

Proceedings of the

First International Software Product Lines
Young Researchers Workshop (SPLYR)

Boston, MA - August 30th, 2004
In conjunction with the 3rd Software Product Line Conference
(SPLC)

Editors
Birgit Geppert
Avaya Labs, USA
Isabel John
Fraunhofer IESE, Germany
Giuseppe Lami
ISTI - Italian National Council of Researches

IESE-Report No. 086.04/E
Version 1.1
August 23, 2004

A Publication by Fraunhofer IESE

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Sauerwiesen 6
67661 Kaiserslautern

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Introduction: Family Planning beyond the Software

In the past years product-line engineering has emerged as the standard practice
in industry for large-scale software reuse. Different to many other techniques,
product-line engineering arose from practical experience in industry. But as
with every successful technique product line-engineering can also be consid-
ered only a real standard approach when it is not only applied in practice but
also widely researched and especially taught in academia. Practice and acade-
mia are the two sides of the same coin. While industry sets the requirements,
academia prepares the practitioners of tomorrow. The peculiarity of the SPLYR
workshop is that it is specifically addressed to young researchers, in particular
Ph.D. students, having original ideas and initiatives in the product line field.

Though this is the first SPLYR workshop, we had submissions from students
from all over the world, including Africa, Europe, and the Unites States. Each
student was assigned one product line expert who reviewed the proposal and
discussed pros and cons of the work with the student. We would like to thank
Len Bass, Jan Bosch, André van der Hoek, and Dirk Muthig for reviewing the
proposals and for the effort they spent in discussing the work with the stu-
dents. We selected seven proposals for presentation at the workshop. The top-
ics range from product line adoption over variability management and product
line architectures to product line evolution.

For many of the students this is the first time to present their work to an inter-
national audience. The workshop aims at providing the right platform for this
and for discussing the presented work among each other and with experts in
the field. We hope that with this workshop each of the students will get valu-
able feedback for the further development of the work.

The SPLYR Organizers

Birgit Geppert
Isabel John
Guiseppe Lami

Keywords : Software Product Lines, Software Product Line Young Researchers Workshop,
Proceedings, SPLYR.

Copyright © Fraunhofer IESE 2004 5

Organization

SPLYR is co-located with the 3rd Software Product Line Conference, SPLC 2004
Boston, USA, August 30, 2004.

Workshop Chairs :

• Birgit Geppert
Avaya Labs, Software Technology Research
Basking Ridge, NJ, USA
bgeppert@research.avayalabs.com

• Isabel John
Fraunhofer IESE
Sauerwiesen 6, D-67661 Kaiserslautern
john@iese.fraunhofer.de

• Giuseppe Lami
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo"
Area della Ricerca CNR di Pisa, Via G. Moruzzi 1
Giuseppe.Lami@isti.cnr.it

Reviewers / Panelists:

• Len Bass
Software Engineering Institute, USA

• Jan Bosch
University of Groningen, The Netherlands

• André van der Hoek
University of California, Irvine, USA

• Dirk Muthig
Fraunhofer IESE, Germany

Workshop website and email:

http://www1.isti.cnr.it/SPLYR/

SPLYR@isti.cnr.it

Copyright © Fraunhofer IESE 2004 6

mailto:bgeppert@research.avayalabs.com
mailto:john@iese.fraunhofer.de
mailto:Giuseppe.Lami@isti.cnr.it
http://www1.isti.cnr.it/SPLYR/

Table Of Contents

Introduction: Family Planning beyond the Software 5

Organization 6

Table Of Contents 7

1 Yu Chen
A Process-Centric Approach for Software Product Line
Evolution Management 9

2 Marius Dragomiroiu, David L. Parnas and Markus Clermont
On Variabilities in Program Families 19

3 John M. Hunt
The Library Considered as a Product Line 31

4 Waraporn Jirapanthong
Towards a Traceability Approach for Product Family
Systems 41

5 Periklis Sochos
Mapping Feature Models to the Architecture 51

6 Jan Suchotzki
A Strategic View on Software Product Lines –
Adapting an Organization’s Structure for a new
Approach in Software Development 61

Copyright © Fraunhofer IESE 2004 7

Copyright © Fraunhofer IESE 2004 8

1 Yu Chen
A Process-Centric Approach for Software Product Line Evolution
Management

Copyright © Fraunhofer IESE 2004 9

A Process-Centric Approach for Software
Product Line Evolution Management ?

Yu Chen ??

Department of Computer Science and Engineering
Ira A. Fulton School of Engineering

Arizona State University, Tempe AZ 85287-8809, USA
yu chen@asu.edu

Abstract. Evolving a software product line involves more people, or-
ganizations, and dependencies than evolving a single software product.
Without advanced process management approaches, the impact of the in-
creased process complexity can outweigh the benefits of using a software
product line approach. Currently, there is a lack of support for software
product line evolution management. I propose using a process-centric ap-
proach within a workflow-based environment to support software product
line evolution management, which can effectively assist process design,
enforcement, and measurement.

1 Introduction

A software product line is a set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market
segment or mission and are developed from a common set of core assets in a pre-
scribed way [1]. A software product line approach promises large-scale produc-
tivity gains, shorter time-to-market, higher product quality, increased customer
satisfaction, decreased development and maintenance costs [1]. However, it also
imposes new challenges and risks. Evolving a software product line is more dif-
ficult than evolving a single product, because 1) the high dependencies between
core assets and individual products require core assets and individual products
to be evolved together, 2) new requirements originated from individual prod-
ucts may conflict with each other, 3) the involvement of more products, people,
and organizational units makes the evolution process more complicated, and 4)
it requires a higher initial investment, involves new risks, and needs different
management strategies under different situations.

Process definition, enactment, and measurement are identified as practice
areas that are critical to software product line success [1]. A process definition
describes the responsibilities of people and organizational units that involved in

? This material is based upon work supported by the National Science Foundation
under grant No. CCR-0133956 (PI: Gerald C. Gannod)

?? 2nd year Ph.D. student, Ph.D. Advisor: Gerald C. Gannod

the software development, and specifies the procedures to be followed for prod-
uct development. A good process definition facilitates the common understand-
ing as to how the products are development and maintained, provides guidance
from the best practices, and fits well into the organizational environment. As
a complex and human-intensive process, software product line evolution with-
out a well-defined process specification can become chaotic, unpredictable, and
unrepeatable. Having a well-defined process description would not help if the
process is not actually enforced. Currently, most organizations place their pro-
cess definitions into documents and rely on their employees to read and follow
the defined processes. A problem with this practice is that the used processes
often differ from the defined processes due to human errors, reluctance to follow
the processes, etc. Another problem with this practice is that efficiency reduces
as more people and organizations become involved. In the context of a software
product line, these problems become more prominent because of the increased
number of people, organizational units, and dependencies. For software prod-
uct lines, manually documenting and enforcing software processes is error-prone
and inefficient. Hence, more effective process enactment is needed. That in turn
raises the need for process measurement. Process measurement involves process
monitoring, metrics data collection, and process analysis. It lets organizations
know the enforced process status and helps them understand the effectiveness
of the enforced process. Although the importance of applying the above process
management activities has been widely recognized, not many organizations are
applying them because under project delivery pressure those activities can be
overwhelming without automatic tool support. As for software product lines, to
date, there is no existing approach that effectively supports all those process
management activities.

This research proposes using a process-centric approach within a workflow-
based environment for software product line evolution management. The ap-
proach provides a systematic way to define, enact, and measure software product
line processes. The environment effectively assists process definition, enactment,
and measurement by utilizing underlying workflow management services and
providing metrics data collection as well as process analysis tools. By following
standards and supporting open architecture, the environment allows easy tool
integration and data exchange. Using the process-centric approach within the
workflow-based environment, software product line evolution can be managed in
a more controllable and repeatable way.

The contributions of this work are threefold. First, an approach for software
product line evolution management will be developed. The approach will be
based on the analysis of existing methods for software product line evolution
management and the evaluation of current workflow technologies for support-
ing software product line evolution. Second, the investigation of software metrics
relevant to software product line evolution will be performed. The results can as-
sist organizations in selecting appropriate software metrics to meet their process
management goals. Finally, a prototype environment with the goal of facilitating
software product line cost-benefit analysis will be developed. The prototype is

meant to demonstate the feasibility of building such an environment and use-
fulness of the proposed approach. As cost-benefit is often the concern of the
organizations that adopt a software product line approach. The prototype will
be found useful in providing decision support on both adoption and evolution
issues.

The remainder of this proposal is organized as follows. Section 2 describes
background and related work. Section 3 discusses the proposed work and research
approach. Section 4 discusses the work status. Section 5 draws conclusions.

2 Background and Related Work

This section provides background and related work in the following fields: soft-
ware product line evolution, software process modeling and simulation, workflow
management, and software metrics.

2.1 Software Product Line Evolution

A software product line is a set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market
segment or mission and are developed from a common set of core assets in a
prescribed way [1]. Software product line evolution is affected by many fac-
tors, such as market demands and available resources, and involves feedback
loops between core asset development, product development, and management
activities. Evolving a product line is more complicated than evolving a single
software product. To cope with the difficulties, some guidelines and methodolo-
gies have been suggested. Schmid and Verlage discussed some software product
line initiation situations (independent, project-integration, reengineering-driven,
and leveraged), adoption approaches (big bang and incremental), and evolu-
tion strategies(infrastructure-based, branch-and-unite, and bulk-integration) [2].
Bosch presented some approaches to adopt and evolve software product lines, and
related them to software product line maturity levels and organization models
[3]. The proposed work will assist product line evolution under typical product
line initial situations, adoption approaches, and evolution strategies.

2.2 Software Process Modeling and Simulation

A software process is a set of activities, methods, practices, and transformations
that people use to develop and maintain software and associated products, such
as project plans, design documentations, code, test cases, and user manuals [4].
Adopting new software processes is expensive and risky, so software process sim-
ulation modeling is often used to reduce the uncertainty and predict the impact.
Discrete Event Specification (DEVS) [5] is a discrete event based modeling and
simulation theory which supports characterizing and simulating concurrent dy-
namics. DEVSJAVA [5] is a Java implementation of DEVS. The external view
of a DEVSJAVA model is a black box with input and output ports. A model

receives messages through its input ports and sends out messages through its
output ports. Ports and messages are the means and the only means by which
a model communicates with the external world. A DEVSJAVA model is either
“atomic” or “coupled”. An atomic model is undividable and generally used to
build larger models while a coupled model is the composition of other models. A
coupled model includes a finite number of (atomic or coupled) models and cou-
plings. The couplings are essentially message channels and provide a simple way
to construct hierarchical models. DEVSJAVA provides sequential, parallel, and
distributed simulation engines, and its source code is available. Thus, it provides
a powerful, flexible, and open framework for process modeling and simulation.
The proposed work will use DEVSJAVA as the process modeling formalism.

2.3 Workflow Management

A workflow is “the automation of a business process, in whole or part, dur-
ing which documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules” [6]. A workflow man-
agement system (WFMS) is a system that “defines, creates and manages the
execution of workflows through the use of software, running on one or more
workflow engines, which is able to interpret the process definition, interact with
workflow participants and, where required, invoke the use of IT tools and ap-
plications” [6]. As a database management system (DBMS) assists data man-
agement, a WFMS facilitates process management. Although there are many
WFMS implementations available and most of them provide similar functional-
ities, few of them can be used together becuase of the lack of interoperability.
To address that issue, Workflow Management Coalition (WFMC) has proposed
several standards. Among which the workflow reference model has been widely
accepted. The reference model identifies six components and five interfaces in a
WFMS. The components are process definition, workflow enactment service, ad-
ministration and monitor tools, workflow clients, invoked applications, and other
enactment service. The interface between the process definition and workflow
enactment service includes a common meta-model for describing the process
definition and an XML schema specifying XPDL [7]. The proposed workflow-
based environment will follow the workflow reference model and use XPDL as
the standard process description language.

2.4 Software Metrics

A metric is a quantitative indicator of an attribute of a thing. Software metrics
provide a structured method for measuring, evaluating, and estimating software
products and processes [8]. Many software metrics have been developed and
investigated, only few of them are designed specifically for software product lines.
A class of metrics for product line architectures has been developed by Hoek et al.
[9]. The metrics are based on the concept of service utilization, which measures
the percentage of the provided or required services of a component that are used
in an architectural configuration. A metrics model specifies relationships among

metrics. COnstructive Product Line Investment MOdel (COPLIMO) [10] is a
COCOMO II [11] based metrics model for software product line cost estimates.
It has a basic life cycle model and an extended life cycle model. The basic life
cycle model can be used for early stage trade-off considerations. The extended
life cycle model allows modeling with more details and can be easily extended
from the basic life cycle model.The prototype environment will use COPLIMO
as the metrics model and provide an approach that collects relevant metrics data
from configuration management and process history.

3 Approach

Software product line evolution spans the whole life cycle of a product line
and requires continuous process monitoring and adjustment. To support that,
I propose a process-centric approach (illustrated in Fig. 1) to manage software
product line evolution.

Fig. 1. An Approach for Software Product Line Evolution Management

The approach is adapted from the workflow life cycle model [12], and consists
of the following steps: 1) specify the evolution goal; 2) design, evaluate, and select
candidate processes, choose appropriate metrics for process measurement; 3)
implement the selected process; 4) execute and monitor the process, and collect
metrics data; 5) evaluate the process by analyzing the collected metrics data and
comparing the results against the specified goal; 6) go to Step 2 if the process
evaluation suggests process improvement, otherwise go to Step 4. In step 2 and
5, process simulation can be used to assist process evaluation. The above steps
constitute a loop that terminates when the product line is phased out. Also, any
changes made to the goal will end the current iteration and start a new one.

I also propose a workflow-based environment to support the above approach.
The environment architecture (illustrated in Fig. 2) conforms to the workflow ref-
erence model [13] and uses XPDL [7] as the standard process definition language.
With this architecture, process design can be supported by workflow definition
tools, process implementation and process execution can be handled by work-
flow management systems, metrics data can be collected by monitor tools, and
process evaluation can make use of simulation tools. By following standards, this
environment allows easy tool integration and data exchange. By providing an
integrated environment for software product line development and process man-
agement, this environment facilitates effective process enactment and accurate
process measuring.

Fig. 2. Workflow-based Environment for Product Line Evolution Management

My research will consist of the following topics:

1. The analysis of existing techniques for managing software evolution in gen-
eral and software product evolution in particular. The analysis will be con-
centrated in the field of software metrics, process modeling and simula-
tion, and workflow management. The goal of this analysis is to identify the
strengths and weaknesses of the current approaches.

2. The investigation of software metrics relevant to software product line evo-
lution. As the result, relevant metrics will be categorized in a way that can
assist metrics selection.

3. The evaluation of current workflow technologies on supporting software evo-
lution in general and software product line evolution in particular.

4. The prototype implementation of the proposed environment with the goal
of assisting cost-benefit analysis. The implementation involves:

(a) The selection of an appropriate cost-benefit metrics model and a work-
flow management system.

(b) The creation of a software product line process simulator that can assist
cost-benefit analysis. The simulator will be based on DEVAJAVA [5]
formalism and be implemented with two versions: one for early stage
trade-off consideration and one for late stage cost-benefit analysis.

(c) The development of an approach that maps XPDL [7] process descrptions
onto DEVSJAVA [5] models.

(d) The development of an approach that collects metrics data from config-
uration management and process history.

5. The evaluation of the proposed approach and the environment via getting
feedback from experts and conducting case studies.

4 Work Status

An initial analysis of existing methods for software product line evolution has
been conducted, and part of the results are presented in Sect. 2.

The early stage version of the Software Product Line Process Simulator
(SPLPS) has been implemented [14]. The goal of the SPLPS is to facilitate
software product line decision making by providing time and cost estimates
under various situations. In implementing the simulator, DEVSJAVA [5] and
COPLIMO [10] are choosen as the modeling formalism and the cost model, re-
spectively. SPLPS models the interaction between major software product line
engineering activities, such as core asset development, product development,
technical management, human resource management, and market demands. The
inputs to SPLPS include general parameters and product (core asset) parame-
ters. The general parameters are used to describe software product line pro-
cess attributes and organization characteristics. These parameters include the
maximum number of products that will be supported by the product line, the
number of products that will be created during the creation stage, the product
line adoption and evolution approaches, the number of employees in an organi-
zation, and the market demand intervals. The product (core asset) parameters
are primarily determined by the employed cost model (COPLIMO, in this case).
These parameters include the size of the product (core assets), fraction of code
segments(product unique code, reused code, and adapted code), percentage of
modification required for design, code, and integration, software understanding,
software unfamiliarity, and average change rate caused by new market demands.
At the end of each simulation run, some statistic results will be generated. For
products and core assets, their first release time, time-to-market, initial devel-
opment effort, initial development time, accumulated development and mainte-
nance effort, accumulated development and maintenance time, and the number
of finished requirements will be provided. For the entire product line, the to-
tal evolution effort, the time when all the requirements are finished, the average
annual effort, the number of total requirements generated, and the average time-
to-market will be given. SPLPS can also visually present how major product line
engineering activities progress and interact over time.

5 Conclusion

Managing software product line evolution is a complex process, but currently
there is a lack of support. This research proposes a process-centric approach
within a workflow-based environment to support product line evolution. The
proposed approach provides an effective way to manage product line evolution
through systematic process definition, enactment, and measurement. The pro-
posed environment can effectively support process management activities by
providing tool support within an integrated software development and process
management environment. The contributions of this work are: 1) a approach
for software product line evolution management, 2) the investigation of software
metrics relevant to software product line evolution, and 3) a prototype environ-
ment to assist software product line cost-benefit analysis.

References

1. Clements, P., Northrop, L.M.: Software Product Lines : Practices and Patterns.
Addison-Wesley, Boston MA U.S.A. (2001)

2. Schmid, K., Verlage, M.: The economic impact of product line adoption and evo-
lution. IEEE Software 19 (2002) 50 – 57

3. Bosch, J.: Maturity and evolution in software product lines: Approaches, artefacts
and organization (2002)

4. Paulk, M., Weber, C., Garcia, S., Chrissis, M.B., Bush, M.: Key practices of
the capability maturity model. Technical Report CMU/SEI-93-TR-25, Software
Engineering Institute, Pittsburgh Pennsylvania U.S.A. (1993)

5. Zeigler, B.P., Sarjoughian, H.S.: Introduction to devs modeling & simulation with
java (2003)

6. WFMC: Workflow management coalition terminology and glossary. Technical
Report WFMC-TC00-1011, Workflow Management Coalition (1995)

7. WFMC: Workflow process definition interface - XML Process Definition Language.
Technical Report WFMC-TC-1025, Workflow Management Coalition (2002)

8. Mens, T., Demeyer, S.: Future trends in software evolution metrics. In: Interna-
tional Workshop on Principles of Software Evolution. (2001) 83–86

9. van der Hoek, A., Dincel, E., Medvidovic, N.: Using service utilization metrics to
assess the structure of product line architectures. In: Ninth International Software
Metrics Symposium, IEEE Computer Society Press (2003) 298 – 308

10. Boehm, B., Brown, A.W., Madachy, R., Yang, Y.: A software product line life
cycle cost estimation model (2003)

11. Boehm, B.W., Clark, B., Horowitz, E., Westland, J.C., Madachy, R.J., Selby, R.W.:
Cost models for future software life cycle processes: COCOMO 2.0. Annals of
Software Engineering 1 (1995) 57–94

12. Zur Muehlen, M.: Organizational management in workflow applications. Informa-
tion Technology and Management 5 (2004) 271–291

13. Hollingsworth, D.: The workflow reference model. Technical Report WFMC-TC00-
1003, Workflow Management Coalition (1995)

14. Chen, Y., Gannod, G.C., Collofello, J.S., Sarjoughian, H.S.: Using simulation to
facilitate the study of software product line evolution. In: Seventh International
Workshop on Principles of Software Evolution, Tokyo, Japan (2004)

Copyright © Fraunhofer IESE 2004 18

2 Marius Dragomiroiu, David L. Parnas and Markus Clermont
On Variabilities in Program Families

Copyright © Fraunhofer IESE 2004 19

On Variabi l i t ies in Program

Famil ies

Marius Dragomiroiu, David L. Parnas and Markus Clermont

Software Quality Research Laboratory,
Computer Science and Information System,

University of Limerick, Limerick Ireland
{marius.dragomiroiu, david.parnas, markus.clermont}@ul.ie

www.sqrl.ul.ie

Abstract.

The program family development process is concerned with reuse
of artifacts related to requirements specification, software architecture, de-
tailed design and code.

There are many different approaches to producing
families of programs: domain engineering, frameworks and program fami-
lies. Sometimes they are viewed as competing but, in fact, they are comple-
mentary, compatible, and mutually supportive.

To succeed, all these process-
es have to help the developers to manage the variability among the product
members. Variabilities among the family members are determined during all
phases of the development process: requirements analysis, module decompo-
sition and implementation. This paper proposes a simple way to manage var-
iabilities from identification phase to the implementation and beyond. The
focus is on the design solutions to handle variabilities. The design solutions
discussed promote reuse and provide flexibility in designing software fami-
lies.

1 Introduction

Today's sophisticated customers expect reliable, flexible software systems that can be
easily adapted to their special needs. On the other hand, the pressure on the cost and
time side for software producers is always increasing. Although this seems like a hope-
less situation, the use of software product lines and related concepts can help to satisfy
these new requirements. Software families can provide significant gains in productivity
by systematic reuse of core assets. The potential advantages of the program family ap-
proach to develop, maintain and reuse of software has been long recognized (e.g. [1],
[5], [9], [12], [19], [24]).
In 1976, Parnas defined a program family as "a set of programs

for which it is worth-
while to study their common properties before determining the special properties of the
individual family member"[19]. The differences among the family members are called

variabilities

. Variabilities among the program family's members are determined during
all phases of the development process i.e. requirements analysis (problem space) and
respectively in system design and implementation (solution space). There are several
crucial tasks involved in designing the software families for limiting the effect of vari-
abilities. These involve (1) the identification of variabilities in both problem and solu-
tion spaces, (2) mapping of variabilities from the problem space to modules and (3)
flexible design solutions to bind possible variant modules’ implementations.
These issues have been advocated before: commonality analysis in [1], [6], [24] distinc-
tion between the variability in problem space and solution space, mapping of variability

from the problem space into the system design [10], [15] and design solutions to handle
variant modules into the system [7], [12], [14]. However, solutions to these issues are
still a challenging subject of research. Proper management of these tasks is a key issue
for the program family approach to succeed.
This paper presents an effective way for handling program families’ variabilities with
the focus on design solutions. In the next section we present definitions of the concepts
of product line, program family and frameworks; the third section describes the identi-
fication of variabilities in the requirements specifications of the family's members and
summarizes the key design principles for dealing with variabilities in the system design
phase. The fourth section presents solutions for mapping requirement variabilities into
system modules. The fifth section presents detailed design solutions for binding system
modules that encapsulate variabilities and finally we give some concluding remarks.

2 Terms and Related Concepts

In this section we discuss the terms and concepts of the program family approach,
frameworks and domain engineering that are used throughout this paper.

Program Families.

The program family approach looks at both problem and solu-
tion spaces in order to identify the variabilities. It aims, as much as possible, to hide eve-
ry changeable aspect of the system in individual modules with aspects that will change
separately being in separate modules [18]. There will also be modules hiding secrets
that were not identified as variabilities among the capabilities or requirements of the
family members.
This is the distinction between domain engineering, as some authors [1], [6], [24] define
the concept of the program family and the more general meaning of program family,
stated by Parnas in mid 1970's. The latter definition of program family promotes the re-
usability above the boundaries of the domain. The program family approach promotes
the reuse of the system architecture across the domain but also promotes the reuse of
components

1

 or parts of the system design across several domains.

Product Line/Domain Engineering.

Domain requirement analysis is a top-down
approach to identify and structure the variabilities of a set of systems in that domain.
Domain engineering analyses the requirements of a set of similar applications in a cer-
tain domain. Unfortunately, not everything that may change is identified in the domain
requirement analysis as it has only a restricted scope. For instance it excludes variabil-
ities in design decisions or variabilities introduced by the generalization of some com-
ponents that can be used across different domains, as well as variabilities induced by
some aspects that are likely to change in the future.

Frameworks.

A

framework

 is an application core that can be customized by the ap-
plication developer [17]. It can be seen as defining a program family, with the restric-
tion that decisions used for variability binding are postponed until configuration, run-
time or ‘extension’ time. Generally, module variants that encapsulate variabilities are
chosen or implemented, on the basis of an interface specification, by the application de-
veloper who uses the framework. With a well-designed framework, members of the
family are produced by adding new components, rather than by modifying old ones.
All three approaches have the same ultimate goal to promote reuse by providing a com-
mon architecture for a set of systems and to advocate flexibility by postponing decisions
of binding the variable parts.

1. A software component is a unit of composition with precisely specified interfaces and
explicit support dependencies only. We consider both objects and modules to be compo-
nents.

3 Dealing with Variabilities in Requirements

In this section, we want to discuss how to identify variabilities in the requirements and
structure them to see relations between variabilities that seem to be independent at first
sight. The variabilities will then be organized in variation points, in such a way that each
variation point is encapsulated in exactly one module. A module can encapsulate sev-
eral closely related variation points, but only if all of the variabilities are expected to
change when any one of them changes. Otherwise they should be placed in separate
modules.

3.1 Domain Variability Identification

The variabilities in the problem space are determined during domain requirements anal-
ysis (see [24]). The commonalities and variabilities across a set of applications in a spe-
cific domain are identified using the requirements analysis of all potential members of
the family. These variabilities all relate to the observable behaviour of the system.
Members of a specific program family can be considered black boxes that have observ-
able variations in one of the following properties:

1.

external interface

, i.e. the interface of the system exposed to the users: the sys-
tem services provided to users along with the acceptable input from users and out-
put produced by the system.

2.

required support interface

, i.e. what the system requires in order to behave
properly, for instance system platforms, external devices, and other external soft-
ware used or controlled by the system.

3.

action flows

: the sequence of actions that the system users will execute or the
flow of actions the user has to perform on the system.

3.2 Domain Variability Specification

During the commonality analysis the variations in the observable behaviour among the
considered family members are identified. Dependencies between variations in the re-
quirements can take one of the following three forms [14]:

•

mutual exclusion (single variant)

: a range of alternative requirements from
which only one can be chosen in any family member.

•

alternative list (multiple variants)

: a range of alternative requirements from
which one or many are chosen in any family member.

•

optional

: requirements that are valid only for a subset of the family members.
Sometimes, this can be considered a special case of mutual exclusion.

At this stage, there are two issues regarding identified variabilities that have to be taken
into account when structuring them:

1. the variabilities may depend on one another, i.e. the presence/absence of an op-
tional requirement might be influenced by the selection of another alternative re-
quirement

2. mapping the variabilities from the problem space to the solution space. At this
level, the requirements are defined in terms of services provided to the system's
user. Therefore, one variability in the requirements may influence more than one
module in the system's design. Changes of several modules that are caused by the
same variability are not necessarily due to inter-module dependencies, but may
be caused by the way that requirement variabilities are mapped to modules.

3.2.1 Interdependent Variabilities

The issue of dependencies between variabilities has been addressed by many research-
ers, some of them modelling the relations among variabilities using trees or tables [6],
[24] others using directed graphs or lattices (see [8], [15]). The structure of the variabil-
ities will be used to validate the product line commonality analysis and it also will make
up the

decision model

 document [24] that will be used in the development of product
line members. The relations among the variabilities influence the system structure

.

The
way in which we specify these relations is beyond the scope of this paper.

3.2.2 Variability Decomposition

Concerning the situation where one variability affects several modules, all variabilities
identified in the requirements should be refined to a set of

variation points

 such that
each variation point affects only one module and cannot be further decomposed. A clear
decomposition of the variabilities into variation points may not be achieved before start-
ing the module decomposition.
As it can be noticed from the description above, the

 domain variability specification

 and
the

domain module decomposition

 are two interdependent tasks. The domain variability
analysis provides an input to the module decomposition. The system designer has to
consider the variabilities identified in the domain commonality analysis and the varia-
bility dependencies, in order to develop a system design that is flexible enough to han-
dle these variabilities. In turn, the module decomposition may reshape the variabilities
specification by refining variabilities into variation points that vary independently and
by identifying new module variabilities, i.e. variations that haven't been identified in the
problem space.
To achieve this, the decomposition of the system into modules has to be based on a set
of principles that increase the degree of reusability, flexibility and localization of chang-
es in the system. The key principles that lead to these properties are briefly introduced
below:

• the information hiding principle [18] leads to a decomposition of the system into
components, each of them hiding a secret that can vary independently of the rest
of the system. It is the primary principle that is applied in the domain module de-
composition process. It is guided by variabilities across the family members and
by a separation of system aspects that are likely to change over time and are not
necessarily stated in the commonality analysis.

• the generalization principle is guided by the generalization of modules that ex-
press domain specific aspects by separating the domain specific aspects from the
parts that are independent from the business domain. The application specific
module will represent a specialization of the general module, achieved by param-
eterisation, composition or inheritance. This leads to modules that can be used
across domains.

• the virtual machine principle is concerned with defining common interfaces for
hardware and software systems used by the program family, in such a way that
the family members are not depending on a particular hardware or software used.

The last two principles might be seen as special cases of information hiding but are
mentioned because they are worth special consideration in developing program fami-
lies.

4 Mapping of Variabilities into Modules

After the variabilities of the program family's members have been identified and de-
composed into variation points, each independent variation point is encapsulated into

one module. A variation point can affect a module and the family design in one of the
following ways: by varying the module interface, by supplying a different module im-
plementation, and 3) by the presence of a variant module.

4.1 Module Interface Variations

A variation in the module interface influences programs that use this module, too. Ob-
viously, this should be avoided. Following the principles of

information hiding

 and

virtual machines

[18], a good design can restrict the effect of variation points to a mod-
ule’s internal implementation whilst preserving the same module interface for all mod-
ule variants considered.
Nevertheless, there are cases when designers have to deal with variations in the module
interfaces i.e. using legacy software, COTS components, interacting with other soft-
ware systems. It is well known that by abstracting from the module variants, one can
define a common abstract interface that all the module variants will satisfy. The real is-
sue is how to design a meaningful abstraction. Table 1 presents some solutions to build
an abstract interface for the case when the variation might affect the module interface.

4.2 Module Implementation Variations

From the implementation perspective, a variation point that is encapsulated inside a
component can take one of the following forms, described by Weiss in [24]:

•

values of parameters

: the module implementation contains some parameters
which values can be set during any stage in the application engineering phase.

•

template modules:

the module implementation represents a template in which
lines of code are usually edited during the implementation phase. This solution
limits binding to the implementation phase. This form of variation is not appro-
priate especially in the case of black-box frameworks, where the application de-
veloper does not have access to the implementation. Moreover, if not done very
carefully, and perhaps automated, the management of these template modules can
become a nightmare for maintainers.

•

alternative module implementation

 having the same interface (see also [4]): the
framework provides variants of the module implementation with the same inter-
face. The corresponding variant implementation can be chosen during application
design, implementation, configuration or run-time.

The two important goals of the program family approach are to promote

 reuse

1

 of the
code as much as possible and to provide

 flexibility

 in choosing the variant. Different

Variants
Differences Solution

different pro-
gram signa-
tures

1. define the abstract interface as module interface adapter, which exposes a
generic interface and provides adaptation of these methods into the ones
requested by the variant. This module acts like a module interface, i.e. it imple-
ments the Adaptor Pattern or Wrapper [12]. E.g. module interface for system
support programs or hardware devices (virtual machine, virtual device (see [4]))
2. solutions that rely on the polymorphism

a

a. Instances of this principle are: the static parameterised types (like generics in Java [3]) or inheritance.

different
number of
programs

1. expose the "largest" interface, which contains the union of all programs and
leave the methods un-implemented if they are not going to be used

b

 (see [4]).
2. use an introspection mechanism, i.e. interrogate in the module that uses one
of the variants to find the methods of that variant module.

b. The program implementations that are required only by some of the module variants can even be en-
capsulated in separate submodules or subclasses according to the separation principle.

Table 1:

- Solutions to keep the variability inside the module internal definition

binding times have an influence on the flexibility, e.g. a configuration or run-time bind-
ing provides more flexibility than binding in the implementation phase. However, bind-
ing variabilities at a late phase of the software development process implies problems
with respect to system performance. Thus, there has to be a trade-off between flexibility
and other system properties.
Parameterisation satisfies the above-mentioned goals best, as the entire module imple-
mentation is reused and the parameters' values can be set at any stage in the application
engineering process, including run-time, but it has a limited applicability. The template
module approach limits the binding of variability to compilation time, because it allows
variations in the code, while alternative module implementations sometimes reduce the
reuse of the common code.
To improve reusability and flexibility in binding the variability, the following ’frame-
work component reorganization’ solutions (see [11]) can be used.

•

separation principle

: Exploit the commonality of the possible module variants
by factoring the common part(s) in a separate module and express the variability
between the module's variants in separate sub-modules. In this way variations are
localized in small submodules. This solution provides great flexibility by allow-
ing the variant submodules to be chosen during any stage in application develop-
ment and promotes reuse of the common code. Design patterns like the Proxy or
the Strategy [12] are realizations of this principle.

•

unification principle:

In object-orientation the mechanism of inheritance is in-
troduced. In this paradigm, the concept of classes replaces the notion of modules.
Inheritance can be used to increase flexibility and reusability by creating a base
class that defines the common parts. Each variant class inherits the common parts
from the base class and overrides the varying parts. In this way the common im-
plementation is reused.

One can see these solutions as information hiding and generalization principle respec-
tively, but at a lower level of granularity. Usually, the separation principle is preferred,
because it can be used in a black-box approach to assemble systems (see [7]), whereas
inheritance is often considered problematic (see [23]). Inheritance is easily misused to
introduce links between things that should not be linked. If there is no shared aspect of
the specification, there should be no shared aspect of the code. Instead, both units
should use a common third component.

5 Binding Variability

The variabilities are bound during different stages of application engineering

1

:

appli-
cation design, compilation, linking, configuration or run-time

 [13], [16]. The deci-
sion when to allow the binding of variabilities is made during the product line architec-
ture development and influences the design and the implementation of the family archi-
tecture. In the case of product lines that are maintained and extended by the same
company, binding of variabilities is more frequent during design, implementation and
compilation. In contrast, in the case of frameworks (especially black-box frameworks),
variations are bound during installation, configuration or run-time by the application
developer.
As it is stated in Section 4.2, a variation point can be a parameter value, some lines of
code or a completely different module implementation. A variability that is comprised

1. The "reuse" may not be seen as an end in itself but a means to another end such as cost
reduction, reduced maintenance effort, quicker response to module demands, etc.
1. In [24] it is stated that application engineering has the purpose

 to explore quickly the
space of requirements for an application and to generate the application

.

by several variation points of different kinds will require synchronization of the bind-
ing, although it can take place at different stages, in order to adhere to all imposed con-
straints.
As an example, let us consider an optional requirement that imposes the presence of a
component

A

 and a variant

b1

 of a program in component

B

. The implementation of the
program

b1

 depends on the presence of component

A

. Thus, if at high-level design is
decided that the component

A

 will be used then at detail design, or implementation
phase the possible variant of the program

 b1

is already determined.

Figure 1

Module Relations

5.1 Binding the Module Variants

In this section we want to identify how a module, which encapsulates a variability, and
thus a module that varies, can influence the design or implementation of other modules
in the system. Based on the module-uses relation

1

 we distinguish three main cases for
modules that encapsulate a variation point. These cases are depicted in Figure 1, where
the "Module B" is considered to be the variant module (encapsulates a variation point).
Subsequently, each of the possible cases will be briefly discussed. The possible rela-
tions between modules might also be combined, e.g. a module creates the variant mod-
ule first and then uses it. However, we argue that the relations can still be treated inde-
pendently.

•

the variant module's programs are used by other modules

. Given that all the
alternative implementations of the module that vary have the same interface, there
is no influence on the modules that use programs of the variant module. In this
case we assume that a reference to an instance of the variant module is obtained
from outside. E.g. In Figure 1, programs of variant Module B are used by Module
A. As long as all variants of B have the same interface there is no need for any
concern in the modules that use B about the encapsulated variability. In the case
of variations in the module interface we suggest a redesign according to the solu-
tions specified in Section 4.1.

•

programs of the variant module use programs of other modules.

 In Figure 1,
the variant Module B uses programs of Module C. We consider this trivial be-
cause the module that is used by the variant module either

- does not depend on the variation encapsulated in the variant module, or deals
with the variation encapsulated in the variant module but it is designed to be
general enough not to depend on the module variant chosen, or

- depends on the module variant chosen and, thus, contains another variation
point that is part of the same variability. In this case, the dependency is not a
problem, because it was planned during module decomposition.

1. The module-uses relation refers to modules that use other modules. The module A uses
module B if a program in A invokes a program in B, or A contains a reference to module B

Module A

Module B

Module C

Module D

A B:
 programs of module A
 use programs of
 module B

 A module A creates
 an object of type BB

module
module that encapsulates
a variation point

•

the variant module is created by another module

. This case concerns modules
that have to create (to obtain a reference) to a particular implementation of a var-
iant module. E.g., in Figure 1, Module D instantiates a variant of Module B. De-
pending on the form of variability and the binding time, the selection or instanti-
ation of a particular variant module might itself depend on a parameter (see
Table 2). In the case of alternative implementations we need a parameter to make
the distinction which particular implementation has to be instantiated. We refer to
that parameter as

binding parameter

.
For example, let us consider two variant modules, i.e. two alternative implemen-
tations of a module that have the same interface. Both modules are supported, but
only one will be used. The selection can take place at run-time by evaluating the
binding parameter that identifies which one of the alternative module implemen-
tations will actually be instantiated.
In the case of object oriented approach instantiating a variant module is a

tighter

relation then the use-relation as the module that instantiates the variant module
has to point to a specific implementation of the variant module. This lead to a
strong dependency between the modules (beyond the interface level). According
to the type of variation of the module that has to be instantiated, solutions to avoid
this strong coupling are described farther.

Single Variant Pattern Solution.

Using the inheritance principle, all the module
variants, in this case classes, have a common base class. The classes that use programs
of a variant module, i.e. a variant class, use instead the program of the base class. The
base class can be responsible for instantiating a variant module. All the alternative mod-
ule implementations are present in the system during the binding phase. Based on the
value of the binding parameter set during the binding phase, the base class determines
the corresponding variant to be instantiated (e.g. Factory Pattern [12]).

Multiple Variant Pattern Solution.

The multiple variant pattern solution as-
sumes a repository of module variants during run-time, with all variants having the
same interface. The value of the binding parameter determines the corresponding mod-
ule variant that has to be instantiated. Concrete solutions in this case are: (1) the (Ab-
stract) Factory Pattern [12] that will instantiate the variant, (2) a repository of module
variant instances that allows the selection of the corresponding module variant based on
the value of the binding parameter or (3) a dynamic loading mechanism.
The value of the binding parameter can be set during compilation, configuration time
or can be determined during run-time. Obviously, this might allow several instances of
a module to be created at run-time. However, we recommend keeping the number of
modules that are in charge of instantiating the variant module(s) as low as possible, e.g.
by keeping a repository or a factory object, as well as the number of instances of the
same module in order to improve performance and eliminate unnecessary sources of er-
rors.

Type of Variant

(implementation)

Binding
Time

Type of
Variation

Instantiation
Method Solutions

parameter any all - not necessary
lines of code impl. all - template module
alternative mod-
ule implementa-
tion

design
impl.

all binding param. set the binding parameter during the
implementation.

compil.
config.
run-time

single binding param. single variant pattern solution
multiple binding param. multiple variant pattern solution
optional binding param. optional variant pattern solution

Table 2:

- Instantiating Module Variants

Optional Variant Pattern.

There are two ways to model optionality:
1. to model it

as a single variant

 where one variant is the module variant containing
the methods implementation and the second variant is an empty module that con-
tains only the interface declaration but does not provide any implementation.

2. to ignore the presence of an optional module in the system. Employ a factory ob-
ject or a repository that is in charge of the creation of the module if the module
variant exists in the system or will not do anything otherwise. This approach is
less flexible when several other modules use programs of the optional module.
All these modules have to be designed taking the absence of the variant module
into consideration.

6 Summary and Future Work

The program family development process is concerned with the reuse of artifacts relat-
ed to requirements specification, software design and implementation. Managing vari-
abilities is the cornerstone of the program family development process.
This paper raises issues and provides solutions for dealing with variabilities in the soft-
ware families that involving the identification of variabilities in both problem and solu-
tion spaces, mapping of variabilities to modules and flexible software design and im-
plementation solutions to handle these variabilities. An important contribution of this
paper is the discussion of the relation between product lines, program families and
frameworks.
Previous work [1], [24] uses this terms as if they were synonyms. We argue that the pro-
gram family concept is more general and the others are special cases; this means that
the specialized approaches are compatible and mutually supportive. It also means that
other approaches can be added to this arsenal of methods.
The paper also emphasises the distinction between variabilities in the requirements and
variation points, the actual unit of variation, which are meant to be encapsulated in ex-
actly one module.
We focus on the translation of the variation points into the system's module design and
implementation, and on the design solutions to manage the resulting module variants.
Therefore, flexible solutions to express the variation in modules are presented. The cen-
tral point in this process of expressing the variability in the module are the issues re-
garding binding the modules that encapsulate the variation points by making the clear
distinction between the means to express the variation in a module on one hand and of
the types of module-uses relations on the other hand. The presented design solutions for
instantiating the module variants are based on the form of variation in the module and
the time chosen for binding.
The ideas presented in this paper are referring to one side of the process of managing
variability in program families only. Other important issues are the specification of the
variabilities in the requirements and the specification of the module variants. The cur-
rent approaches based on the natural language specification, UML [1], [7], or on devel-
opment of specific domain languages together with the compilers or translators for
these languages [24] do not enable us to precisely define software or are difficult to use.
We believe that a set of documents must characterize any program family and are in-
vestigating the use of functional documentation [20], [21] with tabular notation as a way
to improve our ability to develop high quality program families. The research is focused
on the adaptation of the tabular specification method to handle program families' vari-
abilities.

References

1. Atkinson C., Bayer J., Muthing D.: Component Base Product Line Development: The Ko-
brA Approach, 2002

2. Bosch J.: Design et Use of Software Architecture (Adopting and evolving a product-line ap-
proach), Addison Wesley NY, 2000

3. Bracha G:, Cohen N., Kemper C., Marx S., Odersky M., Panitz E., Stoutamire D., Thorup
K., Wadler Ph.: Adding Generics to the Java Programming Language - Spec. Draft, 2001.

4. Britton H. K., Parker A. R., Parnas D.: A Procedure for Designing Abstract Interfaces for
Device Interface Module, Software Fundamentals, Addison-Wesley, 2001, 295- 314

5. Clements P., Northrop L.: Software Product Lines: Practices and Patterns, Addison Wesley,
2000

6. Coplien, J., Hoffman, D., Weiss, D.: Commonality and Variability in Software Engineering,
IEEE 1999, 37-45

7. Dragomiroiu, M.: Enterprise Frameworks for Web-Applications, Master Thesis, University
of Limerick, 2003

8. Faulk S.: Product-Line Requirements Specification (PRS): an Approach and Case Study“,
IEEE Software 2001, pp. 48-55

9. Fayad M.E., Schmidt D.C., JohnsonR.E.: Building Application Frameworks: Object-Ori-
ented Foundation of Framework Design, Wiley, 1999

10. Ferber S., Haag J., Savolainen J.: Feature Intercation and Dependencies: Modeling Feature
for Reengineering a Legacy Product Line, Proceedings SPLC2, USA, 2002, 235-256

11. Fontuara M., Pree W., Rumpe B.: The UML Profile for Framework Architectures, Addison-
Wesley, 2002, 68-112

12. Gamma E., R. Helm, R. Johnson, J. Vlissides: Design Patterns Elements of Reusable Ob-
ject-Oriented Software. Addison-Wesley Publishing (1995).

13. van Gurp J., Bosch J., Svahnberg M.: On the Notion of Variability in Software Product
Lines, Proceedings. Working IEEE/IFIP Conference on Software Arhitecture, 2001, 45 -
54

14. Keepence B., Mannion M.: Using patterns to Model Variability in Product Families, IEEE
Software, 1999, 102-108

15. Mannion M.: Using First-Order Logic for Product Line Model Validation, Proceedings Sec-
ond International Conference, SPLC2, USA, 2002, 176-187

16. Jaring M., Bosch J.: Representing Variability in Software Product Lines: A Case Study,
Vol. 2379. Springer-Verlag, 2002, 15 -36

17. Johnson R. E.: Frameworks = (Components + Patterns), Communications of the ACM,
Vol.40/No.10, 1997, 38-42.

18. Parnas D. : On the Criteria Used in Decomposing Systems into Modules, Communications
of the ACM, vol. 15, 1972, 1053-1058

19. Parnas D.: The Design of Program Families, IEEE Trans. Software Eng. vol 2/1, 1976, 1-9
20. Parnas D.: Tabular Representation of Relations, CRL Report 260, McMaster University,

Communication Research Laboratory, 1992
21. Parnas D., Madey J., Iglewski M.: Precise Documentation of Well-Structured Programs,

IEEE Trans., 1994, 948-376
22. Theil S., Hein A.: Systematic Integration of Variability into Product Line Architecture De-

sign, Proceedings SPLC2, USA, 2002, 130-153
23. Wegner, P.: Panel on Inheritance, Conference on Object-Oriented Programming, Systems,

Languages and Applications (OOPSLA), Florida, United States, 1988, ACM Press.
24. Weiss D., Lai R. T.: Software Product Line Engineering- FAST, Addison Wesley, 1999

Copyright © Fraunhofer IESE 2004 30

3 John M. Hunt
The Library Considered as a Product Line

Copyright © Fraunhofer IESE 2004 31

The Library Considered as a Product Line

John M. Hunt

Department of Computer Science
Clemson University

Clemson, SC 29631 USA
hunt2@clemson.edu

Abstract. Software libraries provide the oldest and most widespread form of
software reuse. Due to a variety of factors traditional software libraries have
reached their limit of usability. This paper contends that the limiting factor on
library use is the current one-size-fits all approach to providing libraries.
Library users have overlapping but not identical requirements. A better way of
satisfying these requirements is to use a product line approach to provide
customized libraries. These customized libraries should allow the library to be
more adaptable to different related uses, be easier to use and provide more of
the product’s functionality. Using a product line approach to customize
libraries can provide a fundamental change in library use: the library can be
extended into related areas more easily, library users obtain better usability
through the elimination of irrelevant options, and products should have higher
reuse levels because of the better fit of the library to a particular project.

Note: I am a second year Ph.D. student. I hope to present a dissertation proposal in
Fall 2004 based on the ideas in this paper.

Importance of Software Libraries

Reuse has been identified as one of the key issues in software engineering since this
first conference on software engineering was held under NATO auspices in 1968,
where McIlroy identified the need for a catalog of “software IC’s” [McIlroy 68], to
enable reuse of software. To provide these components today, libraries are almost
universally used. Most introductory programming courses include the use of
collections (lists, maps, etc.) from a class library. Many such courses teach
collections before arrays and, increasingly, omit arrays altogether.

Most current software projects will use a variety of libraries. Typically a general
purpose library supplied with the language of choice will be used for collections and
utility routines, such as dates. There will be a library to interface with the operating
system for IO, processes and threads, and simple communication such as pipes and
sockets. More advanced communication methods come from specialized libraries for
services like CORBA infrastructure or message queues. There will be a library to
provide a language specific interface to a database supplied by the database vendor.
GUI libraries support a variety of user interface styles, Microsoft Windows, X11,
Web, etc. In addition to these general purpose libraries, are a variety of domain
specific libraries.

Problems of Software Libraries

While libraries have been an undisputed success in providing reuse, there are signs
that they have reached their limit. Working against component libraries are:
• Sheer Size
• Generality
• Complexity
• Difficulty in integration
• Difficulty in evolution

While libraries are not the only large scale software product, they differ from other
products in that they are designed to be used by another set of developers. For the
developer using the library, selecting a library element that provides a lot of
functionality, like a socket, provides more assistance than using a library element that
provides a small amount of functionality, like a string copy. However, in providing a
lot of functionality, these elements quickly become increasingly specialized. As they
become specialized they are usable in fewer places. The more functionality an
element provides the fewer opportunities there are to use it [Krueger 92]. This means
that conventional software engineering techniques, such as inheritance, are helpful in
mitigating code count for library development organizations but they do not address
the size problems that are unique to libraries.

Based on this observation, there are two approaches to growing a library. One is to
have lots of simple lowest common denominator functions. However, unless these
functions are very commonly used, the overhead of finding and understanding them
will exceed the small amount of functionality they provide. The number of
sufficiently common functions will soon be exhausted.

Alternately, the library can supply functions that handle increasingly large pieces
of work; however, the functionality provided will become increasingly specialized
and thus will be applicable to fewer situations. In addition, as the functionality
increases it becomes hard to avoid an architectural impact. It is desirable for a GUI
library to help manage keyboard and mouse events rather then just drawing the
screen. To do this they need to read these devices. This quickly leads to a need to
provide an event loop. To get the event loop to work the GUI library typically
provides the programs main procedure. This in turn dictates how the application can
be structured.

The developer using the library is concerned with library size, not in terms of line
count, but interface complexity, which can be measured by the services provided and
parameters required. For reuse to occur, the developer must complete the following:
find the element, select the element, understand the element, and (optionally) adapt
the element [Dusink 95]. Here size creates a point of tradeoff, that ultimately limits
the functionality that can be supplied. More elements make it more likely that the
needed element is available, but less likely that it can be found. Having more
elements means that out of those found it is more likely that the selected one will be a
good fit, but at the cost of a larger selection process. More elements mean more to
understand. It may be hoped that more elements means that there is one available that
does not need to be adapted, but it may instead force more adaptors to be written. The

library must be big enough to have all the functionality that the client wants, but
ideally, no bigger.

Libraries for a given project are likely to come from different sources. This is
almost inevitable as one of our motivations for using a library is that it embodies
expertise in a particular area, and it is highly unlikely that a single source will have
expertise in all areas. The libraries necessarily make assumptions about use. These
may be as simple as a choice between using doubles instead of floats, as subtle as who
is responsible for freeing memory, and as pervasive as how to report errors
(exceptions vs. return codes vs. special values). Different libraries will take different
approaches. The library will then need to be adapted so that it will work with other
code, the application code and that from other libraries. The problem is common
enough to spawn its own term – glue code.

Finally, libraries bring with them the problem of evolution. Libraries are intended
to be long lived in order to amortize their higher cost, which comes with their
reusability, over many projects. Compounding this is the need for multiple libraries,
each of which will tend to evolve at an independent rate. Since the consequences of
removing (or modifying the interface) an element still being used is grave and since
the library developer has no way of knowing what is still in use, libraries evolve
solely by growing. The versioning system for DCOM is a prime example, although
all libraries share it to some degree. Items may be marked as depreciated, but support
for actually removing them is minimal. A problem here is that different projects have
very different needs. A new project may have a great desire to avoid depreciated
elements; while one at the end of its life cycle may have an economic imperative to
avoid changes.

Customized Libraries through Product Lines

I would suggest that all these issues point to an underlying problem in the current
approach to providing libraries – which is the incorrect assumption that one size fits
all. It is unlikely that any project will actually use all or even a significant portion of
a library. The reason multiple products make use of a given library is an overlapping,
although not identical, set of requirements in the area provided by the library. Very
different products that provide a GUI, still have a need for many of the same elements
- windows, menus, etc. The question is whether the current one size fits all approach
is the best way to satisfy these sorts of overlapping requirements.

One of the most promising approaches in software engineering to satisfying related
and overlapping requirements is the Product Line approach. I propose that libraries
be architected using a product line perspective. This in turn will allow the user of the
libraries to work with a library that is customized for their particular project.
Normally, such a customized library would be too expensive for most projects.
However, a product line approach is able to drastically cut the number of users needed
to make a custom version economically attractive.

My focus here is on product lines for libraries NOT on product lines for
components. There is still much valuable work to be done on components; however,
what I am interested in researching is what happens to additional dimensions of a

library of many related elements. The most obvious difference are concerns that
effect many items in the library. For example, memory management, or a particular
security requirement (perhaps signed objects). Current libraries address these issues
but they do so by providing a single one-size-fits-all solution, which they try to make
adaptable through techniques, such as parameters, which often result in a complex
interface. By using a product line approach, one library customer, with high security
needs, can have signed objects, while another customer can have it without.

The fundamental change that I am suggesting is to allow the user to have a library
customized to his needs. It is ironic that the purchaser of a car has a more customized
product then the purchaser of a software library. The application of a product line
approach can provide an economically viable way to allow the library consumer to
select those areas that are important to a particular project.

Overall, using a product line approach creates two fundamental changes for
libraries: First, the size barrier of the library is shattered because size of the provided
features is de-coupled from the size of the library used in a given product. Second,
there is a fundamental change in the relationship between the library and user because
the library becomes customized to fit the user’s needs. This means that the library can
be extended and provide a larger part of the final product.

Domain Analysis of Libraries

The first step in undertaking a product line approach is domain analysis. What I am
attempting to provide a domain analysis of libraries, not domain analysis of a library,
or even a domain analysis procedure to be used for a library. What I want to identify
are those elements of interest that are common across all or at least many libraries.
This is not a common approach. To take one recent example Czarnecki’s DEMRAL
[Czarnecki 00] work provides a process for providing a library for a particular
domain. While the approach may be applied to different domains, it does not attempt
to analyze issues that span domains or the general effect of libraries on an application.
In a sense, this is the compliment of what I am trying to achieve. DEMRAL looks at
providing specific instances of libraries and my proposed work looks at what is not
specific to any particular library.

To begin our domain analysis of libraries, a definition of a library is needed.
Finding a meaningful definition1 for library has proven surprising elusive. As a result,
I provide my own definition.

1 All too typical are definitions like this from the Oxford’s Dictionary of Computing: “program

library (software library) A collection of programs and packages that are made available for
common use within some environment; individual items need not be related. A typical library
might contain compilers, utility programs, packages for mathematical operations, etc.
Usually it is only necessary to reference the library program to cause it to be automatically
incorporated in a user's program. See also DLL.” [Oxford 96]

Definition of Library

A library is a collection of code intended for repeated use, across multiple
applications, bottom up in design, with a passive control flow being invoked by a
client, providing small to medium grain members, primarily functions and objects. A
library provides implementation reuse; although, of course, it embodies some design
and domain expertise. A library attempts to be architecturally neutral. Libraries may
use other libraries but they do not form and can not be composed into complete
applications, as they have no main, and preferably no externally visible control
structure. Libraries are also passive in the sense that they do not receive their own
allotment of CPU cycles, either as a process or a thread; although an element of a
library may require its client application to provide it with a thread.

The primary connection between the library and the application consists of object
instantiation and method calls by the client application. Applications combine or
aggregate libraries.

A library has a release and deployment cycle independent of its applications;
although, its release cycle may be tied to system software such as operating systems
and language releases. Libraries are visible to system software, relying on languages
to support separate module compilation, linkers to statically assemble or operating
system support to dynamically assemble libraries and applications.

Library Compared with Other Reuse Approaches

Libraries may be contrasted with other reuse approaches, particularly frameworks.
Frameworks are intended to create an individual application, providing a top down
design. The framework provides the application control flow including the program’s
main, this control flow is characterized by inverted control where client code is
executed primarily via callback initiated by the framework. Frameworks, generally,
aim to provide the complete structure for an entire application; they provide an
implementation of a particular architecture and are not intended to work with other
frameworks. The connection between the framework and application specific code is
provided by callbacks and sub-classing from classes defined by the framework. It is
not possible to deploy a framework independently of a particular application.
Frameworks directly provide implementation reuse. They indirectly provide design
reuse by embodying a particular architecture. Frameworks are not visible to and do
not require system software support. Applications specialize frameworks.

Another reuse approach is the platform. A platform defines the runtime
environment for a program. At a minimum this is a hardware / operating system
combination; although, it may be quite a bit more. An EJB container is a platform
that provides considerably more in the way of services then most operating systems;
for example, object invocation. Since libraries enhance the runtime environment,
some collection of libraries would typically be included in a platform. The main role
of a platform is to provide a standard set of services to an application.

Table 1. Comparison of implemenation reuse approaches

 Library Toolkit Framework Middleware Platform Component
Design approach Bottom up Middle out Top down Bottom up System Middle
Granularity Small Medium Large Medium Large Medium
Function Access Method call Call-back Call-back Call-back Interprocess Interprocess
Control flow Passive Events Main loop Events Process Interprocess
Deployment Independent W/App W/App Independent System Independent

Table 1 compares a number of reuse approaches, to place the library approach in

perspective. All of these are primarily methods for implementation reuse, as opposed
to design reuse provided by patterns and architectures.

From this several continuums of traits emerge. As shown in figure 1 moving from

libraries to frameworks the reuse elements become more tightly coupled with each
other and they have more control over the architecture of the application.

Tightly Coupled

Fig. 1. Comparison of 3 different reuse approaches in terms of relationship to the architecture
and coupling between elements

Another continuum is how intermingled the reusable and application specific code
is. Here a continuum is formed consisting of platform, library, and framework.
Platform being the most separated from the application and framework being the most
intermingled with the application. This can be expressed by saying that an application
runs on a platform, using libraries, within a framework.

Fig. 2. Comparison of 3 different reuse approaches in terms of separation of reuse

elements from the application

Other Facets of Libraries

Having defined what a library is and how it differs from other approaches of reuse,
we can also discuss desirable qualities of libraries. A short list might include:

 Defines Architecture
Loose Collection

Architecturally Neutral

 Frameworks

 Toolkits

 Libraries

Platform Library Framework

Defined Interface Intermingled

Completeness, Consistency, Ease of learning, Ease of use, Efficiency, Adaptability,
Extendibility, Ease of integration, Intuitiveness, and Robustness [Korson 92]. Many
of these are rather general, such as being efficient; although, in many cases there are
additional challenges present in satisfying these for a library.

There are also a number of issues in developing good libraries that are not present

in other approaches:
• Size – since libraries provide building blocks for other applications there is

not the same sort of natural limit to what is provided that exists for even
large applications.

• Integration issues – libraries are not useful unless they are used by
application, which in turn is designed in isolation from the library.
Noteworthy here is the possibly impractical assumption that the library is
architecturally neutral.

Research Ideas

It is my hope to have been persuasive that libraries constitute a specific and
interesting domain for study and that they have problems, which at first glance, seem
amenable to a product line approach. I see the following issues to be pursued:
• Further definition of library commonalities. Particularly, functional

commonalities among libraries. For example, it would seem that all libraries
must provide for error handling.

• Definition of variability points for libraries. There are some obvious candidates
such as the ability to ship the library for multiple platforms.

• The problem of adapting to multiple applications. For example, a library must
provide for an error handling policy and mechanism. It must also integrate with
multiple applications each of which may use a different error handling. There is
some work in the “active library” area that may be related to this.

• The problem of customization vs. general deployment. I have argued that
customizing a library for an application provides many advantages. However, in
the definition section I pointed out that one of the characteristic advantages of the
library as a reuse approach was the ability to deploy the library independently of
a particular application and have it accessed by multiple applications on the same
system. How to reconcile these two?

• Does the resulting library code produce the promised improvements? Is there good
code reuse? Is programmer productivity improved? Are library variations
reliable?

• Does using a customized library affect the development process? Possible effects
include: an extra stage in the architecture definition to specify library variants,
changes in deployment to include the correct version of the library, and feedback
from coding phase that a different version of the library is required.

• How should this be implemented? Particularly, which techniques would allow a
feature to be applied across a library without developer intervention? How to

apply a feature to subsets of the library? For example, a search may be applicable
to all containers but not to GUI components.

Conclusion

Software reuse is a key strategy in our ability to develop affordable, reliable software.
While the importance of reuse has long been known, having effective techniques for
reuse has often been surprising elusive. Libraries are the oldest most widespread
techniques for reuse. However, the current one size fits all approach to providing
libraries seems to be reaching a practical limit. While the limit on library size has
been extended through standard software engineering techniques, simply re-
engineering the internals of the library will not have a fundamental effect. The
product line methodology represents a much newer approach to software reuse, which
focuses on providing related variations in software. Product lines make it
economically feasible to provide mass customization of a product to fit the needs of a
user. It is my contention that product line approach is a complementary technique to
libraries. Applying product line techniques to libraries make it possible to create
highly customized libraries that fit the needs of its client product and thus extend the
libraries usefulness.

References

[Czarnecki 00] Czarnecki K. and Eisenecker U.: Generative Programming: Methods, Tools, and
Applications. Addison Wesley, Boston (2000)

[Dusink 95] Dusink L. and van Katwijk J.: Reuse Dimensions. In Proceedings of the 1995

Symposium on Software reusability. Seattle, Washington ACM Press (1995) 137-149

[Korson 92] Korson T. and McGregor J.: Technical Criteria for the Specification and

Evaluation of Object-Oriented Libraries. In Software Engineering Journal. IEEE 7(2)
(1992) 85-94

 [Krueger 92] Krueger C.: Software Reuse. ACM Computer Surveys 24 (2) (1992) 131-183

[McIlroy 68] McIlroy M. D.: Mass produced software components. In Software Engineering;

Report on a conference by the NATO Science Committee (Garmisch, Germany, Oct. Naur,
P., and Randell, B., Eds. NATO Scientific Affairs Division,Brussels, Belgium, (1968) 138-
150

[Oxford 96] Program Library. In A Dictionary of Computing. Oxford University Press, 1996.

Oxford Reference Online. Oxford University Press.
<http://www.oxfordreference.com/views/ENTRY.html?subview=Main&entry=t11.e4144>

Copyright © Fraunhofer IESE 2004 40

4 Waraporn Jirapanthong
Towards a Traceability Approach for Product Family Systems

Copyright © Fraunhofer IESE 2004 41

Towards a Traceability Approach for Product Family Systems

Waraporn Jirapanthong

Department of Computing
City University

Northampton Square, EC1V 0HB, UK
w.jirapanthong@soi.city.ac.uk

Abstract. Traceability has been proposed as an important activity in software engineering to
guarantee quality in the life-cycle of software system development. This work aims to enable
traceability for product family software systems, in particular, for identifying both common and
different aspects between the various members of a system. Our approach supports automatic
generation of traceability relations among artefacts for product family software systems. We have
identified nine types of traceability relations. The approach is rule-based: the rules are represented
in XQuery and the requirements artefacts are represented in XML. In this paper, we describe the
approach for different types of product family artefacts, namely feature model, use case
specifications, and class diagram.

1. Introduction

Requirements Traceability (RT) has been proposed as a supportive technique for software system
development [14][21][23]. Traceability can facilitate the development process and ensure quality of the
system. In particular, traceability relations can support evolution and reuse of software systems by
comparing artefacts of new and existing systems, completion of the final-system by validating the
satisfaction of requirements and the system, understanding the rationale of design and implementation,
and analysis of the implications of changes in the system.

Unfortunately, despite its importance requirements traceability is rarely established due to the fact
that traceability is subject to manual tasks. Some approaches [5][16][26] assume that traceability
relations should be established manually, which is error-prone, difficult, time consuming, expensive,
complex, and limited on expressiveness. Other approaches have been contributed to support semi- or
fully-automatic generation of traceability relations [1][10][12][19][20]. However, the traceability
relations generated by the majority of these approaches do not have strong semantic meaning necessary
to support the benefits that can be provided by traceability. Moreover, traceability of complex systems
like product families is much more ambiguous and difficult to establish.

An exception is presented in [25][29], in which a rule-based approach has been proposed to allow
automatic generation of traceability relations between different types of requirements documents such
as customer requirements specifications, use-case specification, and analysis object model. There are
three different types of traceability relations, namely overlaps, requires and realises relations. In the
approach, traceability rules identify the relationships between requirements documents by matching
syntactically related terms of customer requirements and use-case specification with semantically terms
in the object model. The traceability relations are established by the matching of rules. In this paper we
extend the contributions of this previous work [25][29].

Our approach has been proposed to allow automatic generation of traceability relations between
documents under the domain of product family software systems, in particular, to identify common and
variable aspects of the product members. The documents of our concern are based on feature-based
methodologies due to the fact that customers and system developers communicate with each other in
terms of product features when developing product family systems, and also based on object-oriented
methodology due to its support for software development. FORM [18] is applied as the basis of our
approach due to its simplicity, maturity, practicality, and extensibility in software development process
for product family systems. The goal of our work is to allow generation of traceability relations
between documents proposed in FORM [18] i.e. feature, process, and subsystem models, and some
object-oriented diagrams such as component, class, and state chart diagrams. The work presented in
this paper concentrates on functional requirements specification, feature models, and class diagram.

In the approach these documents are represented in XML and the rules are expressed in XQuery
[28]. The documents are translated into XML-format due to several reasons: (a) XML has become the

de facto language to support data interchange among heterogeneous systems, (b) the existence of
applications that use XML to represent information internally or as a standard export format, and (c) to
allow the use of XQuery as a standard way of expressing the traceability rules.

The remaining of this paper is structured as follows. In Section 2, we describe the main documents
we propose to use for product family system development. In Section 3, we present an overview of our
approach: the different types of relationships existing in product family software systems; and the
traceability rules including representing in XQuery. In Section 4, we describe existing related work.
Finally, in Section 5 we summarise our approach and discuss directions for future work.

2. Types of documents

In this section, we give an overview of documents used in our work. Due to our XML-based approach,
the documents are translated into XML. We have created DTDs for the functional requirements
specifications and feature models, and use XMI for the class diagrams. We present examples for some
of these documents for a product family related to mobile phone systems.

Functional Requirements: Functional requirements specifications are use-cases defined according to
a template proposed in [8]. A use case contains title, status, region, description, level, preconditions,
postconditions, primary_actors, secondatry_actors, flow_of_event, exceptional_events,
superordinate_use_case, and subordinate_use_case. In order to deal with the natural language
sentences present in the use case description, we propose to mark up the words of the sentences by
using XML elements that indicate their grammatical role in the sentence. The grammatical role is
identified by using the part-of-speech tagger called CLAWS [9]. Figure 1 (a) presents an example of a
use case description for sending data from a mobile phone. This use case is related to a member (MP1)
of the product family. In this example the word “Send” appears as an element <VVB> denoting that it
is a base form of a lexical verb, while the word “data” appears as an element <NN0> denoting that it is
a neutral noun. For a complete description of the tags given by CLAWS, please refer to [9].

Feature Model: In our work we use an XML representation of the feature model proposed in [17]. The
model is structured like a graphical tree. Each feature of the system is represented in a feature model
and includes the following information: feature_name; description; issue_and_decision describing
issues and decisions that arise during the feature analysis process; type that classifies the feature in
terms of capability, operating environments, domain technology, or implementation techniques;
commonality denoting if a feature is mandatory, alternative or optional; and relations representing
relationships with other features. An example of a feature model for a “Bluetooth” feature presented in
mobile phone systems is shown in Figure 1 (b). This feature is “optional” (i.e. not every member in the
family needs to have this feature) and of type “capability” (i.e. Bluetooth is concerned with an ability
of the system).

Class Diagram: The class diagram is actually UML class diagram, including classes, attributes,
operations, associations, and generalisation relations between classes and is represented in the
eXtensible Metadata Interchange (XMI) format.

Component Diagram: The components are defined in UML component diagrams. The diagram
includes components, classes, and relationships between components and is also represented in the
eXtensible Metadata Interchange (XMI) format.

Subsystem Model: According to [18], a subsystem model represents the high-level characteristics of
systems, which can be distributed to and executed by different machines. Particularly, the model is
packing of physical boundaries i.e. services and operations that are related to logical boundaries
(capability and operating environment features). The model shows subsystem_name; external_systems;
and messages that are classified as closely_coupled_message_queue, loosely_coupled_message_queue,
and message_without_reply.

Process Model: The process model shows the activities executed by each system in the family. In
other words, the subsystem model is elaborated in the process model that shows a set of processes and
interactions between the processes. The process model basically includes process_name; information
describing data dependency, functional cohesion, execution frequency, etc; messages that are similarly
categorized as subsystems (i.e. closely_coupled_message_queue, loosely_coupled_message_queue, and

message_without_reply); and shared_data denoting which data is being shared by the different
processes.

Module Model: The process model is elaborated in the module model, in which a set of components
and classes are identified and logically grouped as modules. The module model is tightly associated to
all levels of feature model. The module consists of module_name; and links between modules like uses
or inherits.

State Chart Diagram: The state chart diagram represents behavior aspects of the system. We use
UML state chart diagram with states; transitions indicating possible paths between states; and events,
represented in the eXtensible Metadata Interchange (XMI) format.

(a) (b)

Fig. 1. Examples of documents: (a) functional requirement specification for use case “Send data”; (b) feature
model for “Bluetooth” in XML

3. Overview of the approach

Figure 2 presents an overview of our approach. Initially, the documents are translated into XML by
using an XML translator. In the case of the class, component, and state chart diagrams, the XMI
formats are generated by using commercial XMI exporter (e.g. Unisys XMI exporter for Rational). The
XML translator is also responsible to add the XML POS-tags in the sentence after identifying these
tags using CLAWS. These XML documents are used as input to the traceability generator that creates
traceability relations based on the rules represented in XQuery [28]. The traceability relations are also
represented in XML format. As described below, some of the traceability relations will be used to
support identification of new traceability relations (derived relations). In the figure this is represented
by using the XML-formatted relationships documents as input to the traceability generator.

<Feature>
<Feature_name> <NN1>Bluetooth</NN1>
</Feature_name>
<Description>…<NN1>Bluetooth</NN1>
<NN1>connection</NN1> <VM0>can</VM0>
<VBI>be</VBI> <VVN>used</VVN>
<TO0>to</TO0> <VVI>send</VVI>
<NN0>data</NN0> <AV0>i.e.</AV0>
<NN2>texts</NN2> <NN1>business</NN1>
<NN2>cards</NN2> <NN1>calendar</NN1>
<NN2>notes</NN2> <CJC>or</CJC>
<TO0>to</TO0> <VVI>connect</VVI>
<AV0>Wirelessly</AV0> <PRP>to</PRP>
<NN2>computers</NN2>…
</Description>
<Issue_and_decision/>
<Type>Capability</Type>
<Commonality>Optional</Commonality>
<Relation/>
</Feature>

<FunctionalReqSpec System=”MobilePhone”
Product_Member=”MP1”>

<Use_case UseCaseID=”1”>
<Title> <VVB>Send</VVB> <NN0>data</NN0> </Title>
<Status>Common</Status>
<Region Name = "All"/>
<Description>…<AJ0>mobile</AJ0> <NN1>phone</NN1>
<VM0>can</VM0> <VVI>send</VVI> <NN0>data</NN0>
<VVN>kept</VVN> <PRP>in</PRP> <AT0> the</AT0>
<NN1>phone</NN1> <PRP>to</PRP> <DT0>another</DT0>
<NN1>phone</NN1> <CJC>or</CJC> <NN1>device</NN1>
<PRP>via</PRP> <NN1>communication</NN1>
<NN2>channels</NN2> <AV0>i.e.</AV0> <NN1>Bluetooth</NN1>…
</Description>
<Level>Primary Task</Level>
<Preconditions>…</Preconditions>
<Postconditions>…</Postconditions>
<Primary_actor>…</Primary_actor>
<Secondary_actors>…</Secondary_actors>
<Flow_of_events>…</Flow_of_events>
<Exceptional_events>…</Exceptional_events>
<Related_Information>
<Superordinate_use_case>…</Superordinate_use_case>
<Subordinate_use_case>…</Subordinate_use_case>
</Related_Information></Use_case>…</FunctionalReqSpec>

(XML-formatted
documents)XML Translator

Class Diagram

Feature
Model

Use Case
Description XQuery-based

Rules

Traceability
Generator

XML-formatted
Relationships

Fig. 2. Overview of the approach

Types of Traceability Relations

Based on the different types of documents described in Section 2, we identified nine types of
traceability relations for product family systems. We classify the traceability relations in two groups:
direct and derived relations. The direct relations group is concerned with relations that are identified by
matching terms in the documents. The derived relations group is concerned with relations that are
identified based on the existence of other traceability relations identified by our traceability generator.
Both direct and derived relations are sub-classified into other types of relations. Figure 3 present the
different types of relations. In particular, alternative and additional relations allow identification of
variable aspects of the product members in a family, while similar relation supports identification of
common aspects among these products.

Relationship

Direct

Dependency

Requires
Mutual Exclusive

Derived

Similar

Different

Association

Aggregation

Generalisation/
Specialisation

Implemented

Additional

Alternative

Dependency

Requires
Mutual Exclusive

Fig. 3. Types of traceability relations

In the following, we explain the meaning of each type of relation being proposed and illustrate them
with examples from mobile phone systems. The term element is loosely used to refer to a feature, an
object, an item, a functionality, or a characteristic of the system.
1. Association – This relation expresses the association between two elements. For example, a

component “network management” is associated with a process “network establishment”. The
relation is captured between the component in the component diagram and the process in the process
model.

2. Aggregation – This relation expresses that an element is composed of other elements. For example,
a process “displaying” in the process model is composed of features in the feature model i.e. a
screen, a keypad, a speaker microphone.

3. Generalisation/Specialisation – This relation expresses an abstraction between an element and a set
of its specialized elements. For example, a “screen” feature is specialized by algorithms, in which
are realized into some methods in classes such as “text”, “mono-colour”, and “multi-colour
displaying”. The relations are captured between the screen feature in the feature model and methods
in the class diagram.

4. Implemented – This relation expresses that an element is implemented by another element. The
approach can capture the relation within the same type of documents e.g. within the feature model
and between different types of documents. For example, there is implemented relation between a
“read message” feature in capability layer and “textual display” feature in domain technology layer
in the feature model. The relation is implied that the “read message” feature is implemented by the
“textual display” feature. Between functional requirements specifications and class diagram, for

example, a “text messaging“ feature in the feature model is related to a “sending data” method of a
“text” class in the class diagram as an implemented relation.

5. Mutual Exclusive – This relation is bi-directional and expresses that two elements require the
existence of each other. Note that mutual exclusive relations can be both direct and derived relations.
A sample of mutual exclusive relation is that a “multi-media messaging“ and “integrated digital
camera” features requires the existence of each other in the feature model.

6. Requires- This relation expresses that an element requires an existence of another element. Like,
mutual exclusive relations, the requires relations can be both direct and derived relations. For
example, a “send message” feature requires a “signal notification feature”. It is implied that a system
requires displaying a notice to a user after sending a message.

7. Alternative – This relation expresses different ways of achieving the same functionality in different
product members of the family. In particular, the relation is based on implemented and other
relations. For example, the family of mobile phone systems has “text”, “mono-colour graphic”, or
“multi-colour graphic screen” features. A mobile phone system is implemented by the “mono-colour
graphic screen” feature while another mobile phone system is implemented by the “multi-colour
mode screen” feature. Thus, two product members are related to each other in term of alternative of
the “screen” feature. The relation is created between two functional requirements specifications.

8. Additional – This relation expresses extra functionalities that may exist between product members
of the family. Like the alternative relationship, the additional relations are based on implemented
and other relations. For example, a mobile phone system is implemented by a feature “integrated
digital camera” while another system is not. Two product members are related to each other in terms
of additional “integrated digital camera” feature. The relation is generated between two functional
requirements specifications.

9. Similar – This relation expresses common elements in the product members of the family. The
similar relations are also based on implemented and other relations. For example, two mobile phone
systems are implemented by a “WAP service” feature. Two product members are related to each
other in terms of similarity of “WAP service” feature. The relation is generated between two
functional requirements specifications.

Traceability Rules

In our approach the traceability relations given above are identified by using traceability rules. Our
traceability generator analysis the rules and establishes the relations if the conditions for the rules are
satisfied. Each rule has a unique identifier and a type associated with the traceability relation identified
by the rule. The rules can be concerned with the same or different types of documents.

In this paper, we have proposed a number of rules for creating implemented, derived requires,
derived mutual exclusive, alternative, additional and similar relations. The rules for creating
implemented relations identify matching terms in the textual contents of documents by comparing the
XML POS-tags specifying grammar roles generated by the XML translator. The rules for creating
derived requires, derived mutual exclusive, alternative, additional and similar relations are based on
existing relations.

Figure 4 presents an example of two rules described below.

Rule1 identifies an implemented relation between use case and feature model if there is a singular
noun (<NN1>) composing the name of the feature that appears in the description of the use case, and
the title of the use case is composed of a neutral noun (<NN0>) and a verb (<VVB>) that appear in the
description of the feature model. Figure 4 shows that two use cases are related to a “Bluetooth” feature
as implemented relationship.

Rule2 identifies a similar relation between use cases. The relation signifies that two different
product members of a family have some similarity if they implement the same feature. This relation
depends on the existence of previous implemented relations between use cases and feature model (i.e.
different use cases and the same feature names). Figure 4 shows a similar relation between two use
cases from different product members “MP1” and “MP2” in terms of implementation of the
“Bluetooth” feature.

Fig. 4. Examples of direct implemented traceability relations, which are created by Rule1, between a use case
“Send data” of product member “MP1” and feature “Bluetooth”; and between a use case “Send data” of product
member “MP2” and feature “Bluetooth” in the feature model; and similar traceability relation in term of
“Bluetooth” feature, which is created by Rule2, between two use cases based on implemented relations,.

Rules in XQuery

We propose to represent the rules in XQuery [28] due to its power and support for retrieving data from
XML documents, and due to its maturity, simplicity, and extensibility. With XQuery it is possible to
locate specific elements and attributes in an XML document by using XPath expressions. Apart from
the embedded functions offered by XQuery, it is possible to add new functions and commands. In this
paper, we are using XQuery implementation of [24] in order to validate the XQuery rules. Even though
the implementation of [24] is still ongoing, it covers most of the XQuery functions necessary in our
approach. However, it is also necessary to extend XQuery with new functions in order to cover some of
the traceability relations being proposed. Example of these functions are synonym, to identify words
that have the same meaning, distance_control, to measure the distance between two words in a text.

Figure 5 shows a sample XQuery rule of Rule1, shown in figure 4. The XQuery part is composed of
two parts. The first part (for) identifies the elements of the documents being compared (i.e. <Feature>
and <Use_case>). The second part (where) contains the conditions that should be satisfied in order to
create the traceability relations. The conditions of this rule verify if there is a singular noun (<NN1>)
composing the name of the feature that appears in the description of the use case, and if the title of the
use case is composed of a neutral noun (<NN0>) and a verb (<VVI>) that appear in the description of
the feature model.

Fig. 5. A sample rule in XQuery

The parts of the documents to be related when the conditions of the rule are satisfied, is specified by
element <Action>. In order to illustrate, consider the use case and feature model shown in Figure 4. In
this case, a relation of type implemented is created between the use cases and the feature model, since

<TraceRule RuleID=”R1” RuleType=”Implemented”>
<Query>
 <![CDATA[for $fm in doc("file:///c:/FeatureModel.xml")//Feature_model/Feature,
 $uc in doc("file:///c:/UseCases.xml")//Use_case
 where some $t in $fm/Feature_name/NN1 satisfies (contains(string($uc//Description), $t))
 and (some $p1 in $fm/Description/NN0 satisfies contains(string($uc//Title), $p1))
 and (some $p2 in $fm/Description/VVI satisfies contains(string($uc//Title), $p2))]]>
</Query>
<Action> <Relation type=”Implemented”/>

 <Elements>$fm/feature_name</Elements>
 <Elements>$uc/use-case-ID</Elements>

</Action>
</TraceRule>

<Feature>
<Feature_name> <NN1>Bluetooth</NN1> </Feature_name>
<Description>…<VVI>send</VVI> <NN0>data</NN0> …</Description>…
</Feature>…

<FunctionalReqSpec System=”MobilePhone”
Product_Member=”MP1”>

<Use_case UseCaseID=”1”>
<Title><VVB>Send</VVB> <NN0>data</NN0> </Title>
<Status>Common</Status>
<Region Name = "All"/>
<Description>...
<NN1>Bluetooth</NN1>…</Description>…
</Use_case>…

<FunctionalReqSpec System=”MobilePhone”
Product_Member=”MP2”>

<Use_case UseCaseID=”111”>
<Title><VVB>Send</VVB> <NN0>data</NN0> </Title>
<Status>Common</Status>
<Region Name = "All"/>
<Description>...
<NN1>Bluetooth</NN1>…</Description>…
</Use_case>…

R2

R1

R1

the feature name “Bluetooth” appears in the description of the use cases, and “Send data” appears in
the title of each use case and the description of the feature model.

4. Related work

Our work is related to two main areas of research: product family software systems; and requirements
traceability.

Product Family Software Systems

The field of product family software systems is large and growing and there are many projects from
both academia and industrial environment. Some projects [2][4][7][11][13][22] define frameworks for
system development. Other methods [3][27] describe the conceptual framework of product family
processes and focus on the reuse of product family systems. However, the majority of the methods are
complex, do not tackle the problem of how to manage requirements, as well as how to support
traceability generation between the systems.

Methods like [6][15][17][18] use the feature model for representing common and variable aspects of
product family systems. However, some of these methods do not cover the life-cycle of product family
system development and some of these methods do not focus on requirements engineering.

Requirements Traceability for Product Family Software Systems

Research into requirements traceability for product family software systems has been proposed to
investigate the roles and importance, and the methods for establishing traceability relations.
Approaches like [5][16][26] support manual generation of traceability relations, while other
approaches [1][10][12][19]20] have been proposed to support automatic traceability generation.
However, these approaches do not fully represent the semantics of traceability relations and have
limitations of how to generate traceability relations in complex systems.

5. Conclusion & Future work

This paper is part of my PhD work, which focuses on two main areas: requirements traceability and
product family software systems. The paper presents a rule-based approach to allow automatic
generation of traceability relations in documents for product family systems. In particular, the
traceability relations allow the identification of common and variable aspects and also describe the
semantics of relationships between artefacts for product members. In this paper, we have identified
nine different types of traceability relations for product family systems. Our approach generates
relations between three types of documents i.e. functional requirements specifications, feature models,
and class diagrams.

We propose to use XQuery to represent the traceability rules. Although XQuery is apparently
powerful, it is still subject to changes. However, based on our study we believe that XQuery is a very
good answer for the problem being investigated.

Currently, we are implementing the traceability generator in order to evaluate our work. Before
large scale experimentation and use, we are extending our work to cover traceability generation
between other types of documents for product family software development i.e. process models,
subsystems models, module models, component diagrams, and state chart diagrams. As mentioned
earlier, we plan to add new functions in XQuery in order to support identification of all types of
traceability relations being proposed. We also plan to evaluate our approach in terms of recall and
precision.

References

1 Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering Traceability Links between code
and Documentation. IEEE Transactions on Software Engineering, Vol. 28 No. 10 (2002) 970-983

2 ARES: http://www.cordis.lu/esprit/src/20477htm, (1999)
3 Atkinson, C., Bayer, J., Muthig, D.: Component-based product line development: The KobrA approach.

Proceedings of the 1st Software Product Line Conference, (2000)
4 Bayer, J., DeBaud, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T.: PuLSE: A

methodology to develop software product lines. Proceedings of the 5th ACM SIGSOFT Symposium on
Software Reusability (SSR’99), (1999) 122-131

5 Bayer, J., Widen, T.: Introducing Traceability to Product Lines. Proceedings of Software Product-Family
Engineering: 4th International Workshop (PFE), Spain (2001), Lecture Notes in Computer Science, ISSN:
0302-9743.

6 Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a Product-line
Approach. Addison-Wesley, (2000)

7 CAFÉ: http://www.esi.es/en/projects/cafe/cafe.html, (2003)
8 Cockburn, A.: Structuring Use-Cases With Goals. JOOP, Sep-Oct (1997)
9 CLAWS: https://www.comp.lancs.ac.uk/ucrel/claws.
10 Cleland-Huang, J., Chang, C.K., Sethi, G., Javvaji, K., Hu, H., Xia, J.: Automating Speculative Queries

through Event-based Requirements Traceability. Proceedings of the IEEE Joint International Requirements
Engineering Conference, Essen (2002)

11 Clements, P., Northrop, L.: A Framework for Software Product Lines Practice – Version 4.1 [Online].
Carnegie Mellon, Software Engineering Institute URL: http://www.sei.cmu.edu/plp/framework.html,
Pittsburgh (2003)

12 Egyed, A.: A Scenario-Driven Approach to Trace Dependency Analysis. IEEE Transactions on Software
Engineering, Vol. 9 No. 2 (2003)

13 ESAPS: http://www.eso.es/en/projects/esaps/esaps.html, (2001)
14 Gotel, O., Finkelstein, A.: An Analysis of the Requirements Traceability Problem. The 1st International

Conference on Requirements, England (1994) 94-101
15 Griss, M., Favaro, J., Alessandro, M.: Integrating feature modeling with the RSEB. Proceedings of the 5th

International Conference on Software Reuse, Vancouver BC (1998) 76-85
16 Integrated Chipware; RTM: www.chipware.com
17 Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain analysis (FODA) feasibility

study Technical Report CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, November 1990, also available at http://www.sei.cmu.edu/domain-engineering/FODA.html.

18 Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: a feature-oriented reuse method with domain-
specific architectures. In Annals of Software Engineering, Vol. 5, 354-355.

19 Marcus, A.; Maletic J.I.: Recovering Documentation-to-Source-Code Traceability Links using Latent
Semantic Indexing. ICSE, (2003)

20 Pinheiro, F., Goguen, J.: An Object-Oriented Tool for Tracing Requirements. IEEE Software, (1996) 52-64
21 Pohl, K.: Process-Centered Requirements Engineering, John Wiley & Sons, Inc., (1996)
22 PRAISE: http://www.esi.es/en/projects/praise/praiseproject.html
23 Ramesh, B., Jarke, M.: Towards Reference Models for Requirements Traceability. IEEE Transactions on

Software Engineering, Vol. 37 No. 1 (2001)
24 Sourceforge; Saxon: http://saxon.sourceforge.net/
25 Spanoudakis, G., Zisman, A., Perez-Minana, E., Krause, P.: Rule-based Generation of Requirements

Traceability Relations. Journal of Systems and Software, Vol. 72 No. 2 (2004) 105-127 (to appear).
26 Teleologic; Teleologic DOORS: www.teleologic.com/products/doors
27 Weiss, D.: Software Synthesis: The FAST Process. Proceedings of the International Conference on

Conference on Computing tin High Energy Physics (CHEP), (1995)
28 XQuery: http://www.w3.org/TR/xquery/
29 Zisman, A., Spanoudakis, G., Perez-Minana, E., Krause, P.: Towards a Traceability Approach for Product

Families Requirements. The 3rd ICSE Workshop on Software Product Lines: Economics, Architectures, and
Implications, Orlando (2002)

Copyright © Fraunhofer IESE 2004 50

5 Periklis Sochos
Mapping Feature Models to the Architecture

Copyright © Fraunhofer IESE 2004 51

Mapping Feature Models to the Architecture

Periklis Sochos

Technical University Ilmenau, Process Informatics, Postfach 10 00 565
98684 Ilmenau, Germany

Periklis.Sochos@tu-ilmenau.de

http://www.theoinf.tu-ilmenau.de/∼pld

Abstract. Many software product line (PL) methodologies use features
to model variability and express requirements. Furthermore, they set fea-
tures as the main driver for the development of the PLs’ architecture.
Nevertheless, the existing PL methods do not provide the developer with
a concrete and efficient process to map features to the architecture. This
paper directly addresses this issue by providing a method that will allow
for a strong mapping between PL features and architecture. The method
makes use of feature transformation, inter-process communication pro-
tocols and plug-in architectures.

Classification: PhD, 2nd year

1 Introduction

A number of software product line development methodologies make extensive
use of features, e.g. [5], [6], [4] and place feature models in the center of the devel-
opment efforts. Nonetheless, the resulting architectural components lack a strong
mapping to features. Extensions to these methods come from the combination
of generative programming techniques (e.g. [7], [8]) with the aforementioned
methodologies (e.g. [2]). Although these extensions provide an improvement on
the issue of mapping between features and architectures, they introduce new
problems, such as lack of sufficient tool support, decreased maintenability and
evolution.

This paper introduces the Feature-Architecture Mapping (FArM) method,
which directly addresses the issue of weak mapping between PL features and
the PL architecture. Section 2 will provide an overview of FArM, section 3 illus-
trates the core of the FArM method, sections 4 to 8 provide more details on the
method’s processes, while section 9 states the conclusions and further work.

2 Feature-Architecture Mapping (FArM)

The Feature-Architecture Mapping (FArM) method is divided, as most PL de-
velopment methods, in a Product Line and Product Engineering phases. The

Domain Analysis−
Feature Modelli ng e.g. FODA

Feature Model
Transformation

Building Reference
Architecture

Initial Feature
Model

Transformed
Feature Model

Reference
Architecture

Building Architectural
Components

Architectural
Components

Customer Requirement
Analysis

List of Features

Comparison of Customer
Features with PL Features

Are all features
in the PL?

Generate
Product

Is it a future feature or
an important customer?

Yes

No
Customize Product
and/or Build in PL

Yes

No

Unable to serve
Customer

Fig. 1. The FArM Product Line and Product Engineering workflows.

former develops the PL core-architecture and components, while the latter sup-
ports the instantiation of PL end-products. Figure 1 illustrates these two phases.

The Product Line Engineering in FArM performs a domain analysis with
an independent domain analysis method. The resulting initial feature model
is then used in the two main processes of FArM, namely the Feature Model
Transformation and Building Reference Architecture processes. These processes
take place in parallel and require the exchange of information between them.
The produced artifacts are a transformed feature model and the PL reference
architecture. These in turn serve as the basis for the development of the PL
architectural components, where each component implements exactly one feature
in the transformed feature model. A noticeable point in the FArM Product
Engineering is the fact that FArM explicitly supports the generation of custom
PL products rather than placing a demand for extra effort into writing ”glue-
code” to instantiate end-products.

3 FArM Core Processes

In the heart of FArM lays the Feature Model Transformation (FMT) and Build-
ing Reference Architecture (BRA) inter-related processes. During this stage of
FArM the initially developed feature model is subject to transformations. This is
due to the fact that a domain analysis method yields mainly a customer-oriented
feature model, which may lack the needed features for a direct mapping to the
system’s architecture. FArM strives to preserve the customer-view features and
embed in the feature model the architectural view of the PL.

The FMT process is performed from a feature modelling team. It trans-
forms the initial feature model making use of the high level feature model infor-
mation. An inter-process-communication protocol is built containing the candi-
date features, the suggested transformations and the rational for these transfor-
mations. Possible transformations are: adding features, integrating features
within other features, dividing features and reordering the hierarchy of fea-
tures on the feature model.

The protocol is then examined from the PL architecture team for feasibil-
ity and compliance with the architectural view of the system in the BRA pro-

cess. Changes to the protocolled suggestion(s) or an acceptance decision may
occur, whereby specifications for the respective architectural component(s) are
recorded. At the end of this process traceability links are created where needed
between the initial and transformed feature models denoting the transformations
and recording their rational, thus maintaining backwards traceability.

The transformation steps performed throughout the FMT and BRA processes
are based on feature model and architectural structures considered in the follow-
ing order: quality features, architectural requirements/implementation
details, grouping features and interacts relationships (figure 2).

Quality Features
Architectural Req./

Implementation Details Grouping Features Interacts Relatioships

Feature Model Transformation & Building Reference Architecture

Fig. 2. The FArM transformation flow.

Armed with the knowledge gained throughout these transformation phases
the PL developers implement the PL components for the target platform. FArM
follows a hybrid iterative development motif: If a PL requirement change occurs
or a problem in the design logic is discovered throughout the transformation
phases or component implementation, the developers can always return to one
of the previous phases and carry out the desired transformation steps to resolve
the problem. They should then proceed down the transformation chain from
that point on to preserve the consistency of both the feature model and system
architecture.

4 Transformations Based on Quality Features

In order to achieve a strong mapping between feature models and architecture
the initial feature model is transformed to resolve all quality features. Through
this transformation step FArM explicitly supports the developers into resolving
quality features that do not allow a direct implementation in architectural com-
ponents. Quality features transformation takes place in two levels, i.e. Feature
Model and Architectural level.

4.1 Preconditions

All not architecture-related quality features are ”removed” from the feature
model since they can have e.g. a managerial resolution. For example a feature
such as Competitive Market Price can be resolved by using already registered
stable software platforms and tools, acquiring field experts in the developer team
or performing thorough periodical risk analysis. Thus only architecture-related

quality features are addressed by FArM, i.e. quality features that can be re-
solved through an architectural solution. The resolution of non-architecture-
related quality features is recorded in the transformation documentation.

Furthermore, each of the quality features should have a quantitative, ex-
plicitly defined specification. If this is not the case, the developers can follow
the method of defining Profiles [3] for these quality features or may consider
”breaking down” the feature to finer features relating to particular aspects of
the system and then provide a specification.

4.2 Feature Model Level Quality Feature Transformation

First the developers approach the quality feature transformation on the feature
model level. Based on the features’ specification the developers search for rela-
tions between the quality features and the functional features already present
in the PL. This process can take place upon explicitly performing a syntactical
analysis of the features’ specification text and identifying lexical structures (e.g.
nouns, adjectives, verbs) referring to an existing functional feature or being part
of the specification of an existing functional feature.

After identifying the related functional features, an augmentation of their
specification (e.g. through a restriction) is protocolled for further consideration
with the PL architects. During this process it may be the case that identified
lexical structures imply the addition of new features. This information is also
protocolled for later consideration with the system architects as a candidate new
feature/component. Finally, there may exist quality features that neither relate
to existing functional features nor imply the addition of new functional features.
These features are noted as such for further consideration by the architectural
team.

4.3 Architectural Level Quality Feature Transformation

In this phase the developers in collaboration with the system architects consider
the protocols developed during the previous phase of the transformation. For
the quality features for which related functional features were identified, the ar-
chitects consider the augmented specification proposals of the PL feature model
analysts from an architectural point of view, e.g. whether the extra specifications
can be architecturally realized.

For the quality features that imply the addition of new features, the PL archi-
tects consider the possible implementation issues involved with the new features
(components) and provide a rational for their role in the architecture. If the new
feature-components successfully ”pass” both phases they are accepted in the PL.
Such a quality feature can be a Usability feature in a cell phone PL. Its specifi-
cation could be: ”the placing of a phone call shall require at most 2 steps: type
phone-number, press dial button, which will be acknowledged within 150 ms”,
etc. This feature is well defined and can be integrated into the PL’s PhoneCall
and Keyboard functional features. The PhoneCall feature will implement the
phone call functionality, while the Keyboard feature implementing the phone’s

keyboard driver and listening to the dial button press, will provide feedback to
the PhoneCall feature for acknowledgement within 150 ms (e.g. by calling its
PhoneCall->Acknowledge() method).

Features having neither related functional features nor suggesting their im-
plementation in new functional features are examined by the architects by as-
signing each feature to one of the following categories based on the ISO 91260:
Development (e.g. maintainability, reusability, flexibility and demonstrability)
and Operational (e.g. performance, reliability, robustness and fault-tolerance).
For each category FArM has collected all architectural and design patterns found
in related literature that can be applied to each category to satisfy the quality
features from an architectural perspective.

5 Transformations Based on Architectural
Requirements/Implementation Details

This transformation phase is initiated with the architectural team considering
the requirement and implementation details imposed on the PL architecture.
These can lead to one or more of the aforementioned transformations i.e. adding,
dividing, integrating or reordering features. The resulting components are proto-
colled and after approval from the feature analysts they are recorded as features
into the transformed feature model, which should now ideally include all PL
features.

Using the cell phone PL example, one could consider the requirements placed
upon such a PL by the wireless network infrastructure in which the cell phones
should operate. Such requirement may impose the addition of a Wireless Network
feature that would provide a uniform information access and exchange to ensure
a consistent mechanism for global reach, regardless of the underlying wireless
technology. Such a feature is not directly visible to a custom user and thus
may not have been included into the initial feature model but is nonetheless a
dominant architectural requirement.

6 Transformations Based on Grouping Features

In order to achieve a strong mapping between feature model and architecture,
FArM binds the feature model hierarchy to the architecture design process by
reflecting it onto the relationships between the architectural components. That
is, the feature model hierarchy places restrictions on the communication flow
between architectural components and their interfaces.

This transformation takes place both on the feature model and architectural
level. In the feature model level all feature - sub-feature relationships are vali-
dated. The feature model analysts compare the grouping feature specifications
with those of their sub-features to make sure that a substantial degree of accor-
dance regarding their operational aspects in the PL is present. More precisely,
a sub-feature should have one or more of the following relationships with the

grouping feature it belongs to: extend its functionality, present a functional al-
ternative or functionally complement the grouping feature.

The results are propagated to the architectural team in a protocolled form
and are further examined for compliance to the system’s architecture. Possible
adaptation of the suggestions optimize the inter-component communication. The
feature hierarchy should now define which components interact with each other.
Finally, the architects using the gathered information on the architectural com-
ponents, namely, operational restrictions from system quality requirements, al-
lowed feature communication, feature specifications, architectural requirements
and implementation details, define the interfaces of the components.

A valid feature - sub-feature relationship in the cell phone PL is shown in fig-
ure 3 where the Languages - English,German,French hierarchy presents a feature
with its functional alternatives. This in turn would imply that communication is
allowed between the CellPhone and Languages features, as well as the Languages
feature and its sub-features.

Component interfaces referring to component interactions beyond the ones
imposed from hierarchical structure are created on the next transformation phase
based on interacts relationships.

7 Transformations Based on Interacts Relationships

Interacts relationship transformations support the developers in the explicit
modelling of the extra-hierarchical relationships between features and transfer-
ring this knowledge to the system’s architecture. They also support the design
for maintenability as well as PL end-product instantiation.

7.1 Creating Interacts Relationships

Interacts relationships are established between features in different hierarchy
branches needing to communicate to complete a task. Their main purpose is
to model the kind of interactions between the features and thus propagate this
information to the architectural level. Information contained in interacts rela-
tionships may be requested services, kind of data, data format, etc. and may be
captured in a formal (OCL) or semi-formal form (structured language). Inter-
acts relationships are addressed initially from the feature analysts on a feature
specification level and in turn on an architectural/implementation level by the
system architects.

CellPhone

German

PhoneCall

Engish

Address
Book

Feature B is mandatory

Feature B is optional

At least a and max imum b features
may be selected from B11 to Bnn

BBAA

BBAA

AA

BB11

a..b
BBnn

Feature A interacts with feature BBBAA

Interacts Languages

1..*

French
Interacts

Fig. 3. A partial cell phone product line feature model.

Figure 3 shows an interacts relationship between the PhoneCall and Address-
Book features of the cell phone PL. This relationship models the present feature
interaction: The AddressBook feature calls upon the PhoneCall feature provid-
ing the necessary information (e.g. phone number of person) to perform a phone
call initiated from the user e.g. from the Address Book menu.

7.2 Resolving Interacts Relationships

The resolution of interacts relationships contributes to the enhancement of sys-
tem maintenability and evolution. Related works on feature interactions may be
found in [9]. Some of the FArM specific criteria on interaction resolutions for a
feature are: number of interacts relationships, desired variability related to the
feature, importance of the feature as to system evolution and/or maintenance.

It must be noted at this point that an assessment of the PL architecture
should takes place after the transformations to assure the satisfaction of the
system’s quality requirements. This can be achieved through architecture as-
sessment methods found in the literature (see [3]).

8 Building Architectural Components

In this final phase of FArM the architectural components of the PL are im-
plemented. FArM supports plug-in architectures for the realization of the PL.
Each feature in the transformed feature model is implemented in exactly one ar-
chitectural plug-in component. The interfaces and communication between the
components as well as their specification have been determined throughout the
transformation process.

FArM does not require a specific plug-in architectural structure rather it
adapts to the needs of the PL domain. The decision to support plug-in architec-
tures in FArM is based on the following arguments: it simplifies PL end-product
instantiation (features plugged into the plug-in platform instantly compose PL
products), it supports a high level of encapsulation (features can be completely
implemented in one plug-in component), decoupling of the features is achieved
through the hierarchical plug-in structure, the design of the plug-in component
interfaces is directly supported from feature interactions. Developers wishing to
follow a non-plug-in architectural paradigm and at the same time use FArM
should make sure to develop components adhering to the points mentioned
above.

Finally, FArM’s implementation demands no extra development tools as a
number of the hybrid PL development methods do (see [2], [8], [7]). FArM can
be applied with a documentation tool, a feature modelling tool and an industrial
development environment for the target platform.

9 Conclusions & Further Work

This paper presented the Feature-Architecture Mapping (FArM) method for en-
hancing the mapping of PL features to the PL architecture. This mapping is

poorly supported by the present PL development methodologies having a large
impact on PL maintenability and evolution, as well as PL end-product instantia-
tion. The FArM method is based on a number of transformations (adding, divid-
ing, integrating and reordering features) applied on the PL’s initially developed
feature model. The transformations are based on quality features, architectural
requirements/implementation details, grouping features and interacts relation-
ships. FArM supports the development of a modular plug-in architecture where
each architectural component implements exactly one feature of the transformed
feature model. Inter-component communication is explicitly modelled and sup-
ported in the transformation phases.

The FArM method has been already implemented on an IDE product line
with positive results. More precisely, a feature model has been developed for the
IDE PL based on features present in industrial tools (e.g. model-code synchro-
nization, support for different compilers, etc) and was used as the initial feature
model of FArM. The various FArM transformations were applied resulting to the
implementation of a number of PL features. The case study results proved the
method’s feasibility and enhanced system maintenability. In order to test FArM
in an existing industrial platform at the time of writing FArM is applied on
the Blackberry [1] cell phone development platform. Further work includes the
concretization of the FArM phases and testing on a variety of other PL domains
for the identification of the method’s limitations.

References

1. Blackberry Handheld, http://www.blackberry.com/
2. Boellert, K.: Object-Oriented Development of Software Product Lines for the Se-

rial Production of Software Systems (Objektorientierte Entwicklung von Software-
Produktlinien zur Serienfertigung von Software-Systemen). PhD Thesis, TU-
Ilmenau, Ilmenau Germany (2002)

3. Bosch, J.: Design & Use of Software Architectures - Adopting and Evolving a Prod-
uct Line Approach. Addison-Wesley (2000)

4. Griss, D.; Allen, R. and d’Allesandro, M.: Integrating Feature Modelling with the
RSEB. In: Proceedings of the 5th International Conference of Software Reuse (ICSR-
5) (1998)

5. Kang, K.; Cohen, s.; Hess, J.; Novak, W.; Peterson, A.: Feature-Oirented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh (1990)

6. Kang, KC; Kim, S.; Lee, J.; Kim, K.; Shin, E.; Huh, M: FORM: A Feature-Oriented
Reuse Method with Domain-Specific Reference Architectures. Annals of Software
Engineering, 5 (1998) 143–168

7. Kiczales, G.: Aspect-Oriented Programming. Springer-Verlag, In Proceedings of the
1997 European Conference on Object-Oriented Programming (ECOOP ’97), (1997)
220–242

8. Ossher, H.; Tarr, P.: Multi-Dimensional Separation of Concerns and the Hyper-
space Approach. In: Software Architectures and Component Technology. Kluwer
Academic Publishers (2001)

9. Zave, P.: FAQ Sheet on Feature Interaction. AT&T (1999)

Copyright © Fraunhofer IESE 2004 60

6 Jan Suchotzki
A Strategic View on Software Product Lines – Adapting an Or-
ganization’s Structure for a new Approach in Software Develop-
ment

Copyright © Fraunhofer IESE 2004 61

A Strategic View on Software Product Lines – Adapting
an Organization’s Structure for a new Approach in

Software Development

Jan Suchotzki 1

1 ABB Corporate Research Germany, Wallstadter Str. 59, 68526 Ladenburg, Germany
jan.suchotzki@de.abb.com

Abstract. In terms of technical issues the Software Product Line (SPL)
approach quickly emerges to one of the most promising development methods.
This includes that business manager can be convinced with the high potential in
terms of a source for competitive advantage. However, for creating sustainable
and thus long-lasting competitive advantage this approach has to be embedded
into the business strategy. Organizational structure, as one of the key
implementation instruments for strategy, is also one of the core elements for the
success of the SPL approach in a company. This position paper reports on an
MBA-thesis. This thesis will point out challenges arising from the SPL
approach in the context of organizational structure, present a way to deal with
these challenges, and from this level abstracts to more general implications for
business strategy.

Background

The thesis, also called management report is done within the flexible MBA program
of the University of East London. The hand-in date is the 16th of September in 2004.
Currently the author is in the second and final year of his studies.

There are two main motivations for this report. First, there is the relevance to the
MBA course. Organizations, which think about utilizing the SPL approach face
several challenges. They have to adapt their complete strategy to the approach and
have to implement a more or less radical change program. That means nearly all parts
of an organization are influenced and thus it is related to nearly all disciplines of
business and management studies.

Second, there is the personal motivation. The company the author is working with
has recently started first projects for launching and institutionalizing software product
lines. Even if the current focus is to evaluate the SPL approach from a technical point
of view, it is very important to understand the implications for management. Due to
the authors work in an R&D department, there is also a high interest to further
develop existing theoretical frameworks and apply them. This corresponds with the
fact that there is not much research done in the area of organizational management in
relation with the SPL approach, so far. Three of the few publications in this context
are [1], [4], and [6].

Objectives

Simplifying the decision on whether the software product line approach should be
utilized or not, the following two questions have to be answered:
• How does the software product line approach improve the company’s competitive

advantage? That is, what benefits are gained?
• What needs to be changed for implementing a software product line strategy

successfully? That is, what needs to be spent?

While the first question is heavily stressed by the management, the second is much
more critical as it seems on the first view. For example, the following questions have
to be considered:
• Which organizational structure (departments, business units, …) is needed for the

approach? Who is responsible for the product line (core assets) and who is
responsible for the products?

• What skills and core competences are needed in general and in the different
organizational entities in particular?

• What strategy should be followed to build new product lines while maintaining the
existing product base?

Helping managers to understand what needs to be changed is the overall objective

of the MBA-thesis. Based on this, strategies towards an SPL-centric company will be
worked out. It has to be mentioned here that especially companies, which are not only
in the software business, might tend towards being Product Line centric. This in turn
probably includes also a SPL. Addressing the author’s personal resource and time
constraints the report will focus on organizational structure and SPL. Thus the scope
is narrowed and a discussion of Product Lines in general is not part of the thesis. The
research question and the more detailed research objectives can be found in Table 1.

Table 1. Research Question and Objectives

Research
question:

Why does an organization have to expect major changes in their
structure when introducing software product lines?

Research
objectives:

1. To extract major factors, important for a SPL oriented organization

in general and their organizational structure in particular, from
existing theory and research.

2. To determine general structural configurations and their
influencing factors, as currently applied by organizations.

3. To analyze the current structure of a case study organization by
using the general configurations and influencing factors.

4. To develop different organizational structures for the case study
organization based on theory of organizational structure and SPL.

5. To develop a theory that explains the challenges a company faces
when introducing SPLs by using the organizational structures as
an example.

Realization

This research project is divided into three major parts. As mentioned in the
objectives an important part is the conception of a theoretical framework based on
literature review. This will include an analysis of three major areas. First of all there is
the area of generic and mature organizational structure, which deals with structural
configurations (e.g. Mintzberg’s simple structure, divisionalized form, …) and
contextual variables and success factors like size and strategy (Objective 2). The
second area is based on new theories in organizational structure arising from research
in organizational innovation and structural implications from new product
development (Objective 2). For example, some research stresses that the mature
structural configurations do not address the special needs of innovative and
technology orientated organizations. The third area in this part will be characteristics
and requirements resulting from the SPL approach (Objective 1). According to
Clements and Northrop [1] the SPL approach heavily influences organizational
structure and probably there is the need for modified structural configurations and
new contextual factors have to be addressed by the structure of an SPL-centric
organization.

The second major part is a case study analysis. In this part the structure of a case
study organization will be analyzed with the previously created framework (Objective
3). That means it will be pointed out, which contextual variables are important in the
environment of the organization and which structural configuration is applied by the
company. It should also be analyzed which major problems might arise from this
organizational structure in the context of SPL. From that analysis different
organizational structures will be developed, which support the SPL approach best in
the context of the case study organization. Finally one structure will be recommended,
which should fit best from the experience gathered so far (Objective 4). Thus the case
study will be used for verification, but is not the primary focus of the report.

In the third major and concluding part a theory, which explains the challenges an
organization might face when utilizing the SPL approach, will be developed. Once
again, also the focus for this part will be on organizational structure. This chapter will
analyze whether, and if why, the currently available theory on organizational structure
is not well suited for designing an SPL-centric organization. A special focus here is
what challenges a manager has to expect. From that theory the author will provide
some personal thoughts, supported by literature, on why the SPL approach influences
the complete organization and their strategy and not only organizational structure.
(Objective 5)

First Findings

This chapter provides a short overview of the results found so far. Here the focus is on
the theoretical framework, because this is the basis for the next steps. Moreover it is at
the heart of the complete thesis.

The scope of the framework is to build up a model that describes contextual
variables, design parameters, design processes, dependencies between the former, and

finally structural configurations. That means this framework should be applicable for
all organizations ranging from small and medium sized enterprises to large and global
organizations. This generic and theoretical framework can then be applied for
different types of organizations (e.g. global player) that act in different industries (e.g.
mobile phone industry). That means it is similar to the generic models and
descriptions of SPLs, like for example provided in Clements and Northrop [1]. Also
these have to be adapted and modified for the concrete context they are applied in.
For example, Muthig et al. [5] shows how to utilize the SPL approach in mobile
phone industry.

Frameworks for Analyzing Organizational Structure

According to Nelson and Quick [7] organizational structure and especially its design
process aims on constructing and linking departments and jobs to achieve the
organizational goals. This type of management research and practices is called
organizational design or organizational behavior. It provides several mature and
generic frameworks. A general overview of the key organizational design elements is
provided in Fig. 1.

Fig. 1. Relationship among key organizational design elements (based on: Nelson, D.L. and
Quick, J.C. (2001) Understanding Organizational Behavior, South-Western, Ohio)

In his basic research of organizational structure Mintzberg [5] identified five basic
parts of an organization. (1) The operating core gathers all employees who perform
the basic work related directly to the production of products and services. That means
activities like securing inputs for production, transforming inputs to outputs,
distribution of outputs, and direct support to these activities are placed in this part of
the organization. (2) The strategic apex consists of managers that perform activities to
ensure that the organization serves its mission in an effective way and that
stakeholders and customers are satisfied. (3) The middle line is a group of managers
with formal authority that connects the strategic apex and the operating core. (4) The
technostructure includes analysts and supporting clerical staff that design, plan, and
standardize the work done by the operating core. (5) The last part is the support staff.
Here it is possible to find anything not directly related to the core business.
Depending on the size this might range from legal counsels and public relations
department to mailroom and cafeteria.

In combination with the key organizational design elements this framework
develops its whole power. The structural configurations, which configure and
combine the other design elements, relate directly to the five basic parts. These
configurations can also be seen as design patterns. That means each structural
configuration provides its key part of the organization, main design parameters, and
important contextual variables. For example, the simple structure sees the strategic
apex as the driving force and has nearly no technostructure and no supporting staff.
That means there is nearly no standardization of work, but a high centralization
(decisions are mainly made at the strategic apex). This is also called the
entrepreneurial configuration, because the workforce is young, the amount of
employees is relatively small and the environment is very dynamic.

Activities and Life Cycle of SPL

In this paper the general ideas of software product lines will not be discussed. The
aim here is to identify major concepts that provide requirements and influencing
factors for organizational structure.

Therefore a couple of different studies were analyzed. First roles and influencing
factors were identified based on the product line engineering life-cycle as proposed by
Muthig et al. [8], the three software product line practice areas (technical and
managerial activities performed during the life-cycle of a product line) as proposed by
Clements and Northrop [1] and first research of software product lines in the context
of organizational structure as proposed by Bass et al. [2], [3] and Bosch [4].

The findings are presented in Fig. 2 and further discussed in the next section.

Towards a Framework for Analyzing SPL-centric Organizational Structures

A first step in analyzing and designing an organizational structure is to research the
internal and external context of an organization; compare Fig. 1.

As stated in the previous section the software product line approach introduces
several influencing factors. The most important for organizational structure are

presented in Fig. 2. At the heart of the proposed framework there are the five basic
parts of an organization. In the context of software product lines the following roles,
as proposed by Bass et al. [3], were assigned to the parts: core asset group,
application group, marketers, support staff (training and consultancy), and managers.
If this assignment is correct, it offers the possibility to use all existing findings and
ideas (e.g. structural configuration) from theories and practices of organizational
design to solve the problems in structuring an SPL-centric organization. A weak point
in this assignment is the core asset group. It definitively standardizes work for the
application group (e.g. provides an architecture and processes), but it may also
provide completely designed and implemented components. Following Mintzberg [5]
such activities should only be done in the operating core. However, this skeleton
should be handled with flexibility. Even if there are configurations that might not
have a core asset group, some of their activities have to be performed anyway. Then
those activities have to be shifted into the operating core. This has to be kept in mind
during the next steps in designing organizational structures.

Fig. 2. Framework for analyzing SPL in the context of organizational structure

The framework (see Fig. 2) places internal and external influences around the five
basic parts of an organization. Going from inside to outside the internal influences are
first. For example, the degree of tooling (ranging from simple case tools to a
completely integrated development environment with specialized code and
documentation generators) and the type of development (sequential versus parallel
product development) heavily influence the size and performed activities of the core
asset group. But how to determine what degree of tooling is needed? First there is an
inter-relationship between the internal factors. For example, if it is a specialized and

small product line and only a few products share the core assets a specialized code
generator for the domain might be not the right choice. Second there are the external
influences like for example hard competition. In the case an organization’s strategy
clearly formulates cost-leadership as the way to address this competition, the question
regarding tooling is: Is it more cost efficient to have a specialized tooling or is it
cheaper to write the code by hand? Obviously this is oversimplified, but shows the
importance of strategy and environment.

The dependencies between influences (internal and external) and the organizational
structure show another important point. During the design of an organizational
structure there are two options according to the existing resources. (1) The existing
resources have to be expanded (training employees, buying new development tools,
…). (2) The organizational structure must be designed in such a way as to be realized
with the existing resources. As outlined in the research objectives this work
hypothesizes that only option one is applicable when introducing a SPL.

Due to the complexity of the environment the management report will not focus on
the environment. Instead the organization’s strategy and goals are seen as the major
information and decision source. From a management point of view this sounds
reasonable, because the strategy should always address all major issues from the
environment.

Current Status and Summary

This paper described work in progress. Therefore it is as likely as not that some of the
outlined ideas will not be part of the final report and others might be integrated. As
shown in the last sections, a framework for analyzing organizational structures in the
context of SPL is in place. Although not completely discussed here. It was pointed out
that the framework is a tool to design a software product line centric organization.
Because it is generic enough to be applied in many different domains (like the SPL
approach too), it cannot be used without a strong and reliable data basis from the
concrete environment an organization acts in.

In addition to this first part of the framework, structural configurations that are
typical for software product line centric organizations have to be created. Therefore
the generic existing configurations (e.g. simple structure) provide more than a starting
point.

The topic is very recent and important as outlined in this paper. Due to the fact that
this topic addresses managers on hierarchy levels, who might not have that much
experience with software development, it is important to hide all the technical details.
From a rough literature research it seems that it will be one of the first detailed
research projects in the outlined area. Therefore it is very important to get feedback
from a large group of people with different backgrounds. Preparing and writing the
management report will be a quite challenging task, but with the defined scope and
constraints it should be manageable.

References

1. Clements, P. and Northrop, L.: Software Product Lines – Practices and Patterns. Addison-
Wesley, New York (2002)

2. Bass, L., Clements, P., Northrop, L. and Withey, J.: Product Line Practice Workshop
Report. SAIC/ASSET, Morgantown (1997)

3. Bass, L., Chastek, G., Clements, P., Northrop, L., Smith, D. and Withey, J.: Second Product
Line Practice Workshop Report. SAIC/ASSET, Morgantown (1998)

4. Bosch, J.: Software Product Lines: Organizational Alternatives. Proceedings of the 23rd
international conference on Software engineering, 12 – 19, May, Toronto (2001)

5. Mintzberg, H.: The Structuring of Organizations. Prentice-Hall, Englewood Cliffs, NJ
(1979)

6. Schmid, K.: People Management in Institutionalising Product Lines. IESE-Report 101.03/E,
July 21, 2003

7. Nelson, D.L., and Quick, J.C.: Understanding Organizational Behavior: A Multimedia
Approach, South-Western, Ohio (2001)

8. Muthig, D., John, I., Anastasopoulos, M., Forster, T., Dörr, J. and Schmid, K.: GoPhone – A
Software Product Line in the Mobile Phone Domain, IESE-Report 025.04/E, March 5, 2004

Copyright © Fraunhofer IESE 2004 70

Document Information

Title: Proceedings of the First Interna-
tional Software Product Lines
Young Researchers Workshop
(SPLYR)

Date: August, 2004
Report: IESE-Report No. 086.04/E
Status: Final
Classification: Public

Copyright 2004, Fraunhofer IESE.
All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmit-
ted, in any form or by any means including, without
limitation, photocopying, recording, or otherwise,
without the prior written permission of the publisher.
Written permission is not needed if this publication is
distributed for non-commercial purposes.

Copyright © Fraunhofer IESE 2004 71

	1 Yu Chen
	2 Marius Dragomiroiu
	3 John M. Hunt
	4 Waraporn Jirapanthong
	5 Periklis Sochos
	6 Jan Suchotzk

