are relative to flat areas where the
A trivial approach would be to choose the startingormal vectors are relatively uniform. On the other hand,
points p € R, random over the range map. Unforyigh values ofs?(K®) correspond to zones having high
tunately, this approach can produce non-representaii{gyature. Note that if a mesh has open boundaries, then
samples that reside into surface areas having little (@ tices on the proximity of these boundaries produce a
none) geometric features and makes very hard the {gsh variance value, due to the absence of information
curate identification of the corresponding points in thg, kernel points lying outside the surface.
second range mapi,. For this reason, we need aye have chosen to discard all the points having either
measureof how well a given vertex can be represemigh or low variance, using two opportune threshold val-
tative of the corresponding range map. For the sake s selected according to empirical experience. There are
simplicity we consider our input meshes as regularlyayeral motivations for this choice. First, we obviously
sampled2D height fieldsWe find this approach effective giscard flat areas because they cannot give sufficient
(as explained in detail in the following), even if thisnformation to detect the correspondent point in the other
assumption could not hold for some rather infrequep{esh. We discard also the vertices witlgh variance
situations (like for example the adoption of a scann@gen if this could seem less intuitive. First, high variance
implementing a not regular sampling pattern). The heiglitex could belong to open boundaries (and thus to an
field assumption gives us a simple local parameterizatimommete local sampling of the surface): they have
of the surface that allows us to easily detect for eagh pe discarded since the matching range map might
point p a small and regular kernel of adjacent samplégaye a more complete sampling of the same zone, that
from which we compute itsvariance Given apivot | hardly match with the previous one. Second, a high
vertexp € R, and its normal vectorV,, we build a ariance vertex could be generated in the proximity of a
kernel K;, by considering then x n square of points sjjhoyette vertex (where we have a false step due to a self
aroundp in the range map (represented as a 2D rastesbciusion of the mesh, see Figure 2). This portions of
In our implementation, we adopt a kernel sizel8& 13.  the mesh are dangerous because these steps do not exist
Each element:;; < K, contains the dot product ofjy reglity, but depend on the scanner location at the time
the pivot’s normal vector and the normal vector of thgf the take of range mag,; the same portion of the
corresponding pivot's neighbor. Then, we calculate thgtace, seen from a different point of view, could have
variance of each kerné\, € Rq: a very different shape descriptor. Figure 2 shows how
silhouette edges or self occlusion can create a false high-
S(KP) = % Z (kf,j — E[K?])? (1) v:;riar:ce ridge that does not really exist on the surface
i object.
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Once the bad vertices are discarded, a small setwath p € R,,q € R, that can include some (or eventually
candidate starting points are chosen randomly among thany) false matches. The naive approach — use all the
remaining points (the ones with medium variance). Thecouples in order to determine the matching maivix
number of these points is usually small, around 20 according with [2] — can easily fail if there are many

our empirical tests (see Section V). wrong matching pairs. Therefore, we adopted a different
approach. For each combination of 4 different pairs
B. Finding a matching point extracted by the set afpairs Q; = [(p,¢)1 - - (p, ¢)4])

we compute a matrix)M,;; in this manner we obtain
(%) different matching matrices/;. Then, we choose
the matrix that provides the smaller alignment ere¢pr
Fé)mputed only on the 4 pairs which defin@s:

Then, given a selected vertex € R,, we have to
find the best matching vertexe Ry (if it exists). The
matching algorithm’s quality is tightly bounded to the
metric used for the comparison. A perfect metric shou
adopt mesh attributes which are invariant with respect to 1
the roto-translation that occurs between the range maps. € == Z (Ip — M;ql?) (4)

Our method builds up on the same kernel defined in 4 (1,0)€Q;

the previous subsection. In particular, we compute theIf the alignment errorc; is equal or smaller than

kernel for every verte>q e Rb.‘ G_|ve_np € R and_lts_ the user-selected threshold valugirse_err 1, we have
kernel K, the metric consists in finding the more S|mlla¥

. . ound a sufficiently correct alignment. OtherW|ij
kemel K, relative to the p0|_nt1 € Ry. So, for eachi,, should not be considered as a correct alignment matrix.
we compute the squared difference wif;:

The computational cost of our approach depends on
the value oft and the resolution of the range maps.
(K, = = Z — kq Vg € R, (3) Larger ist and larger is the subset of all possible roto-
n “ translation betwee®, and R;, which are considered and
checked On the other hand, we should sébd small
and we choose as best potential matching point the on Ef
values to maintain the computational cost affordable. In

having minimum distance?(K,,).

the next paragraph, we’'ll show how to find an alignment
This kind of metric is invariant with respect to the

tatrlx using a very low value fot: 20 ~ 40 vertices

usual transformations (translations and rotations) th
remember that a standard range maps contains around
occur to the meshes belonging to a strip. This metr, %OK vertices).

is not invariant to consistent rotations over the view
direction of the scanning device. However in standard _ _ _

3D scanning rotating the scanner along his view axe s Iterative matrix computation

rather uncommon (the scanner is usually connected toThe best matrix found yields an error greater than the
a tripod, which makes impossible to apply a substantigiven threshold,.,; > coarse_err if the set oft pairs
rotation along the view axe). contains mostly incorrect matches, and it is not possible
Obviously, this metric does not ensure the convergengecompute a correct alignment matrix from thegmirs.

to the correct matching: the selected corresponding poinstead of setting a bigger value for thparameter, we
could be incorrect, since multiple vertices can presentadopt an iterative approach: all the previous steps (choice
shape signature similar to the one of the vertex consiofa new set of vertex pairs, evaluation of the alignment
ered (or because a point on a non-overlapping regionerfor) are iterated until a proper alignment matrix is
R, can be very similar to the selected pombf R,). found. To improve accuracy and speed up convergence
Therefore, we need to validate the matching. of the method, we reuse on each iteration the best results
Other approaches exist that try to avoid as much ebtained in the previous cycle.

possible any false match by defining more complex shapeAt iteration i, we select the local set af matching
signatures. We have chosen to follow a strategy whigkrtices by computing the respective kernels. Then, to
couples a computationally efficient shape descriptor wifind the best roto-translation matrix, we add to the
a further validation phase which proves the correctnelggal ¢ pairs the 4 pairs that generated the best solution

of (or purges) the selected matching points. found in the previous iteration. In this manner, the space
of possible solutions is augmented and this helps the
C. Matching points validation algorithm to converge faster to a consistent solution.

_ Using the approach described_ in the_ preViOPS SUbSECThe thresholdoarse_err is usually given in metric units, i.e. in
tion we get a set of corresponding points paif®, g) millimeters in the case of our laser-scanner range maps.
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The main drawback of this method is that we migt
be trapped in docal minimum i.e. when the algorithm
is not capable to find a better solution than the previo
one. We detect a local minimum stall by checking if ii
subsequent iterations the alignment eregy,; doesn'’t
improve. To remove the stall, we perform a perturbatic
of the best current solution by discarding one of the
couples that generated the current solution. According
the results of our empirical experiments (see Section V),
this simple heuristic detected and recovered all local :*
minima stalls. Moreover, in order to detect the occur- -
rence of an impossible matching (e.g. when the overlap ..
R, Ry = (), we set a threshold valu@ax;.., for the
maximum number of iterations allowed.

3299

2 1852

(mm)

1,552
15

1

V. EXPERIMENTAL RESULTS o7

The proposed registration algorithm was tested on
many large datasets coming from real scanning cam- ' 2 (terations) : )
paigns (each range map contains therefore real raw data,
usually aﬁeCteq by noise, artlfa_c'ts an_d h0|e§)' The Iasf—% 3. The four matching point pairs selected by the algorithm
scanner used in all our acquisitions is a Minolta Vividn two range maps. The coarse alignment for the two range maps
910, which returns range maps of resolution 640*48duired four iterations (error in millimeters).
(around 300K samples). After the automatic selection
of an initial coarse registration matrix with the proposed
algorithm, all datasets were finely aligned (pairwise local
and global registration) using odeshAligntool [3]. All
performance figures have been measured on a Pentium
IV 2.4GHz PC with 1GB RAM.

A. Single range map pairs alignment

Figure 3 shows a set of four matching points selected
on two range maps sampling a portion of the Arrigo
VIlI's head (the results are shown over the depth maps,
rendered as they are with no roto-traslations addedraf. 4. The result of the coarse alignment.
visualization time). In this case each range map contains
about 150k vertices (here large portions in the 2D maps
contain null data). The solution was found in 30.8ection of the Arrigo’s head). In this case the running
seconds, setting = 20 and coarse_err = 1.0mm. time was longer, 1min:28sec, since the algorithm was
The algorithm iterates four times to converge to a coarsamporarily trapped in local minima and thus required
alignment satisfyingroarse_err. The error obtained in more iterations than the previous example (9 in total in
the four iterations is shown in the graph presented this case, 3 were local minima as shown in of Figure 5).
Figure 3. For each iteration we show the best alignmeftter the stall's detection (at th&!” iteration), the
error ¢; obtained. The result of this coarse alignmermurrent solution was perturbed; we can notice that, at
is presented in Figure 4 (this figure requires to be setfie sunbsequent iteration, the solution found was worse
in color since the two range maps are rendered withan the previous one. Anyway, at th& iteration the
a different color shade). It's possible to notice that thedlignment error improved. The technique adopted to exit
alignment's quality is rather good and thus the ICRom a local minimum stall, as described in Section IV-
algorithm can be applied successfully to the meshes.D, influences the alignment error curve in the way

Another interesting example is the one shown ipreviously described: after an initial worsening, usually
Figure 5, which shows the matching points selectetror is improved; we observed the same behavior in all
on two different range maps (they represents the baitle tests we carried out, whenever a local minimum was
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Stripe E

Stripe D

Stripe C

4,655

Stripe B

3,123
2,207 2,207

0,988

Stripe A

4 5
(iterations)

Fig. 5. The matching point pairs selected on the back of the Arrigo”
head; the graph shows the alignment iterations and the two loc
minima successfully managed.

detected.

(num of range maps aligned)

B. Stripes alignment

We present now some examples of the tests performe H H
on bigger datasets. As explained in Section lll, in aree | | H I | H I H hn
scan campaign we usually acquire the range maps in '~ " """ 0T U Gunotetong TR TR T
row or column-wise order; this simplifies the planning
process and also the successive alignment phase. E@rs. The result of the coarse alignment applied to the five circular
this reason, at the end of a standard scan campaign, stviges (left) and the final model obtaineftight). The histogram
have the scan set subdivided into a few stripes, wheéf@ws how many range maps were aligned with that number of
. . . . _iterations; most of the alignments required less than 10 iterations.
each stripe contains many consecutive and adjacenifa
range maps. A few ad hoc scans are also usually
produced at the very end of the scanning session, to
cover object regions which have not been sampled byAn example concerning a bas-relief is shown in Figure
the previous stripes. 7, whose approximate length is 2.5 meters; in this case
Figure 6 shows the result of the stripe-based alignmdWo raster-scan (snake-like) stripes were acquired, for
of a spiral column with artistic carvings (real size i total of 117 meshes (about 45.5M vertices). The
about 85 cm tall, with a diameter of 25 cm.). Eivalgorithm performed the overall alignment in 1h:50min.
circular stripeswere scanned, for a total of 62 rangé\s shown in the graph presented in Figure 7, almost all
maps (about 11M vertices). The automatic coar§@ir-wise alignments were done with a single iteration,
alignment completed processing in 1h:13min, usirfip the entire process required a shorter time to complete
t = 20 and coarse_err = 1.0mm. The graph on the than the previous column example. This run produced an
bottom of Figure 6 shows how many range maps @verall alignment totally satisfactory for the subsequent
the column were aligned by the algorithm in a certaipplication of ICP and global alignment. Again, the
amount of iterations: most of the range map paifet of arcs has been completed automatically by the
required few iterations < 10), while only 2 meshes MeshAlignsystem.

required about thirty iterations. Figure 8 shows an important aspect of tloeal vs.
global alignment: Figure 8.a shows the result of the local
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(b)

©

(num of range maps aligned)

o Fig. 8. Local coarse alignment of the first four range maps of the
Minerva’'s heada); a substantial accumulated error is visible between
2 the first (green) and the last range map (violet) in the circular stripe
(b); the final result after the application of global alignméo)

0 =
12 8 4 5 6 T 8 @ 10 11 12 13 14 15 18 17 18 19 20 21 2 2B 2
(num of iterations)

Fig. 7. The coarse alignment of the bas-relifp) and the final
model(middle) almost all of the alignments required just 1 iteration.

coarse alignment of the first four meshes out of a circular
stripe representing the head of the Minerva of Arezzo (a
bronze statue, 1.55 cm tall); the final result of the local
coarse alignment is shown in Figure 8.b. The substantial
accumulated error between the first (green) and the last
range map (violet) in the circular scan is easily visible
(see for example the major miss-match in the nose
region). This is due the well-known alignment error
accumulation along the circular stripe, common to all
local registration algorithms. The subsequent application
of a global registration phase [20], [3] produces a correct

fine alignment, as shown in Figure 8.c.
A I tati f ical fi lati Fig. 9. The coarse alignment of a portion of the archway of S.
n overall presentation or numerical figures relativg,nieris door, Pisa Cathedr@lip). The final model after ICP and

to all the scans set presented is given in Table |. TRbal alignmenidown)
last two scan set mentioned in this table are presented
in Figures 9 and 10.

A fair comparison with existing solutions is not eas'
since no source code is available on public domain a
timings are often not presented. Moreover, most of tl
approaches presented in literature takes into account (i
present results on) only the simple case of a pair of
range maps, even of very small size ([7], [11], [26])Fi
The only previous paper presenting results obtained o

ﬁ' 10. The coarse alignment of the Arrigo VII's sepolcro.
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Dataset Range maps Total vertices Alignment time
Minerva’s head 10 1.7M 7min
Spyral column (Arrigo VII) 62 11M 1h 13min
Bass-relief (Archway) 110 30M 52min
Bass-relief (Arrigo VII) 117 45.5M 1h 50min
Sepolcro (Arrigo VII) 136 28M 41min
TABLE |

NUMERICAL FIGURES ON THE DATASET CONSIDERED IN THE EMPIRICAL EXPERIMENT.S

rather complex scan set is [15], but unfortunately authorg] P. J. Besl and N. D. McKay. A method for registration of 3-D

do not offer information on the running times of their

solution.

VI. CONCLUSIONS

We have presented a new automatic registration
. 4
method which has demonstrated very good performancé
while converging to valid solutions. The method is based
on some simplifying assumptions, which allow us to
face the automatic range map alignment problem with5]
an iterative solution based on the automatic detectio[n
of corresponding point pairs. The solution presented is

shapes. IEEE Transactions on Pattern Analysis and machine
Intelligence 14(2):239-258, February 1992.

M. Callieri, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi, and
R. Scopigno. Vclab’s tools for 3d range data processing. In
A. Chalmers D. Arnold and F. Niccolucci, editoldAST 2003
and EG Symp. on Graphics and Cultural Heritagege (in
press), Bighton, UK, Nov. 5-7 2003. Eurographics.

M. Callieri, A. Fasano, G. Impoco, P. Cignoni, R. Scopigno,
G. Parrini, and G. Biagini. Roboscan: An automatic system for
accurate and unattended 3d scannin@@D#VT'04: Second Int.
Symp. on 3D Data Processing, Visualization and Transmission
page (in press). IEEE Comp. Soc., Sept. 6-9 2004.

Richard J. Campbell and Patrick J. Flynn. A Survey Of
Free-Form Object Representation and Recognition Techniques.
Computer Vision and Image Understandingl(2):166—210,

based on a new shape characterization kernel that focuses 2001.

on surface vertices; it works in the 2D space of the rangé!
maps and characterize 3D geometry by processing sur-
face normals evaluated on a kernel of regularly sampleg
adjacent points. The method has demonstrated to work
well on real complex scan set with good performances
even using a standard PC (as shown in table I). We af
planning to include this solution as a background process
in our scanning front end (which drives the Minolta[9]
scanner). Due to the reduced computational complexity,

automatic alignment can be run in background duri

acquisition, to have all range maps transformed on the
in a common space. This will allow the user to monitor
the completion status of the acquisition and to dete

well in advance not sampled surface regions.
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