
Resource Management Systems: Scheduling of
Resource-Intensive Multi-Component Applications

Deliverable of the Grid.it project - WP8

R. Baraglia, S. Orlando, R. Perego

April 27, 2004

Abstract

Contents

1 Introduction 2

2 Grid scheduling 3

3 General Architecture of a Grid Scheduler 5

4 Grid Scheduling Systems for multi-component applications 7
4.1 The AppLes project . 7
4.2 The GrADS project . 10

4.2.1 Launch-time scheduling . 11
4.2.2 Rescheduling . 11
4.2.3 Meta-scheduling . 12

4.3 Grid workflows . 12

5 Assessment and future work 14
5.1 Summary of the planned activities . 15
5.2 Experimenting with application level schedulers for skeleton-based pro-

grams . 16
5.2.1 Performance models and mapping algorithms 16
5.2.2 Launch-time scheduling vs. Rescheduling 17
5.2.3 Scheduling Policies . 18

5.3 Workflow scheduling . 18

1

1 Introduction

A Grid is a dynamic, seamless, integrated computational and collaborative environ-
ment. Grids integrate networking, communication, computation and information to
provide a virtual platform for computing and data management. Machines in a Grid
are typically grouped into autonomous administrative domains that communicate via
high-speed communication links. For a good description of Grid technology refer to
[14, 11].

A Grid Resource Management System (RMS) is central to the operation of a Grid,
and its basic functions are to accept requests for resources and assign specific machine
resources to a request from the overall pool of grid resources for which a user has
access permission. The RMS is constituted by the middleware, tool and services that
allow to disseminate resource information, discover suitable resources and scheduling
resources for job execution. The design of a RMS have to consider aspects such as: site
autonomy, heterogeneity, extensibility, allocation/co-allocation, scheduling, and online
control [13, ?].

Site autonomy. Computing resources are geographically distributed under
different ownerships each having their own access policy, cost and various
constraints. Every resource owner will have a unique way of managing and
scheduling resources and the grid schedulers have to ensure that they do not
conflict with resource owners policies.
Heterogeneity. The solution of complex problems can require various kind
of resources located on different sites that can use different operating sys-
tems as well as different local resource management systems which lead to
significant differences in functionality.
Extensibility. A resource management solution must support the frequent
development of new domain-specific management structures, without re-
quiring changes to code installed at participating sites.
Allocation/Co-allocation. Applications have computational requirements
that can be satisfied by using one or more resources that could be allocated
simultaneously at several sites. Site autonomy and possibility of failure dur-
ing allocation introduces a need for specialized mechanisms for allocating
resources, initiating computation on those resources, and monitoring and
managing those computations.
Scheduling. To achieve high performance, efficient mechanism to assign
job/applications tasks to the selected resources and to schedule on them
their execution are needed.
Online control. Many applications can require to adapt their execution
to resource availability, in particular when application requirements and
resource characteristics change during application execution.

In the past several RMS were proposed, but currently no one supports a full set of
functionalities as required by a Grid RMS. Some, such as Condor [23] supports site au-
tonomy, but not co-allocation or online control, others, such as Legion, supports online
control and policy extensibility, but not the heterogeneous substrate or co-allocation
problems [12]. In [16] a taxonomy to survey existing Grid resource management im-
plementations can be found.

2

Even if, in the broadest sense, any application can be a Grid application, in prac-
tice, applications that can take more advantage in using the Grid are loosely-coupled,
computational intensive, component based, and, often, multidisciplinary. Components
can be sequential or parallel, written using different programming languages, and may
be distributed across a wide-area network. In order to completely exploit the com-
putational peculiarities of a Grid, an application has to be grid-aware. A grid-aware
application is one that at run-time can exploit the RMS to identify Grid characteristics,
and then dynamically reconfigure resource requirements and possibly the application
structure to maintain the required performance. Moreover, the application should be
scalable and portable.

To reach application goals such as the desired application performance and scal-
ability, complex distributed application schedulers that exploit and extend concepts
introduced by projects such as AppLes [5] are needed. Such schedulers have to be able
to collect information describing the computational resources in the Grid as well as
information describing their current state and usage. The state estimation of Grid re-
sources, and its relation with the scheduling policies adopted, is a hot topic of research.
Projects like GrADS [9] adopts a predictive approach, according to which current and
historical information are taken into account in order to estimate the resource state.

As regards scheduling policy adopted within an RMS, we can distinguish two main
ones: system oriented and application oriented. Job schedulers usually adopts system
oriented policies, trying to optimize system throughput. On the other hand, application
schedulers try to optimize application-specific metrics like completion time. While the
goal of a job scheduler is to maximize the overall resource utilization, application
schedulers may try to acquire much more resources than the ones each application
is able to efficiently utilize. As usual, there is a tradeoff between the two approach.
Several authors believe that schedulers should provides interfaces whereby external
agents can changes the scheduling policy if needed. A similar approach is being to be
adopted by the GrADS project, where the metascheduler service is an attempt to find
a tradeoff between the need to provide high performance to the individual applications,
and to increase the throughput of the system, for example by preempting an executing
application to improve the performance contract of a new application when the system
appears to be overloaded.

The rest of this report is organized as follows. Section 2 introduces the Grid
scheduling issues, while Section 3 discusses the general architecture of a Grid Sched-
uler. Then Section 4 surveys the main research projects related Grid scheduling of
multi-component applications. Finally Section 5 discusses some research proposals for
the next year of the project.

2 Grid scheduling

A Grid schedulers has to compute one or more schedules for input lists of jobs, subject
to constraints that can be specified at launching-time. Such constraints can also affect
the run-time of the job, if resource selection and scheduling decisions are taken by a
grid-aware support of the application.

The structure of a scheduler may depend on the number of resources managed, and
the domain in which resources are located. In general we can distinguish three different

3

models for structuring schedulers: Centralized, Decentralized, Hierarchical [23]. The
first one can be used for managing single or multiple resources located either in a single
or multiple domains. It can only support a uniform scheduling policy and suits well
for cluster management (or batch queuing) systems such as Condor [23], LSF[2], and
Condine [1]. It is not suitable for Grid RMSs as they are expected to deal with local
policies imposed by resource owners. The Decentralized model seems to better fit for a
typical Grid environment. In this model the schedulers interact among themselves in
order to decide which resources should be allocated to the jobs being executed. There
is no central component responsible for scheduling, hence this model appears to be
highly scalable and fault-tolerant. The resource owners can define their policies that
the schedulers has to enforce. However, because the status of remote jobs and resources
is not available at single location, the possibility of generating highly efficient schedules
is questionable. The Hierarchical model also fits for Grid environments as it allows
remote resource owners to enforce their own policy on external users, and removes
single centralization points. This model looks like a hybrid model (combination of
central and decentralized model), and seems to better suit grid systems. The scheduler
at the top of the hierarchy is called super-scheduler/resource broker, which interacts
with local schedulers in order to decide schedules.

For scheduling resource-intensive parallel applications, projects like AppLeS and
GrADS worked on a Decentralized approach, where specific Grid application schedulers,
tailored on particular applicative classes, are adopted. The idea here is that each
application scheduler works on predictive estimations of the system load, and identifies
the best set of resources using a performance model and considering user-provided
requirements and application-specific metrics, e.g., the minimization of application
completion time. On the other hand, job schedulers for parallel application have to
multiplex different applications on a set of shared resources, and usually consider the
parallel applications as black-boxes, without considering that the application can be
reconfigured to run on less or more resources on the basis of their availability. Without
this application-based configuring phase, it is possible that applications can experience
large slowdown in time-shared systems, and high queue waiting times in space-spared
systems.

Scheduling algorithms are classified as static or dynamic. In the former the map-
ping decisions are taken before executing an application and are not changed until the
end of the execution. Also launching-time scheduling for parallel applications, where
configuration and mapping decisions are taken before running the application, can be
classified as static scheduling policies. In the latter the mapping decisions are instead
taken while the program is running. Since static mapping usually does not imply
overheads on the execution time of the mapped application, more complex mapping
solutions than the dynamic ones can be adopted. When the characteristics of a par-
allel application, such as task computational cost, amount of data exchanged among
tasks, and task dependencies, are known before the application execution, a static
mapping approach can be profitably exploited. Otherwise, a dynamic approach has to
be adopted, where a monitoring system helps the application scheduler to reschedule
the application to respect a given performance contract.

While launch-time reconfiguration of a parallel application only requires malleable
code, - i.e. applications that can be configured without recoding in order to exploit a
different number of resources – dynamic scheduling need grid-aware supports – i.e. such

4

application have to be based on a run-time support that can manage the rescheduling
and the interaction with the grid RMS.

3 General Architecture of a Grid Scheduler

In [28] Schopf delineates the general architecture of a Grid scheduler, also termed
super-scheduler or broker. The phases of this scheduler are illustrated in Figure 1.
Grid scheduling involves three main phases: resource discovery, which generates a list
of potential resources; information gathering about those resources and selection of a
good set of them; and job execution, which includes file staging and cleanup.

Figure 1: Architecture of a general Grid scheduler.

In the following of this section we’ll use this scheme as a general framework for

5

discussing Grid scheduling issues, independently of the policies adopted, the kind of
applications, etc.

Resource Discovery. The first phase, i.e. resource discovery, is perhaps the less
studied in the scheduling community. This phase requires a standard way to express
application requirements with respect to the resource information stored in the Grid In-
formation System. It is thus needed an agreed-upon schema to describe the attributes
of the systems, in order for different systems to understand what the values mean.
This is an area of on-going work and research, with considerable debate about how to
represent a schema (using LDAP, XML, SQL, etc.) and what structure should be in-
herent to the descriptions. Another important problem regards authorization filtering,
which also requires a secure and scalable user accounting system. For example, in the
GrADS project [8] the list of machines where to map applications is currently obtained
directly from the user. They claim that once secure MDS publishing mechanisms are
available, user account information can be published directly in the MDS and retrieved
automatically by the scheduler.

Resource selection. Resource selection usually occurs after the first resource dis-
cover phase. While the first phase filters out unsuitable resources, this phase should
determine from this large list the best (set of) resource(s) chosen to map the applica-
tion.

This selection requires to gather detailed dynamic information from resources, e.g.
by accessing local GRIS of Globus middleware, or querying performance prediction
systems such as Network Weather System (NWS) [26]. This information should be
used to rank resources, and to allow the scheduler to choose the ones that should
ensure high performance in the execution of the application.

While resource selection can be quite simple for sequential jobs, this selection can
become particularly complex for multi-component parallel applications. In [17], Liu
and Foster introduce a constraint language for the selection of resources for parallel
jobs. The language extends the ClassAds one used by the Condor’s matchmaking
mechanism. The important idea is the set-extension of the ClassAds language, in order
to express constraints for the selection of ”set of resources” suitable for co-allocating
parallel applications. For example, the authors are interested in expressing collective
constraints on the set of resources to select, such as the aggregate memory size of a set
of workstations. Another important argument discussed in this paper is the criticism to
the method currently used to express the description of the resources, published using
Grid services like MDS, and used by the scheduler to select suitable resources. This
mechanism is considered unflexible and not suitable with respect to the autonomous
nature of Grid resources. For example, the owner of a resource might want to allow
access only to users belonging to a certain group or able to pay a fee. It was exactlt
this observation that leds Raman et al. [25] to propose that resource retrieval and
selection should be treated as a bilateral matching process.

The problem of selecting and co-allocating set of resources for parallel applications
has been recently discussed by Berman et al. in [8]. They face the problem by first
subdividing the machines into disjoint subsets, or sites. In this way they introduce a
hierarchical layering into the ”completely connected” network graph. They try to de-
termine clusters of machines (sites) on the basis of network bandwidth dconsiderations,

6

where the network delays within each cluster are presumably lower than the network
delays between clusters. In the selection of the best set of machines, their mapping
algorithm considers this hierarchy, by trying to maximize the usage within each site.
For example, by trying to allocate a program within a single site, if it is possible and
profitable. While in their first implementation Berman et al. only group machines
into the same site when they share the same domain name, they plan to consider more
sophisticated approaches based on [29].

Finally, in order to finally select the actual subset of systems to run a parallel
application, several researchers claim that the optimal choice can be only done by
exploiting a (more or less accurate) performance model. See sections 4.1 and 4.2 for a
description of this selection strategy.

Job Execution The last phase of the scheduling architecture regards job execution.
This phase can be very complex, since the preparation of a job run can require various
intermediary steps, like staging of files, advance reservation, etc.

One of the main activities shown in Figure 1 regards the monitoring of the progress
of application execution. A user, when a job is not making sufficient progress, may
stop the job and reschedule it by returning to Step 4. Such rescheduling is significantly
harder for parallel job executing on multiple sites. Dynamic scheduling is needed it
that case.

4 Grid Scheduling Systems for multi-component

applications

In this section we give a brief overview of some current Grid scheduling efforts in the
area of multi-components resource-intensive parallel applications, surveying the main
results of the AppLes and GrADS projects. Finally we introduce the concept of Grid
workflow, as presented in literature, and some of the approaches currently followed for
their scheduling.

4.1 The AppLes project

AppLeS (Application Level Scheduling) is a project leaded by F. Berman at the Univer-
sity of California, S. Diego. It is a metodology for adaptive application scheduling on
heterogeneous computing platforms. The AppLes approach exploits static and dynamic
resource information, performance predictions, application and user-specific informa-
tion, and scheduling techniques that adapt “on-the-fly” to application execution.

In Figure 2 the phases in the Apples scheduling methodology are shown.
As we can see, the System Selection phase of the general scheduler architecture of

Figure 1, in AppLeS is split into three sub-phases: (2) Resource selection, (3) Schedule
generation, and, (4) Schedule selection. During sub-phase (2) the resources enabled
to run the application are selected according to application-specific resource selection
models. To this end, AppLeS uses information carried out by the Network Weather
Service (NWS) performance monitor (NWS is a distributed system that periodically
monitors and dynamically forecasts the performance various network and computa-
tional resources can deliver over a given time interval). An ordered list of viable

7

Figure 2: Phases in the Apples methodology.

8

resources is finally produced. In (3) a performance model is applied to determine a set
of candidate schedules for the application on the selected resources (for any given set
of resources, many schedules may be possible). In (4) the schedule that best matches
the chosen performance criteria is selected.

The AppLeS approach requires to integrate in the application a scheduling agent
which must be customized according to application features. In order to make easier
this customization, templates to be applied to classes of applications with common
characteristics were introduced. Templates for parameter sweep applications (APST),
master/worker applications (AMWAT), and for scheduling moldable jobs on space-
shared parallel supercomputers (SA) are currently available.

• Parameter sweep applications are structured as sets of computational tasks that
are mostly independent. The APST template provides two distinct processes: a
daemon, which is in charge of deploying and monitoring applications, and a client
which is essentially a console that can be used either interactively or from scripts.
The user can invoke the client to interact with the daemon to submit requests
or to check application progress. The user describes the program to run and the
needed resources by a XML file, and sends such file to the daemon by a client.
The daemon locates the programs to run, selects the required computational
resources and according to a scheduling policy move programs and input data,
if necessary, on the selected resources. At the end of the application execution
the output files are transferred back to the user. Scheduling decisions are taken
by dynamically generating a Gantt chart to schedule unassigned tasks between
scheduling events. The ASTP software compute the next scheduling event and
accordingly creates or updates a Gantt Chart. Then, for each computation and
file transfer currently underway, it computes an estimate of its completion time
and fill in the corresponding slots in related Gantt Chart. Then, it selects a
subset of the tasks that have not started execution, and until each host has been
assigned enough work, it heuristically assigns tasks to hosts, filling in slots of the
Gantt Chart. Finally, it implements the computed scheduling. The heuristics
implemented for scheduling independent tasks are: Max-min, Min-min, Sufferage
and XSufferage [21, 18].

• The AMWAT template provides an API for structuring applications with a single
master process which controls the flow of computation that is performed on one
or more remote worker processes.
AMWAT achieves application portability by providing common interfaces to vari-
ous services such as interprocess communication and process invocation. In order
to achieve good performance under different conditions, several scheduling strate-
gies are provided by this remplate. Thesestrategies are: one-time fixed allocation
(FIXED) strategy, Self Scheduling (SS) [22], Fixed Size Chunking (FSC) [7],
Guided Self Scheduling (GSS) [6], Trapezoidal Self Scheduling (TSS) [30], and
Factoring (FAC2) [27]. While FIXED, SS, and FSC are examples of allocation
strategies which apply the same block size throughout an application run, GSS,
TSS, and FAC2 are examples of strategies which utilize decreasing block sizes as
the application progresses.

• The SA (Supercomputer AppleS) template allows user-directed scheduling of
moldable jobs (i.e., jobs that can be executed with any of a collection of possi-

9

ble partition sizes) in a batch-scheduled, space-shared, back-filling environment.
Such environments are common in production supercomputer centers and include
MPPs scheduled by EASY [79], the Maui Scheduler [80], and LSF [81]. The user
provides SA with a set of possible partition sizes that can be used to submit a
given moldable job. SA uses simulations to estimate the turn-around time of each
potential request based on the current state of the supercomputer and then for-
wards to the supercomputer the request with the smallest expected turn-around
time. SA does not always select the best request because the execution times of
the jobs already in the system are not known (request times are used as estimates)
and future arrivals can affect jobs already in the system. However, SA chooses
close to an optimal request for most jobs and its pick is generally considerably
better than the user’s choice.

4.2 The GrADS project

The goal of the Grid Application Development Software Project (GrADS)1 [9, ?] is to
realize a Grid system, by providing tools, such as problem solving environments, Grid
compilers, schedulers, performance monitors, to manage all the stages of application
development and execution. Using GrADS the user will only concentrate on high-level
application design without putting attention to the peculiarities of the Grid computing
platform used.

The GrADS system is composed of three main components: Program Preparation
System (PPS), Configurable Object Program (COP), and Program Execution System
(PES). The PPS component handles application development, composition, and com-
pilation. To develop their Grid application, users interact with a high-level interface
providing a problem solving environment, which permits the integration of the appli-
cation source code, software components and library modules. Then, the resulting
application is passed to a specialized GrADS compiler that generares an intermediate
representation code and a configurable object program (COP). The COP encapsulates
all results (e.g. application performance models and the intermediate application rep-
resentation code) of the PPS phase for later usage. The PES components provides
on-line resource discovery, scheduling, binding, application performance monitoring,
and rescheduling.

To execute an application, the user submits parameters of the problem such as
problem size to the GrADS system. The PPE component receives the COP as input
and, at this stage, the scheduler carries out an application-appropriate schedule. The
binder is then invoked to perform a final, resource-specific compilation of the inter-
mediate representation code. Next, the executable is launched on the selected Grid
resources and a real-time performance monitor is used to track program performance
and detect violation of performance guarantees. Performance guarantees are formal-
ized in a performance contract. In the case of a performance contract violation, the
rescheduler is invoked to evaluate alternative schedules.

The scheduler is a key component of the GrADS system. In GrADS, scheduling de-
cisions are taken by exploiting application characteristics and requirements in order to

1Sponsored by the Next Generation Software (NGS) program of the National Science Foundation. Istitu-
tions involved: Rice University, UCSD, University of Tennessee, University of Chicago, Indiana University,
University of Houston, ISI-USC, and UIUC

10

obtain the best application execution time. Monitoring and Discovery Service (MDS)
[?], Network Weather Service (NWS) [26, 33], ClassAds/Matchmaking approach [24],
Globus Toolkit [12] and GridFTP for file transfer [32] are the existing software com-
ponents used to implement the GrADS system.

GrADS supports three scheduling phases: Launch-time scheduling, Rescheduling,
and Meta-scheduling.

4.2.1 Launch-time scheduling

Launch-time scheduling is used before application start to determine how the current
application execution should be initially mapped to available Grid resources. This
technology, the research on which is leaded by the same people of the AppLeS project
[8], is perhaps the most mature one in GrADS. The scheduler takes by a user the list of
the machines he/she wants to use and then it collects static and dynamic information
describing the required machines by querying MDS and NWS, respectively. Then,
according to the application requirements, the machines that are not usable to run the
application are discarded. Then the information describing the remaining machines is
used by a search procedure to carry out scheduling. In GrADS two search procedures:
Resource-aware, and Simulated annealing have been developed.

The performance model is used by the search procedure to estimate the applica-
tion performance when it is executed on a specific set of resources (some metrics such
as application execution or turnaround time, and system throughput can be used to
this end). The performance model takes as input a proposed schedule, the applica-
tion requirements and characteristics, and Grid resources information, and returns the
predicted execution time for that schedule. On the basis of the estimated cost for differ-
ent schedules mapping decisions are taken. In GrADS three mapping strategies, called
Equal Allocation, Time Balancing, and Data Locality are investigated. The choice of
the mapping stategy is function of the application considered. The Equal Allocation
is the default and it allocates data evenly among the selected machines. The goal of
Time Balancing is to balance the work among the processors used in order to remove
a performance constraining due to the slowest processors. The Data Locality strategy
tries to reduce the data movement between machines.

4.2.2 Rescheduling

Rescheduling consists in modifying the application schedule during execution in order
to sustain good performance for long running applications when other applications in-
troduce load variations in the system. Rescheduling can include changing the machines
on which the application is executing (migration) or changing the mapping of data
and/or processes to those machines (dynamic load balancing). In GrADS rescheduling
solutions are introduced only for iterative applications, and rescheduling decisions are
evaluated at each iteration.

The solutions proposed in GrADS use application and resource sensors to monitor
application execution progress and resouce usage. Application sensors are co-located
with application processes to monitor application progress, while resource sensors are
located on the machines on which the application is executing, as well as the other ma-
chines available to the user. When performance falls below expectations, the resched-
uler must determine whether rescheduling is profitable, and if so, what new schedule

11

should be used. In GrADS two rescheduling solutions called Application Migration
and Process Swapping have been experimented. To implement these solutions two
user-level checkpointing libraries were provided. The Application Migration was im-
plemented adopting the stop/start approach. When a running application is signaled
to migrate, all application processes checkpoint their internal state and shutdown.
To this end, a user-level checkpointing library called Stop Restart Software (SRS) has
been developed [?].The rescheduled execution is launched by restarting the application,
which then reads in the checkpointed data and continues its execution.

To reduce application migration overhead, the Process Swapping solution has been
introduced. To enable swapping, the application is launched on more machines than
those actually used for the computation. Some of these machines become part of the
computation (the active set) while some do nothing initially (the inactive set). During
execution, the system periodically checks the performance of the machines and swaps
loaded machines in the active set with faster machines in the inactive set. This approach
requires little application modification and it reduces the introduced overhead, but, on
the other hand, it is less flexible than the Application Migration one. The processor
pool is limited to the original set of machines and there is no incorporated support for
modifying data allocation.

4.2.3 Meta-scheduling

The launch-time scheduler elaborates an application at a time without considering the
presence of other applications in the system. Decisions taken to schedule an application
can thus limit or deny the execution of other applications that are subsequently sub-
mitted to the GrADS system. To limit these kind of problems, a metascheduler [?] has
been implemented. This metascheduler collects information describing all applications
in the system, and by exploiting this global knowledge, tries to balance the needs of
the applications and the overal performance of the system. The metascheduler is stru-
cured according to four components: database manager, permission service, contract
developer, and contract negotiator. The fisrt one acts as a data repository storing in-
formation about all applications in the system (e.g. status of applications, launch-time
application-level schedules, and predicted application execution costs). The database
manager is queried by the other components to make scheduling decisions. The pri-
mary objective of the permission service is to accommodate as many applications in
the system as possible while respecting the constraints of the resource capacities. The
permission service thus decides if allowing or denying the execution of an application.

The request for the execution of an application is rejected if the scheduling decisions
are based on outdated resource information, or if its execution can severely impact the
performance of other executing applications. Moreover, the permission service can also
decide to preempt an executing application to improve the performance contract of a
new application. This kind of scheduling decisions tries to provide high performance
to the individual applications and to increase the throughput of the system.

4.3 Grid workflows

A central concept for the deployment of Grid software components is the adoption of a
workflow description model to specify the coordination level of the activities/services in

12

execution on the Grid. Workflows capture the linkage of constituent services together
in a hierarchical fashion to build larger composite services. In several papers workflows
captures the ”programming the Grid” concept, and encompasses a broad range of ap-
proaches with names like ”Service Orchestration”, ”Service or Process Coordination”,
”Service Conversation”, ”Web or Grid Scripting”. While the activities/services are
units of work to be performed by agents, computers, communication links etc., the
process description of a workflow is a structure describing both the activities to be
executed and the order of their execution [19].

Traditionally, workflows are encountered in business management, office automa-
tion, or production management. Grid workflows have several peculiar characteristics.
In a high-performance computing grid, we are mostly concerned with computational
tasks that execute on heterogeneous resources. Grid workflow tasks are thus heavy
computational processes, parallel jobs running on multitude of processors, terabyte-
size data transfers to visualization servers at different sites, and archiving large data
sets to mass storage. Thus Resource allocation and workflow scheduling are particu-
larly critical aspects of the Grid-based workflow enactment. Moreover, because Grids
provide heterogeneous platforms, different batch schedulers, and varying site policies,
it is extremely difficult for users to deal directly with the different interfaces.

In this section we will survey the main approaches to workflow scheduling currently
followed in the Grid community. After that we will assess our view and describe the
research directions we are going to follow.

In the scientific Grid community, the component model and the related workflow
concepts often correspond to merely determining the execution order of sequences of
tasks, which simply read/write raw files. Many scientific applications are built, in fact,
by composing legacy software components, often written in different languages, where
the seamless interface is realized through raw permanent streams (files). The most
common Grid workflow can thus be modelled as simple Task (Directed Acyclic) Graphs
(DAGs), where the order of execution of tasks (modelled as nodes) is determined by
dependencies (in turn modelled as directed arcs). Each DAG node represents the
execution of a component, characterized by a set of attributes such as an estimate
of its cost and possible requirements on the target execution platform, while DAG
directed edges represent data dependencies between specific application components.
Data dependencies will be usually constituted by large files written by a component
and required for the execution of one or more other components of the application.

Even if several projects have addressed the composition of specific sequences of
Grid tasks, and several groups have developed visual user interfaces to define the link-
age between components, currently there is no consensus on how workflow should be
expressed. Within this framework, the most notable example is the Directed Acyclic
Graph Manager (DAGMan) for Condor [31], i.e. the well known workload management
system for compute-intensive jobs. Condor is a major effort to reach high throughput
computing on distributed resources. It features resource management and scheduling
for jobs and data on large collections of computing elements. It also offers very ef-
fective scheduling strategies for parameter-sweep applications. DAGMan is a Condor
meta-scheduler, that submits jobs to the high-throughput Condor scheduler in an or-
der represented by a DAG and processes the results. The user can submit a DAG
by specifying its jobs and their dependencies with a simple scripting language. The
DAGMan meta-scheduler processes the DAG dynamically, by sending to the condor

13

scheduler the jobs as soon as their dependencies are satisfied and they become ready
to execute.

Besides DAGs, UNICORE [10] provides more sophisticated control facilities in the
workflow language. Constructs such as Do-N, Do-Repeat, If-then-else, and Hold-Job
have been defined and integrated into the abstract job description and the client UNI-
CORE GUI. In particular, Do-N forces the repetition of an activity N times, where
N is fixed at submission time, Do-Repeat repeats an activity until a condition evalu-
ated at runtime becomes true, If-Then-Else executes one of two activities depending
on a condition evaluated at runtime, while Hold-Job suspends an activity until a given
time/date has passed.

The problem of scheduling DAG workflows has been recently addressed by Ken
Kennedy et al. [?] within the GrADS infrastucture. They proposes the adoption of
a two-steps, in-advance, static scheduling policy for each DAG. In other words, the
devised an application scheduler for a single DAG that statically takes scheduling
decision. First, for each component of the DAG the available resources are ranked to
reflect their expected performance in executing the specific component. Then, on the
basis of the ranks estimated for each component and resource, a performance matrix
is built and used by some known heuristics to obtain a mapping of components to
resources. Known heuristics (min-min, min-max, sufferage) to optimize the mapping
of independent jobs are used when several DAG’s nodes become runnable upon the
scheduling of their parents in the graph. The author claim that static knowledge of
DAG tasks’ costs and their dependencies allows global optimizations to be devised
that cannot be addressed by dynamic approaches such that followed by DAGMan.
Unfortunately, precisely estimate component execution cost is usually very hard. In
fact, the computational cost of a component often depends not only on the size of
data, but also on run-time parameters provided by the user. Consider for example an
Association Rule Mining (ARM) analysis: its complexity not only depends on the size
of the input dataset, but also on the user-provided support and confidence thresholds.
Moreover, the correlations between the items present in the various transactions of
a dataset largely influences the number and the maximal length of the rules found
by an ARM tool [?]. Therefore, it becomes difficult to predict in advance either the
computational and input/output costs, or the size of the output data.

Moreover, a grid environment is intrinsically dynamic. Site and communication
link performance may vary rapidly in an unpredictable way thus vanishing the efforts
done to statically optimize the overall DAG scheduling.

5 Assessment and future work

This section deals with our future work within the WP8 of the Grid.it project. Before
outlining this, however, we would like to assess the literature on Grid RMSs, and
remark some promising research direction to investigate.

First of all, we can say that the skeleton-based programming model chosen in our
project should permit to better derive performance models to devise specialized ap-
plication schedulers. The benefits of integrating with applications a scheduling agent,
which must be customized according to application features, was formerly observed by
the AppLes researchers. Moreover, to make feasible this Grid programming method-

14

ology, templates to be applied to classes of applications with common characteristics
were introduced in AppLes. Note that the concept of template is similar to the skeleton
one pursued in our project.

Similarly to GrADS, both launching-time and dynamic scheduling approaches should
be investigated in our project. While the first one only requires a parallel code that
can be configured at launching-time, the last one may require the following features:

• The ability of the application code (run-time support) to balance the load between
(all, or a subset of all) the resources allocated at loading-time. Note that this
feature is also needed in case the application has on board an agent able to
acquire or release resources on the basis of monitoring and performance model of
the application. Consider that, even when it is not profitable to modify resource
allocation at run-time, a non-intrusive load balancing policy should be useful to
solve sudden changes in the resources’ capacities.

• The ability to completely freeze the application, and continue the execution on
a different set of resources. Such technique could be useful when the current set
of resource are becoming globally inefficient or failed. Hence, this checkpointing
features should be also necessary to guarantee some dependability features. A
point to investigate is the seamless integration of user-level checkpoint library in
the run-time support of our skeleton-based language. Finally, note the the prob-
lem of choosing another set of resources to continue the running of an application
is similar to a launch-time scheduling one.

A point to be deeply investigated is also the integration of dynamic information
sources into the Grid resource information service, and how we can count on this infor-
mation to devise good scheduling techniques. Mainly because the dynamic information
on the resource loads may become quickly stale and unstable, forecasting based on his-
torical logs may become more predictive and stable. Several projects thus investigated
the use of a prediction system such as NWS. The experiments presented in literature
are however limited, and further investigations should be carried out on this topic to
better understand pro/cons of this approach vs simpler ones.

Finally, since Grid workflows are considered a powerful way to orchestrate Grid
computation, we think that their expressive power and scheduling issues need to be
deeply investigated in this project. We noted that in the Grid community the concept of
workflow often corresponds to simple DAGs, where arcs represent (data) dependencies
between component, so we think that it is better to consider DAGs as the fist step of
our research.

5.1 Summary of the planned activities

The main activities on which we plan to concentrate our efforts in the next year are
the following:

• Definition of a set of synthetical kernel applications, developed according to a
set of predefined skeletons and their compositions, developed in order to adhere
to known execution/communication costs and performance models on a given
base architecture (e.g., an unloaded cluster, composed by identical workstations,
interconnected by a given network LAN). The idea is to use them as benchmarks

15

for our RMS. Moreover, using the same approach used to build the benchmark
library, it should be possible to construct other kernels that mimic the behavior
of some use-case applications developed in the Grid.it project.

• Develop and experimentally evaluate launching-time configuration and applica-
tion scheduling strategies based on specific policies, tailored for the various paral-
lelism schemas. The evaluation of the policies will be done using the benchmark
library above.

• Start with the first experiences in dynamic resource management, based on ap-
plication rescheduling and load balancing, in order to evaluate feasibility of grid-
awareness.

Moreover we plan to study the scheduling of simple workflow of jobs, organized
as simple DAGs, where jobs can access large files. We want to study the strategies
for allocating workflows using a centralized job scheduler, or separated application
schedulers.

5.2 Experimenting with application level schedulers for
skeleton-based programs

To experiment our application-level schedulers, we would like to create a set of synthet-
ical benchmark applications for which we know how to optimize the mapping, once a
suitable set of resources are selected. In some cases, when the application contains non-
uniformity, we can postulate to know average and variance of some costs, on the basis
of which to optimize the resource usage. Since we need to build this set of synthetical
applications which adhere to specific performance models, we also need a methodology
to build them.

We would like to evaluate our methods for launching-time configuration and map-
ping of our benchmarks in the context of a real, non-dedicated Grid, where systems
for monitoring and prediction of performance are available. This means that an appli-
cation scheduler has to base its choices on a system like NWS to make careful choices,
even if we plan to consider various relaxations of our methodology for mapping Grid
applications. For example, we can renounce to take into account accurate knowledge
on the status of Grid system, or we can relax/symplify the application performance
model.

5.2.1 Performance models and mapping algorithms

The selection of a suitable set of resources for a skeleton-based application and their
composition requires to have a performance model of the various components of an
application. In our simplified view, a component can only be a pipeline stage (or
filter) with input/output streams. The performance information we have about each
components regards communication/computation bandwidth and memory usage. Such
filters can be composed as an ordinary simple pipeline schema, or as a more complex
generalized/generic pipeline graph.

We assume to also have information about the stateless behavior of each stage, so
that it can be replicated at launching time according to a farm skeleton. Moreover,

16

some stages may give the opportunity of exploiting data parallelism, so that we as-
sume that the component can be configured at launching time for exploiting multiple
heterogeneous nodes, with suitable data allocation strategies aimed at balancing the
load.

The mapping algorithms we plan to exploit are very simple. First of all, strictly-
coupled parallel components (such as data parallel ones) should be mapped as much as
possible on ”close” computational nodes. This concept requires to be better specified,
but the rough idea is that the mapping algorithm has also to exploit information about
the network topology of the target Grid. While task parallelism usually entails loosely-
coupled components, which might be mapped to nodes connected by a long latency
(low bandwidth) network, data parallelism usually requires to allocate components on
clusters (or multiple clusters interconnected by an efficient network). Another quali-
tative consideration, to be transformed into quantitative ones in order to be exploited
by our mapping algorithm, is concerned with the load variance registered by our Grid
sensors. It is well known, in fact, that (strictly-coupled synchronized) data parallel
skeletons should require co-scheduling to avoid waiting delay in the synchronization.
Since co-scheduling is not supported by current operating systems, while our target
systems would be an ordinary time shared parallel system without advance reservation
services, we had to avoid to co-allocate part of a data parallel components on nodes
that can suddenly become highly loaded, thus slowing down the rest of the computation
due the global synchronizations that unfortunately characterize this skeleton.

5.2.2 Launch-time scheduling vs. Rescheduling

Till now we have dealt with launching time scheduling decisions. The problems with
Grid is that, for long running applications, launching time optimization cannot suf-
fice. Moreover, when costs are not available at all, such optimizations may become
impossible.

The solution to these issues is to introduce dynamic policies within the skeleton
supports. For example, a load balancing between the resources assigned at launching
time. The application scheduler could assign more resource that those strictly needed,
while the application (the skeleton support) could balance the run-time support the
resource

The overheads of rescheduling can be high: monitoring for and evaluating the need
to reschedule to fulfill a given performance contract is a very complex process. When
a rescheduling event is initiated, migration of application processes or reallocation of
data can be very expensive operations. Without careful design, rescheduling can thus
hurt application performance.

Data from the resource sensors can be used to evaluate various schedules, but the
re-scheduler must also consider (i) the cost of moving the application to a new execution
schedule and (ii) the amount of work remaining in the application that can benefit from
a new schedule.

The most transparent migration solution would involve an external migrator that,
without application knowledge, freezes execution, records important state such as reg-
ister values and message queues, and restarts the execution on a new processor. Unfor-
tunately, this is not yet feasible as a general solution in heterogeneous environments.
So the application-level approach still seem the most feasible solution.

17

The approach currently followed by GrADS is based on rescheduling actuators lo-
cated on each processor. To initiate schedule modification, the rescheduler contacts
these actuators, which use user-level mechanisms to initiate the actual migration [?].
Application support for migration is the most important part of such rescheduling sys-
tem. An interesting research topic in our project regards the evaluation of a transparent
integration of a checkpoint library in the support of a skeleton based language.

An alternative schema to guarantee good levels of performance when the system
characteristics change at run-time is to assign at launching time more resources than
the needed ones to each application. While an application starts running using some
of the total computational resources assigned, it can easily add/remove resources from
its working set to accomodate changes in the system feature. Clearly, the application
must be able to balance the load among the computational resource currently used.

The first candidate skeleton applications for testing dynamic resource management
are data-parallel (long running) iterative applications, where rescheduling decisions can
naturally taken at each iteration/synchronization. Some load balancing techniques for
these applications have been introduced and evaluated by the authors of this report
[?, ?]. In [?], we also studied the exploitation of such load balancing technique in a
shared cluster, a platform similar to our Grid platform of reference.

5.2.3 Scheduling Policies

Even if application scheduling usually exploits a greedy policy, which tries to assign as
much resources as possible to reduce the single application latency, we would like to
experiment application policies that tries to find a tradeoff between user requirements
and system one. In other words, we want to avoid to assign too many resources if they
are not well exploited by the application. For example, at launching time a mapping
decision could be to assign resources till it is possible to maintain the efficiency of the
parallel application high enough. The threshold of the efficiency could be chosen as a
function of the system load: low when the system is under-loaded, and high when the
system is becoming overloaded. We would like to evaluate this solution, and compare
it with an approach based on a hierarchical metascheduler as in GrADS.

5.3 Workflow scheduling

Since the Condor project [31] and the GrADS one [?] are approaching the problem
of the workflow/DAG scheduling using different approaches, a completely dynamic
vs a completely static one, we intend to evaluate them and other approaches with a
simulator. Note that this simulation infrastructure can also be used to evaluate other
scheduling approaches for different applications classes.

In more detail, we plan to design and evaluate various strategies for allocating DAG
workflows submitted to an on-line meta-scheduler which takes its scheduling decisions
by considering:

• meta-information associated with DAG nodes. Meta-information includes a set
of attributes describing component costs and requirements. Requirements might
be memory occupation, OS type, use of particular libraries, uri of (possibly repli-
cated) input files etc. The cost is a possible imprecise estimate of job execution

18

time modelled by an average value and a variance with respect to a known archi-
tecture of reference;

• meta-information associated with DAG directed edges. This information regards
job data dependencies and it is weighted on the basis of an estimate of the size of
raw file(s) produced and consumed by the parent job and son job, respectively;

• information about the actual power and current status of grid computational
and communication resources; Such information originate from both static and
dynamic sources, where dynamic information is periodically refreshed by inter-
acting with grid monitoring tools such as NWS;

• historical knowledge of past scheduling decisions made;

• logs recording events such as actual starting and ending time of previously sched-
uled jobs. Since both the cost estimates of job scheduled in the past and dynamic
information about the grid status may be imprecise, the event system allows the
meta-scheduler to update and refine its forecasting.

Figure 3 shows the high-level architecture of the on-line grid workflow scheduler
we are going to design. Experiments and evaluations will be conducted by adopting
a simulation approach. We are currently setting up our simulation environment based
on the GridSim Toolkit [?]. The Event Listener and Grid Status Manager modules
have been already implemented, along with the software layer that allows to instanti-
ate the grid infrastructure by means of the GridSim toolkit. DAGS are specified by
using a formalism inspired by the DAGMan scripting language, while the hierarchical
configuration of the grid (number of sites, resourse and communication capabilities of
the machines and networks within each site) is taken from a simple XML file.

References

[1]

[2] Load Sharing Facility (LSF). http://www.platform.com.

[3] Angulo, D. and Foster, I. and Liu, C. and Yang, L. Design and
Evaluation of a Resource Selection Framework for Grid Applications. In
http://www.globus.org/research/papers.html, 2002.

[4] R. Baraglia et al. AssistConf: a Grid configuration tool for the ASSIST parallel
programming environment. In Proc. of IEEE Euromicro 03, 2003.

[5] F. Berman, R. Wolski, H. Casanova, et al. Adaptive Computing on the Grid Using
AppLeS. IEEE Trans. on Parallel and Distrib. Systems, 14(5), 2003.

[6] D.J. Kucks C.D. Polychronopoulos. Guided Self-Scheduling: A Practical Schedul-
ing Scheme for Parallel Supercomputers. IEEE Trans. Parallel and Distributed
Systems, 36(12), 1987.

[7] A. Weiss C.P. Kruskal. Allocating Independent Subtasks on Parallel Processors.
IEEE Trans. Ssoftware, 11(10), 1985.

[8] H. Dail, F. Berman, and H. Casanova.

19

Ev
en

t
Li

st
en

er
G

ri
d

St
at

us

M
an

ag
er

D
A

G
 sc

he
du

le
r

TH
E

G
R

ID

E
ve

nt
G

en
G

R
A

M
Se

ns
or

s

Figure 3: The architecture of our grid workflow scheduler.

20

[9] H. Dail, O. Sievert, F. Berman, H. Casanova, A. YarKhan, S. Vadhiyar, J. Don-
garra, C. Liu, L. Yang, D. Angulo, and I. Foster. Scheduling in the Grid Ap-
plication Development Software Project. In J. Schopf M. Stroinski J. Weglarz,
J. Nabrzyski, editor, Grid Resource Management. Kluwer, 2003.

[10] Dietmar Erwin. Unicore Plus Final Report. 2003. http://www.unicore.org/ fo-
rum/ documents.htm.

[11] A. J. G. Hey F. Berman, G. C. Fox. Grid Computing: Making the Global In-
strastructure a Reality. Willey Series in Communications Networking and Dis-
tributed Systems, 2003.

[12] I. Foster and C. Kesselman. The globus project: A status report. In Proceedings
of the 7th Heterogeneous Computing Workshop, IEEE Press, 1998.

[13] C. Kesselman I. Foster and S. Tuecke. The anatomy of the grid: Enabling scalable
virtual organizations. International J. Supercomputer Applications, 14(3), 2001.

[14] C. Kesselman (eds) I. Foster. The Grid: Blueprint for a future computing infras-
tructure. Morgan Kaufmann, 1999.

[15] I. Foster K. Czajkowski, S. Fitzgerald and C. Kesselman. Grid information services
for distributed resource sharing. In Proceedings of the 10th IEEE 5gmposium on
High-Performance Distributed Computing, 2001.

[16] Rajkumar Buyya Klaus Krauter and Muthucumaru Maheswaran. A taxonomy
and survey of grid resource management systems for dis- tributed computing.
Software Practice and Experience, 32(2), 2002.

[17] C. Liu and I. Foster. A Constraint Language Approach to Grid Resource Selection.
Technical Report TR-2003-07, Department of Computer Science, University of
Chicago, 2003.

[18] H. J. Siegel D. Hensgen R. Freud M. Maheswaran, S. Ali. Dynamic Matching
and Scheduling of a Class of Independent Tasks onto Heterogeneous Computing
Systems. In Proc. 8th Heterogeneous Computing Workshop, 1999.

[19] Dan C. Marinescu. A grid workflow management architecture. 2003. Pro-
posal to the GCE and the GSM Research Groups. Available at http:// www-
unix.gridforum.org/ mail archive/ gce-wg/ 2002/ Archive/ msg00402.html.

[20] S. Melody, J. Schopf, and Zhang X. Grid Searcher. In
http://people.cs.uchicago.edu/ hai/GridSearcher/overview.html, 2002.

[21] C. E. Kim O. H. Ibarra. Heuristics algorithms for scheduling independent tasks
on nonidentical processors. Journal of the ACM, 24(2), 1977.

[22] P.-C. Yew P. Tang. Processor Self-Scheduling for Multiple Nested Parallel Loops.
In Proc. Intl Conf. Parallel Processing, 1986.

[23] D. Abramson R. Buyya and J. Giddy. An Economy Driven Resource Management
Architecture for Global Computational Power Grids. In Proc. of International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA 2000), 2000.

[24] M. Livny R. Raman and M. Solomon. Matchmaking: An extensible framework
for distributed resource management. Cluster Computing, 2(2), 1999.

21

[25] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed Resource
Management for High Throughput Computing. In Proceedings of the Seventh
IEEE International Symposium on High Performance Distributed Computing, July
28-31, 1998, Chicago, IL.

[26] Neil Spring Rich Wolski and Jim Hayes. The Network Weather Service: A Dis-
tributed Resource Performance Forecasting Service for Metacomputing. Journal
of Future Generation Computing Systems, 15(5-6), 1999.

[27] R.N. Uma J. Wein S. Flynn Hummel, J. Schmidt. Load-Sharing in Heterogeneous
Systems via Weighted Factoring. In Proc. Eighth Ann. ACM Symp. Parallel Al-
gorithms and Architectures, 1996.

[28] J. M. Schopf. General Architecture for Scheduling on the Grid. Technical Report
ANL/MCS-P1000-1002, Argonne National Laboratory, 2002.

[29] M. Swany, R., and Wolski. Building performance topologies for computational
grids.

[30] L.M. Ni T.H. Tzen. Trapezoidal Self-Scheduling: A Practical Scheme for Parallel
Compilers. IEEE Trans. Parallel and Distributed Systems, 4(1), 1993.

[31] D. Thain, T. Tannenbaum, and M. Livny. Grid Computing: Making The Global
Infrastructure a Reality, chapter 11 - Condor and the Grid, pages 299–335. John
Wiley, 2003.

[32] J. Bresnahan A. Chervenak I. Foster C. Kesselman S. Meder V. Nefedova D. Ques-
nel W. Allcock, J. Bester and S. Tuecke. Data management and transfer in high-
performance computational grid environments. Parallel Computing, 28(5), 2002.

[33] Rich Wolski. Dynamically Forecasting Network Performance Using the Network
Weather Service. Journal of Cluster Computing, 1, 1998.

22

