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Abstract— Range map registration is still the most time
consuming phase in 3D scanning. This is because real
scanning set are composed of hundreds of range maps
and their registration is still partially manual. We propose
a new method which allows to manage complex scan sets
acquired by following a regular scanner pose pattern. The
method makes proficient use of some initial considerations
and auxiliary data structures, which allow to simplify
the range map registration problem. It is designed as an
iterative solution, where pairs of correspondent vertices
are selected through the computation of a regularn × n
kernel which takes into account vertex normals and is
defined in the 2D space of the range map (represented
in implicit 2D format rather than as a triangle mesh
in 3D space). The shape-characterization kernel and the
metrics defined give a sufficiently accurate shape matching,
which has been proven to fit well the requirements of
automatic registration. The solution proposed has been
tested on a number of complex scanning set and results
are impressively better than previous solutions.

Index Terms— 3D scanning, automatic registration,
coarse registration, range maps alignment

I. I NTRODUCTION

T HE increasing diffusion of 3D scanning devices
and the design of new and efficient algorithms for

range data post-processing are at the base of a process
where standard CAD tools are going to be replaced by
a semi-automatic process based on the direct sampling
of real objects’ shape. Moreover, automatic acquisition
of shape and appearance is no more confined to the
classical industrial applications (reverse engineering or
quality control), but it is positively affecting new and
important fields. In this sense, Cultural Heritage (CH)
is probably one of the most indicative and challeng-
ing applications. The availability of accurate 3D digital
models is becoming a demanding requirement for the
knowledge, conservation, restoration, and promotion of
CH [13], [1], [10], [25], [12], [19].

Unfortunately, the creation of a digital 3D model from
reality is still far enough from being as simple as photog-
raphy. The user has to manage many complex processing

Visual Computing Lab, Istituto di Scienza e Tecnologie
dell’Informazione (ISTI), Consiglio Nazionale delle Ricerche (CNR),
Via G. Moruzzi, 1, Pisa, Italy. Contact email: fasano@isti.cnr.it ,
pingi@isti.cnr.it

steps (range maps acquisition, registration, fusion, geom-
etry simplification, color attributes recovery). Solutions
for a completely automatic scanning system have been
proposed, but either these systems are based on the use
of complex positioning machinery [13], [4], or adopts
silhouette-based approaches which do not guarantee the
needed accuracy [27], [29]. An alternative approach is to
design new solutions for the classical scanning pipeline
which would transform those phases into an unattended
process. Many innovative and efficient solutions have
been recently proposed for the different phases of the
scanning pipeline and, at present, it is possible to assert
that the bottleneck of the whole process is represented
by the range maps registrationphase, since this is the
only task where a considerable human intervention is
still requested.

The accurate acquisition of a real object requires to
take many range maps from different locations. If the
scanner location and orientation are not tracked, all those
range maps are produced in different coordinate spaces
(each one depending on the corresponding unknown
location and orientation of the scanner). The goal of the
range map registration phase thus consists in determining
the rigid geometric transformations able to bring back
all the coordinates of the acquired data into a unique
Cartesian space. Registration is the fundamental precon-
dition to merge all the data into a single and complete
digital model. The explicit registration of multiple scans
can be simplified or even avoided by adopting different
techniques/devices which help in tracking the scanning
device (see Section II). However, these solutions usually
increase the overall cost of the scanner, support an
accuracy which in some cases is much lower than the
nominal accuracy of the scanning system, or introduce
constraints on weight and working space which make
them hard to use in uncontrolled working environments
(e.g. acquisitions done in museums or archeological
sites). For these reasons, we are interested in avoiding to
add gantries or other devices to our standard scanner. Our
goal is to design new solutions to make the alignment
of range maps a nearly automatic process.

The registration of multiple range scans is imple-
mented by adopting a software approach split in two
computational steps. An initialcoarse registrationpro-
vides a rough positioning of the range maps, and a
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subsequentfine registrationbrings the scans into tight
alignment. In other words, coarse registration is con-
cerned primarily with determining which regions of
two scans represent the same portion of the object’s
surface (the so called “overlapping” region), while fine
registration is concerned with minimizing the mismatch
between these corresponding overlapping regions.

The solutions proposed in the literature for thefine
local registration (between two scans [2], [14]) orfine
global registration (extended to the whole scanning set
[20]) are generally based on unattended iteration of the
ICP technique and by now they ensure performances
and results extremely good. On the contrary,coarse
registration represents the real bottleneck. Despite the
number of solutions proposed (see Section II), most
of the commercial software systems available on the
market implement the coarse registration adopting an
interactive solution; however, this manual process is
time-consuming. According to the experience of the
authors, a complex scanning set composed of some
hundreds of range maps can require some days of
hard and boring work to process the manual coarse
registration phase.

This paper presents an efficient and innovative auto-
matic solution to the problem of the coarse registration.
With respect to the existing feature-based algorithms
(i.e. the solutions aiming at the heuristic location of
corresponding points in the common parts of the two
scans under examination, see Section II) our method
presents some innovative aspects which make it par-
ticularly robust and efficient for practical 3D scanning
campaigns. In Section III we introduce the strategy
used to register multiple range maps, while Section IV
contains the details about the alignment algorithm given
two overlapping range maps. The proposed algorithm
originates from the practical need to register hundreds
of range maps rather than from theoretical considera-
tions. For this reason, some of the operative choices we
adopted can appear disputable from a theoretical point
of view but they allowed us to obtain accuracies and
performances really good without losing the generality
of the algorithm. For example, our method to find corre-
sponding points on the surface of two overlapping scans
is not invariant to “heavy”changes of the up direction of
the scanning device. This is a limitation in the general
case, but it does not represent a problem for standard 3D
scanning, where rotating the scanner along his view axe
is rather uncommon.
Finally, the results of empirical evaluations of our ap-
proach on complex scanning set are presented in Sec-
tion V. Section VI closes the paper with final remarks

and future work.

II. PREVIOUS WORK

The alignment task is the most time-consuming phase
of the entire 3D scanning pipeline, due to the substantial
user contribution required by current systems, since
range map registration is usually solved by adopting a
partially manual process. The standard approach is as
follows:
Local pairwise phase

• Overlapping range maps detection: for each range
mapRi in the scan setR, detect allRj in R which
are partially overlapping withRi. This pairwise
process can be considered as a graph problem: given
the nodes (i.e. the range maps), we have to select
a subset of arcs such that every node is linked to
some others if they are partially overlapping, and
thus have to be aligned together (graph of overlaps).
If the set of range maps is composed by hundreds
elements (the scanning of a 2 meters tall statue
generally requires from 200 up to 500 range maps,
depending on the shape complexity of the object),
then the user has a very complex task to perform;

• Initial Coarse Registration: provide a first rough
registration between each pair of overlapping range
maps (Ri, Rj). The initial placement is heavily
user-assisted in most of the commercial and aca-
demic systems. It usually requires the interactive
selection and manipulation of the range maps, either
to select a small set of corresponding point pairs
or to superimpose the range maps by means of
interactive rotations and/or translations;

• Fine Pairwise Registration: the scans are finely
aligned, usually adopting the Iterative Closest Point
process (ICP) [2], [6], [14] which minimizes the
alignment error between any pair of range maps;

Global registration

• The pairwise registration produces good results but,
since the error minimization takes place sequentially
on mesh pairs, the error tends to accumulate and it
may result in significant artifacts after a number of
pairwise steps. A solution is to perform a global
minimization process which distributes the residual
error among all pairs in order to spread the error
evenly among all range map pairs [20].

The precision of thecoarse registrationphase does
not need to be really high because the convergence of
the successivefine registrationis ensured even when the
accuracy is low (e.g. a few millimeters of distance be-
tween the two maps); however, the manual intervention
required for coarse registration is time-consuming and
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boring, since it may require some days of work on a
complex scanning set.

As already briefly discussed in the introduction, an
orthogonal strategy to the one presented here is to add
a tracking subsystem to the scanning device, to allow
to track its position and orientation in the scanning
space.Tracking solutionscan be based on: magnetic
trackers, optical trackers, or accurate mechanical systems
(like rotary platforms or robotic arms) for the controlled
translation/rotation of the object/scanner. Just to give a
few examples: a laser scanner was mounted on a six DOF
robotic arm to obtain an automatic scanning and rapid
reproduction station [4]; a computer-driven gantry has
been designed for the Digital Michelangelo project [13];
optical and magnetic tracking are used in commercial
scanning systems [18], [24]. Moreover, physical targets
can be introduced into the scene to be scanned or onto
the object under examination, to simplify the subsequent
software-based registration.

Automatic coarse registrationwas investigated quite
intensively in the last few years, even if a completely
automatic and general-purpose solution is not yet found.
It is possible to distinguish different approaches to solve
the problem. It’s not our intention to present here a com-
plete survey of the algorithms proposed in the literature
(a good survey paper is [5]); for the sake of conciseness,
we will focus here only on some seminal proposals.

The main idea to perform automatic range maps
alignment is tocharacterizethe shaperepresented by
the range maps and to use this characterization to find
the correspondences needed for automatic coarse regis-
tration. Therefore, some solutions proposed in literature
are very general (in some cases, can be conceived as a
by product of theshape similarityresearch [28]), while
others are more specific. The latter approach is the one
we followed, since making profitable use of the peculiar
characteristics of the range map registration problem
allows to solve it in a more efficient manner.

General solutions define a mapping from the global
surface model to some fixed-dimensional vector space,
by taking into account the entire mesh (or range map).
Lucchese et al. [15] introduced a method operating in the
frequency domain: to estimate the roto-traslation between
a pair of meshes they propose a featureless algorithm
which exploits the information about the geometric reg-
ularity captured by the Fourier transform.
Delingette et al. ([9], [8]) developed theSpherical At-
tribute Image(SAI) method that defines a direct mapping
between an object surface and a spherical surface, thus
obtaining a unique representation of any non-convex
object (or part of it); the correspondence between two
range maps can be obtained from a comparison of the

respective SAIs. A similar approach is thespherical
extent function[30].
Harmonic maps have been adopted as surface descrip-
tors, among others, by Funkhouser et al. [16]. They
proposed thespherical harmonic representationwhich
provides a rotational-invariant representation of a shape
descriptor based on spherical harmonics, enhanced in
[17] by factoring out the contribution of anisotropy and
geometry.

Other registration techniques adopt the second
approach mentioned above (local characterization).
One important consideration is thatvertex-basedshape
characterizations are more adequate thanobject-based
ones in the case of partial and incomplete knowledge
(range maps are a very incomplete representation of
the overall shape and they overlap only in a small
subregion). Most of the methods proposed use some
sort of evaluation of the curvature of the mesh (e.g.
bitangent curves are used in [31] to characterize mesh
vertices).
Stein and Medioni [23] introduced thesplash images,
i.e. small surface patches used to detect local changes
in the surface orientation.Splash imagesare then used
as primitives to measure the differences between surface
normal distributions (this proposal was one of the main
inspirations for our work).
Chua and Jarvis [7] proposed thepoint signature, a
representation invariant to rotation and translation that
encodes the minimum distances of the points on a
3D contour (intersection of the surface with a sphere
centered in the point under analysis) to a reference
plane.3D point fingerprints[26] can be considered an
extension of the previous approach. The point fingerprint
is a set of 2-D contours that are the projections of
geodesic circles onto the tangent plane.
Johnson and Hebert [11] proposed the concept ofspin
image, a more descriptive structure in respect ofsplash
imagesandpoint signatures. A spin imageis generated
using oriented points - 3D points with directions: aspin
imageis a 2D histogram of the surface locations around
a point. Matching points that rely on different views
of the model have similarspin images, so they can be
used to find the correct correspondences.
The availability of color or other surface attributes
sampled together with the geometry has been used
either to improve the accuracy of geometric registration
or to perform automatic coarse alignment [21].

Our method has been devised to make a proficient
use of all the specific characteristics of the problem
considered – the coarse registration of range maps. We
propose a newvertex-basedshape characterization which
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Fig. 1. Range maps are taken in a row-wise order: an example ofcircular stripe around a statue’s head (left); an example ofraster-scan
scanning order adopted for the acquisition of a bas-relief (right).

works directly on the range map rather than on the
associated triangle mesh.

III. M ULTIPLE RANGE MAPS REGISTRATION

PROBLEM

The standard registration task can be simplified by
considering some practical aspects. First, thedetection
of overlapping range mapscan be reduced to a simpler
task: 3D acquisitions are usually done by following a
simple selection of the scanner poses. Users usually
acquire range maps instripes, following either avertical,
horizontal, raster-scan or circular translation of the
scanning system (see Figure 1). The different types of
stripes share some common properties: they contain an
ordered set ofn range maps, such that range mapRi

holds a significant overlapping with at leastRi−1 and
Ri+1. Vertical, horizontal or raster-scan stripes are often
produced when acquiring objects like bas-reliefs, walls
or planar-like items. Circular stripes are indeed more
useful when acquiring objects like statues, columns or
cylindrical-shaped objects. In practice such coherence is
not sufficient to successfully initialize ICP, so approaches
like the one in [22] that rely on straightforward applica-
tion of ICP cannot be adopted.
If we can assume that the acquisition has been performed
using one of these stripe-based patterns, then we may
search for overlapping and coarse registration on each
pair of consecutive range maps(Ri, Ri+1). From the
point of view of the registration algorithm, all the stripes
pattern defined above are equivalent: an automatic reg-
istration module can processes each couple(Ri, Ri+1),
to produce in output the roto-translation matrixMi that
alignsRi+1 to Ri.

The subset of registration arcs defined above is usually
sufficient for a successive ICP application, in order to
obtain a fine registration of the range maps. Anyway,
depending on the shape of the object and the acquisition

pattern, some more arcs are usually needed (intercon-
nectingRi with all the overlapping range maps). Like
other alignment systems, we do not require the explicit
creation of all these arcs but we use aspatial indexing
technique to avoid the user to introduce all these arcs
manually. Given a subset of links (where a single arc is
known for each node, computed as we propose in the
next section), thegraph of overlapscan be completed
in an automatic manner. Adiscrete space bucketing
data structure can be easily instantiated, holding for
each bucket (a small 3D voxel) the set of range maps
passing through that region of space. The initialization of
this data structure requires the scan-conversion of every
range map in the discrete space. We can easily retrieve
groups of overlapping range maps by a simple visit
of the bucketing structure, and tell how significant are
those overlap extents. Obviously, since we reconstruct
the occupancy grid using a discrete resolution which is
usually an order of magnitude lower than the spatial
sampling used in scanning, the information contained
gives an approximate overlapping graph and overlapping
factor, but still sufficiently accurate for our purposes.
Given the occupancy grid information and once a single
alignment arc is provided for each range map, our
registration library is able to introduce all needed arcs (in
a completely unattended manner, by selecting only those
which satisfy a minimum-overlap factor) and to process
them using the ICP algorithm. Our tool,MeshAlign [3],
implements this type of solution to provide automatic
fine alignment graph completion.

In conclusion, this approach reduces a1 over n
problem into a1 over 1 problem (for each range map,
find coarse registration matrices for all the overlapping
ones in the set ofn range maps).

The stripes approach can be seen as an efficient
working strategy, in opposition to the more general task
to determine a complete adjacency graph.



IEEE TRANSACTION ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, ZZZZ 2004 5

IV. A UTOMATIC PAIR-WISE RANGE MAP ALIGNMENT

Therefore, we restrict the general problem to the
coarse pairwise alignment of two overlapping range
mapsRa, Rb.

We assume that the two range mapsRa, Rb, over-
lap on a reasonable portion of their surface (15-20%).
Like other surface matching algorithms, we look for a
small set offeature pointswhich characterize the first
range mapRa: a point-based shape description kernel is
proposed in Section IV-A. Then, in a second step, for
each of thesek points onRa we search for the potential
corresponding points on the second meshRb (Section IV-
B). Finally, out of those possiblek pairs we choose
the group of four matching points which gives the best
coarse alignment (Section IV-C); if the needed accuracy
is not reached, we iterate until convergence (Section IV-
D).

A. Starting points selection

A trivial approach would be to choose the starting
points p ∈ Ra random over the range map. Unfor-
tunately, this approach can produce non-representative
samples that reside into surface areas having little (or
none) geometric features and makes very hard the ac-
curate identification of the corresponding points in the
second range mapRb. For this reason, we need a
measureof how well a given vertex can be represen-
tative of the corresponding range map. For the sake of
simplicity we consider our input meshes as regularly
sampled2D height fields. We find this approach effective
(as explained in detail in the following), even if this
assumption could not hold for some rather infrequent
situations (like for example the adoption of a scanner
implementing a not regular sampling pattern). The height
field assumption gives us a simple local parameterization
of the surface that allows us to easily detect for each
point p a small and regular kernel of adjacent samples,
from which we compute itsvariance. Given a pivot
vertex p ∈ Ra and its normal vectorNp, we build a
kernel Kp by considering then × n square of points
aroundp in the range map (represented as a 2D raster).
In our implementation, we adopt a kernel size of13×13.
Each elementki,j ∈ Kp contains the dot product of
the pivot’s normal vector and the normal vector of the
corresponding pivot’s neighbor. Then, we calculate the
variance of each kernelKp ∈ Ra:

s2(Kp) =
1
n2

∑
i,j

(kp
i,j −E[Kp])2 (1)

Fig. 2. Example of silhouette edges or self occlusion between two
successive view points.

whereE is the average of each kernel:

E[Kp] =
∑
i,j

kp
i,j

n2
(2)

The variance is used to cluster all range map points
in buckets characterized by a similar surface curvature.
Low values ofs2(Kp) are relative to flat areas where the
normal vectors are relatively uniform. On the other hand,
high values ofs2(Kp) correspond to zones having high
curvature. Note that if a mesh has open boundaries, then
vertices on the proximity of these boundaries produce a
high variance value, due to the absence of information
on kernel points lying outside the surface.
We have chosen to discard all the points having either
high or low variance, using two opportune threshold val-
ues selected according to empirical experience. There are
several motivations for this choice. First, we obviously
discard flat areas because they cannot give sufficient
information to detect the correspondent point in the other
mesh. We discard also the vertices withhigh variance,
even if this could seem less intuitive. First, high variance
vertex could belong to open boundaries (and thus to an
incomplete local sampling of the surface); they have
to be discarded since the matching range map might
have a more complete sampling of the same zone, that
will hardly match with the previous one. Second, a high
variance vertex could be generated in the proximity of a
silhouette vertex (where we have a false step due to a self
occlusion of the mesh, see Figure 2). This portions of
the mesh are dangerous because these steps do not exist
in reality, but depend on the scanner location at the time
of the take of range mapRa; the same portion of the
surface, seen from a different point of view, could have
a very different shape descriptor. Figure 2 shows how
silhouette edges or self occlusion can create a false high-
variance ridge that does not really exist on the surface
object.
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Once the bad vertices are discarded, a small set of
candidate starting points are chosen randomly among the
remaining points (the ones with medium variance). The
number of these points is usually small, around 20 in
our empirical tests (see Section V).

B. Finding a matching point

Then, given a selected vertexp ∈ Ra, we have to
find the best matching vertexq ∈ Rb (if it exists). The
matching algorithm’s quality is tightly bounded to the
metric used for the comparison. A perfect metric should
adopt mesh attributes which are invariant with respect to
the roto-translation that occurs between the range maps.
Our method builds up on the same kernel defined in
the previous subsection. In particular, we compute the
kernel for every vertexq ∈ Rb. Given p ∈ Ra and its
kernelKp, the metric consists in finding the more similar
kernelKq relative to the pointq ∈ Rb. So, for eachKq,
we compute the squared difference withKp:

d2(Kp) =
1
n2

∑
i,j

(kp
i,j − kq

i,j)
2 ∀q ∈ Rb (3)

and we choose as best potential matching point the one
having minimum distanced2(Kp).
This kind of metric is invariant with respect to the
usual transformations (translations and rotations) that
occur to the meshes belonging to a strip. This metric
is not invariant to consistent rotations over the view
direction of the scanning device. However in standard
3D scanning rotating the scanner along his view axe is
rather uncommon (the scanner is usually connected to
a tripod, which makes impossible to apply a substantial
rotation along the view axe).
Obviously, this metric does not ensure the convergence
to the correct matching: the selected corresponding point
could be incorrect, since multiple vertices can present a
shape signature similar to the one of the vertex consid-
ered (or because a point on a non-overlapping region of
Rb can be very similar to the selected pointp of Ra).
Therefore, we need to validate the matching.
Other approaches exist that try to avoid as much as
possible any false match by defining more complex shape
signatures. We have chosen to follow a strategy which
couples a computationally efficient shape descriptor with
a further validation phase which proves the correctness
of (or purges) the selected matching points.

C. Matching points validation

Using the approach described in the previous subsec-
tion we get a set oft corresponding points pairs(p, q)

with p ∈ Ra, q ∈ Rb that can include some (or eventually
many) false matches. The naive approach – use all the
t couples in order to determine the matching matrixM
according with [2] – can easily fail if there are many
wrong matching pairs. Therefore, we adopted a different
approach. For each combination of 4 different pairs
extracted by the set oft pairs (Qj = [(p, q)1 . . . (p, q)4])
we compute a matrixMj ; in this manner we obtain(

t
4

)
different matching matricesMj . Then, we choose

the matrix that provides the smaller alignment errorεj

computed only on the 4 pairs which definesQj :

εj =
1
4

∑
(p,q)∈Qj

(‖p−Mjq‖2) (4)

If the alignment errorεj is equal or smaller than
the user-selected threshold valuecoarse err 1, we have
found a sufficiently correct alignment. Otherwise,Mj

should not be considered as a correct alignment matrix.
The computational cost of our approach depends on

the value of t and the resolution of the range maps.
Larger ist and larger is the subset of all possible roto-
translation betweenRa andRb which are considered and
checked. On the other hand, we should sett to small
values to maintain the computational cost affordable. In
the next paragraph, we’ll show how to find an alignment
matrix using a very low value fort: 20 ≈ 40 vertices
(remember that a standard range maps contains around
300K vertices).

D. Iterative matrix computation

The best matrix found yields an error greater than the
given thresholdεbest > coarse err if the set oft pairs
contains mostly incorrect matches, and it is not possible
to compute a correct alignment matrix from theset pairs.
Instead of setting a bigger value for thet parameter, we
adopt an iterative approach: all the previous steps (choice
of a new set oft vertex pairs, evaluation of the alignment
error) are iterated until a proper alignment matrix is
found. To improve accuracy and speed up convergence
of the method, we reuse on each iteration the best results
obtained in the previous cycle.

At iteration i, we select the local set oft matching
vertices by computing the respective kernels. Then, to
find the best roto-translation matrix, we add to the
local t pairs the 4 pairs that generated the best solution
found in the previous iteration. In this manner, the space
of possible solutions is augmented and this helps the
algorithm to converge faster to a consistent solution.

1The thresholdcoarse err is usually given in metric units, i.e. in
millimeters in the case of our laser-scanner range maps.
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The main drawback of this method is that we might
be trapped in alocal minimum, i.e. when the algorithm
is not capable to find a better solution than the previous
one. We detect a local minimum stall by checking if in
subsequent iterations the alignment errorεbest doesn’t
improve. To remove the stall, we perform a perturbation
of the best current solution by discarding one of the 4
couples that generated the current solution. According to
the results of our empirical experiments (see Section V),
this simple heuristic detected and recovered all local
minima stalls. Moreover, in order to detect the occur-
rence of an impossible matching (e.g. when the overlap
Ra

⋂
Rb ≈ ∅), we set a threshold valuemaxiter for the

maximum number of iterations allowed.

V. EXPERIMENTAL RESULTS

The proposed registration algorithm was tested on
many large datasets coming from real scanning cam-
paigns (each range map contains therefore real raw data,
usually affected by noise, artifacts and holes). The laser
scanner used in all our acquisitions is a Minolta Vivid
910, which returns range maps of resolution 640*480
(around 300K samples). After the automatic selection
of an initial coarse registration matrix with the proposed
algorithm, all datasets were finely aligned (pairwise local
and global registration) using ourMeshAligntool [3]. All
performance figures have been measured on a Pentium
IV 2.4GHz PC with 1GB RAM.

A. Single range map pairs alignment

Figure 3 shows a set of four matching points selected
on two range maps sampling a portion of the Arrigo
VII’s head (the results are shown over the depth maps,
rendered as they are with no roto-traslations added at
visualization time). In this case each range map contains
about 150k vertices (here large portions in the 2D maps
contain null data). The solution was found in 30.8
seconds, settingt = 20 and coarse err = 1.0mm.
The algorithm iterates four times to converge to a coarse
alignment satisfyingcoarse err. The error obtained in
the four iterations is shown in the graph presented in
Figure 3. For each iteration we show the best alignment
error εj obtained. The result of this coarse alignment
is presented in Figure 4 (this figure requires to be seen
in color since the two range maps are rendered with
a different color shade). It’s possible to notice that the
alignment’s quality is rather good and thus the ICP
algorithm can be applied successfully to the meshes.

Another interesting example is the one shown in
Figure 5, which shows the matching points selected
on two different range maps (they represents the back

Fig. 3. The four matching point pairs selected by the algorithm
on two range maps. The coarse alignment for the two range maps
required four iterations (error in millimeters).

Fig. 4. The result of the coarse alignment.

section of the Arrigo’s head). In this case the running
time was longer, 1min:28sec, since the algorithm was
temporarily trapped in local minima and thus required
more iterations than the previous example (9 in total in
this case, 3 were local minima as shown in of Figure 5).
After the stall’s detection (at the5th iteration), the
current solution was perturbed; we can notice that, at
the sunbsequent iteration, the solution found was worse
than the previous one. Anyway, at the7th iteration the
alignment error improved. The technique adopted to exit
from a local minimum stall, as described in Section IV-
D, influences the alignment error curve in the way
previously described: after an initial worsening, usually
error is improved; we observed the same behavior in all
the tests we carried out, whenever a local minimum was
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Fig. 5. The matching point pairs selected on the back of the Arrigo’s
head; the graph shows the alignment iterations and the two local
minima successfully managed.

detected.

B. Stripes alignment

We present now some examples of the tests performed
on bigger datasets. As explained in Section III, in a real
scan campaign we usually acquire the range maps in a
row or column-wise order; this simplifies the planning
process and also the successive alignment phase. For
this reason, at the end of a standard scan campaign, we
have the scan set subdivided into a few stripes, where
each stripe contains many consecutive and adjacent
range maps. A few ad hoc scans are also usually
produced at the very end of the scanning session, to
cover object regions which have not been sampled by
the previous stripes.
Figure 6 shows the result of the stripe-based alignment
of a spiral column with artistic carvings (real size is
about 85 cm tall, with a diameter of 25 cm.). Five
circular stripes were scanned, for a total of 62 range
maps (about 11M vertices). The automatic coarse
alignment completed processing in 1h:13min, using
t = 20 and coarse err = 1.0mm. The graph on the
bottom of Figure 6 shows how many range maps of
the column were aligned by the algorithm in a certain
amount of iterations: most of the range map pairs
required few iterations (≤ 10), while only 2 meshes
required about thirty iterations.

Fig. 6. The result of the coarse alignment applied to the five circular
stripes (left) and the final model obtained(right). The histogram
shows how many range maps were aligned with that number of
iterations; most of the alignments required less than 10 iterations.

An example concerning a bas-relief is shown in Figure
7, whose approximate length is 2.5 meters; in this case
two raster-scan (snake-like) stripes were acquired, for
a total of 117 meshes (about 45.5M vertices). The
algorithm performed the overall alignment in 1h:50min.
As shown in the graph presented in Figure 7, almost all
pair-wise alignments were done with a single iteration,
so the entire process required a shorter time to complete
than the previous column example. This run produced an
overall alignment totally satisfactory for the subsequent
application of ICP and global alignment. Again, the
set of arcs has been completed automatically by the
MeshAlignsystem.

Figure 8 shows an important aspect of thelocal vs.
global alignment: Figure 8.a shows the result of the local
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Fig. 7. The coarse alignment of the bas-relief(top) and the final
model(middle); almost all of the alignments required just 1 iteration.

coarse alignment of the first four meshes out of a circular
stripe representing the head of the Minerva of Arezzo (a
bronze statue, 1.55 cm tall); the final result of the local
coarse alignment is shown in Figure 8.b. The substantial
accumulated error between the first (green) and the last
range map (violet) in the circular scan is easily visible
(see for example the major miss-match in the nose
region). This is due the well-known alignment error
accumulation along the circular stripe, common to all
local registration algorithms. The subsequent application
of a global registration phase [20], [3] produces a correct
fine alignment, as shown in Figure 8.c.

An overall presentation of numerical figures relative
to all the scans set presented is given in Table I. The
last two scan set mentioned in this table are presented
in Figures 9 and 10.

A fair comparison with existing solutions is not easy
since no source code is available on public domain and
timings are often not presented. Moreover, most of the
approaches presented in literature takes into account (and
present results on) only the simple case of a pair of
range maps, even of very small size ([7], [11], [26]).
The only previous paper presenting results obtained on

Fig. 8. Local coarse alignment of the first four range maps of the
Minerva’s head(a); a substantial accumulated error is visible between
the first (green) and the last range map (violet) in the circular stripe
(b); the final result after the application of global alignment(c).

Fig. 9. The coarse alignment of a portion of the archway of S.
Ranieri’s door, Pisa Cathedral(up). The final model after ICP and
global alignment(down).

Fig. 10. The coarse alignment of the Arrigo VII’s sepolcro.
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Dataset Range maps Total vertices Alignment time
Minerva’s head 10 1.7M 7min

Spyral column (Arrigo VII) 62 11M 1h 13min
Bass-relief (Archway) 110 30M 52min

Bass-relief (Arrigo VII) 117 45.5M 1h 50min
Sepolcro (Arrigo VII) 136 28M 41min

TABLE I

NUMERICAL FIGURES ON THE DATASET CONSIDERED IN THE EMPIRICAL EXPERIMENTS.

rather complex scan set is [15], but unfortunately authors
do not offer information on the running times of their
solution.

VI. CONCLUSIONS

We have presented a new automatic registration
method which has demonstrated very good performances
while converging to valid solutions. The method is based
on some simplifying assumptions, which allow us to
face the automatic range map alignment problem with
an iterative solution based on the automatic detection
of corresponding point pairs. The solution presented is
based on a new shape characterization kernel that focuses
on surface vertices; it works in the 2D space of the range
maps and characterize 3D geometry by processing sur-
face normals evaluated on a kernel of regularly sampled
adjacent points. The method has demonstrated to work
well on real complex scan set with good performances
even using a standard PC (as shown in table I). We are
planning to include this solution as a background process
in our scanning front end (which drives the Minolta
scanner). Due to the reduced computational complexity,
automatic alignment can be run in background during
acquisition, to have all range maps transformed on the fly
in a common space. This will allow the user to monitor
the completion status of the acquisition and to detect
well in advance not sampled surface regions.

ACKNOWLEDGMENTS

This work was supported by the EU NOE “Aim@Shape” project
(EU 506776) and “MACROGeo” project financed by MIUR - Action
FIRB. We gratefully acknowledge the cooperation with the Tuscan
Archaeologic Superintendency (Florence, Italy) – concerning the ac-
quisition of the Minerva statue – and the Opera Primaziale Pisana and
Museum of the Cathedral (Pisa, Italy) – concerning the acquisition
of the Arrigo VII statues.

REFERENCES

[1] F. Bernardini, H. E. Rushmeier, I.M. Martin, J. Mittleman,
and G. Taubin. Building a Digital Model of Michelangelo’s
Florentine Pieta’. IEEE Computer Graphics & Applications,
22(1):59–67, Jan-Febr. 2002.

[2] P. J. Besl and N. D. McKay. A method for registration of 3-D
shapes. IEEE Transactions on Pattern Analysis and machine
Intelligence, 14(2):239–258, February 1992.

[3] M. Callieri, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi, and
R. Scopigno. Vclab’s tools for 3d range data processing. In
A. Chalmers D. Arnold and F. Niccolucci, editors,VAST 2003
and EG Symp. on Graphics and Cultural Heritage, page (in
press), Bighton, UK, Nov. 5-7 2003. Eurographics.

[4] M. Callieri, A. Fasano, G. Impoco, P. Cignoni, R. Scopigno,
G. Parrini, and G. Biagini. Roboscan: An automatic system for
accurate and unattended 3d scanning. In3DPVT’04: Second Int.
Symp. on 3D Data Processing, Visualization and Transmission,
page (in press). IEEE Comp. Soc., Sept. 6-9 2004.

[5] Richard J. Campbell and Patrick J. Flynn. A Survey Of
Free-Form Object Representation and Recognition Techniques.
Computer Vision and Image Understanding, 81(2):166–210,
2001.

[6] Y. Chen and G. Medioni. Object modelling by registration
of multiple range images.International Journal of Image and
Vision Computing, 10(3):145–155, April 1992.

[7] C. S. Chua and R. Jarvis. Point signatures: A new representation
for 3d object recognition. Int. J. Comput. Vision, 25:63–85,
1997.

[8] H. Delingette, M. Hebert, , and K. Ikeuchi. A spherical
representation for the recognition of curved objects. InProc.
IEEE Int. Conf. On Computer Vision, pages 103–112, 1993.

[9] H. Delingette, M. Hebert, and K. Ikeuchi. Shape representation
and image segmentation using deformable surfaces.Image and
vision computing, 10:132–144, 1992.

[10] R. Fontana, M. Greco, M. Materazzi, E. Pampaloni, L. Pezzati,
C. Rocchini, and R. Scopigno. Three-dimensional modelling of
statues: the minerva of arezzo.Journal of Cultural Heritage,
3(4):325–331, 2002.

[11] A.E. Johnson and M. Hebert. Surface registration by matching
oriented points. In3DIM97, pages 4 – View Registration, 1997.

[12] R. Koch, M. Pollefeys, and L. Van Gool. Realistic surface
reconstruction of 3D scenes from uncalibrated image sequences.
In Franz-Erich Wolter and Nicholas M. Patrikalakis, editors,
The Journal of Visualization and Computer Animation, volume
11(3), pages 115–127. John Wiley & Sons, Ltd., 2000.

[13] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk. The Digital Michelangelo Project:
3D scanning of large statues. InSIGGRAPH 2000, Computer
Graphics Proceedings, Annual Conference Series, pages 131–
144. Addison Wesley, July 24-28 2000.

[14] Marc Levoy and Szymon Rusinkiewicz. Efficient variants of
the ICP algorithm. InThird Int. Conf. on 3D Digital Imaging
and Modeling (3DIM 2001), pages 145–152. IEEE Comp. Soc.,
May 28th - June 1st 2001.

[15] Gianfranco Doretto Luca Lucchese and Guido Maria Corte-
lazzo. A frequency domain technique for range data registration.



IEEE TRANSACTION ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, ZZZZ 2004 11

IEEE Trans. on Pattern Analysis and Machine Intelligence,
24(11):1468–1484, 2002.

[16] T. Funkhouser M. Kazhdan and S. Rusinkiewicz. Rotation
invariant spherical harmonic representation of 3d shape descrip-
tors. In Eurographics Symposium on Geometry Processing,
pages 156–164, 2003.

[17] T. Funkhouser M. Kazhdan and S. Rusinkiewicz. Shape
matching and anisotropy.ACM Trans. on Graphics (SIGGRAPH
2004), 23(3):(in press), Aug. 2004.

[18] Polhemus. The FastSCAN Cobra scanning system. More info
on:http://www.polhemus.com/fastscan.htm ,
2003.

[19] M. Pollefeys, L. J. Van Gool, M. Vergauwen, F. Verbiest, and
J. Tops. Image-based 3d acquisition of archeological heritage
and applications. In D. Arnold, A. Chalmers, and D. Fellner,
editors,VAST 2001 Conference Proc., pages 255–261, Athens,
Greece, Nov. 28-30 2001. ACM Siggraph.

[20] K. Pulli. Multiview registration for large datasets. InProc 2nd
Int.l Conf. on 3D Digital Imaging and Modeling, pages 160–
168. IEEE, 1999.

[21] G. Roth. Registering two overlapping range images. In
3DIM’99: Second Int. Conf. on 3D Digital Imaging and Mod-
elling, pages 191–200, October 1999.

[22] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time 3d
model acquisition. InComp. Graph. Proc., Annual Conf. Series
(SIGGRAPH 02), pages ??–?? ACM Press, July 22-26 2002.

[23] F. Stein and G. Medioni. Structural indexing: Efficient 3-d
object recognition. IEEE Trans. Pattern Anal. Mach. Intell.,
14:125–145, 1992.

[24] Steinbichler Optotechnik. COMET series.
http://www.steinbichler.de/ , 2004.

[25] J. Stumpfel, C. Tchou, T. Hawkins, P. Debevec, J. Cohen,
A. Jones, and B. Emerson. Assembling the sculptures of the
parthenon. In A. Chalmers D. Arnold and F. Niccolucci, editors,
VAST 2003 and EG Symp. on Graphics and Cultural Heritage,
pages 41–50, Bighton, UK, Nov. 5-7 2003. Eurographics.

[26] Y. Sun, J. Paik, A. Koschan, D.L. Page, and M.A. Abidi. Point
fingerprint: A new 3-d object representation scheme.IEEE
Transactions on Systems, Man and Cybernetics, 33(4):712–717,
August 2003.

[27] Richard Szeliski. Rapid octree construction from image se-
quences. CVGIP: Image Understanding, 58(1):23–32, July
1993.

[28] J.W. Tangelder and R.C. Weltkamp. A survey of content based
3D shape retrieval methods. InInt. Conf. on Shape Modeling
and Applications (SMI 2004), page (in press), Genova, Italy,
2004. IEEE Comp. Society.

[29] S. Tosovic and R. Sablatnig. 3D modeling of archaeological
vessels using shape from silhouette. InProc. of 3rd Inter-
national Conference on 3D Digital Imaging and Modeling
(3DIM), pages 51–58, Qubec City, Canada, May 28 - June 1
2001. IEEE Comp. Soc.

[30] D. Vranic and D. Saupe. 3D model retrieval with spherical
harmonics and moments. InProc. of the DAGM, pages 392–
397, 2001.

[31] J. Vanden Wyngaerd and L. Van Gool. Automatic crude patch
registration: Toward automatic 3d model building.Computer
Vision and Image Understanding, 86(2):8–26, 2002.

Andrea Fasano is a research collabora-
tor at the Istituto di Scienza e Tecnologie
dell’Informazione of the National Research
Council in Pisa. His research interests include
3D scanning, automatic registration, ray trac-
ing and applications of Computer Graphics.
Fasano received an advanced degree in Com-
puter Science in 2003 from the University of
Pisa.

Paolo Pingi is a PhD student at the Istituto
di Scienza e Tecnologie dell’Informazione of
the National Research Council in Pisa. His
research interests include 3D scanning, auto-
matic registration, sensor tracking and appli-
cations of Computer Graphics. Pingi received
an advanced degree in Computer Science in
1999 from the University of Pisa.

Paolo Cignoni is research scientist at the Isti-
tuto di Scienza e Tecnologie dell’Informazione
(ISTI) of the National Research Council
(CNR) in Pisa, Italy. His research interests
include computational geometry and its inter-
action with computer graphics, scientific visu-
alization, volume rendering, simplification and
multiresolution. Cignoni received in 1992 an
advanced degree (Laurea) and in 1998 a PhD

in Computer Science from the University of Pisa.

Claudio Montani is a research director
with the Istituto di Scienza e Tecnologie
dell’Informazione (ISTI) of the National Re-
search Council (CNR) in Pisa, Italy. His re-
search interests include data structures and
algoritms for volume visualization and render-
ing of regular or scattered datasets. Montani
received an advanced degree (Laurea) in Com-
puter Science from the University of Pisa in

1977. He is member of IEEE and AICA.

Roberto Scopigno is senior research scien-
tist at the Istituto di Scienza e Tecnologie
dell’Informazione (ISTI) of the National Re-
search Council (CNR) in Pisa, Italy. He is
currently engaged in research projects con-
cerned with scientific visualization, volume
rendering, multiresolution data modeling and
rendering, 3D scanning and applications of
3D computer graphics to Cultural Heritage.

Scopigno received an advanced degree (Laurea) in Computer Science
from the University of Pisa in 1984. He is member of IEEE and
Eurographics. He is elected member of the Executive Committee
of the Eurographics association and, since 2003, Vice Chair of the
association.


