
State of the Art and Future Directions in Wireless
Sensor Network’s Data Management

Project:
Management of Data in Wireless Sensor Networks (MaD-WiSe)

Deliverable 1

G. Amato, A. Caruso, S. Chessa, V. Masi and A. Urpi

Abstract

This report presents the results of the first three months of activity of the project Management of
Data in Wireless Sensor Networks (MaD-WiSe). More specifically, it presents a survey on the state
of the art on Wireless Sensor Networks, focusing on the issues related to communication, data centric
paradigms and stream processing applied to sensor networks.

Categories and subject descriptors: C.2.1 Wireless communication - C.2.1 Network Architecture and
Design - C.2.2 Network Protocols - I.4.8 Sensor fusion - I.2.9 Sensors - C.2.4: Distributed databases - H.3.3
Information Search and Retrieval.

1 Introduction
A Sensor Network [2] is a specialized ad hoc network composed of a large number of sensors, which are low
power, low cost nodes. A sensor comprises one or more sensing units, a processor and a radio transceiver,
and it is powered by an embedded battery. Sensors collect information about the surrounding environment
(sensor field) and they are interfaced with external sink nodes that issue queries about sensed data to the
network as a whole. Typical applications of sensor networks are environment sampling, disaster areas moni-
toring, health monitoring, surveillance, security, inventory management, and they have also been envisioned
as an architectural support for applications of ubiquitous/pervasive computing [8].
In the effort of improving the management of data produced by sensor networks, it has recently been pro-
posed to integrate database and sensor network technologies [41, 40]. This approach would provide a more
effective analysis and exploitation of sensed data, for better detection of situations leading to risk/security
issues, thus providing a realistic real-time emergency management.
The integration of these two technologies, however, requires a new vision of sensor network and database
approaches. Sensors produce continuous, possibly infinite, streams of data. Simple (one column) streams of
data can be combined into streams of tuples. However, data streams produced by the sensors hardly adapt
to data model of the traditional database technologies.
One important difference is that traditional database technology deals with almost static data sets as com-
pared to data managed in sensor networks. Even if traditional database technology can deal with evolving
data sets, the evolution rate of data produced in a sensor network is much higher than that typically con-
sidered in traditional databases systems. Besides, in traditional database technology data are stored in a
persistent repository and that can be accessed at any time. Query languages, query optimization strategies,
and query processing strategies are based on this assumption. Furthermore, data processed by a sensor net-
work should be immediately consumed, and query processing should react in real time to deal with sensed
data. Data streams produced by the sensors might be processed by (evolutes, smart) sensors themselves,

1



but, in this respect, strategies of query optimization and query processing should be redefined. Finally query
languages should reflect this new way of handling data.
This integration poses new challenges also to the sensor network architecture. In fact, the state of the art
architectures of sensor networks are quite unfeasible to support even simple database operations. For this
reason new proposals of enhanced sensor networks appeared in the recent literature [9, 41], which, in the
essence, still consider the network as an appliance permanently connected to the sink node. This assumption
does not fit with our vision, in which the sensor network is able to autonomously process complex queries
originated by the sink node. When a connection with the network is available, the sink receives responses
related to previous queries, and originates new queries which can be related to the past as well as to the
future sensed data. To support this vision, the sensor network should be able to store and process the sensed
data autonomously of the sink node.
This deliverable presents a survey of the state of the art on sensor networks and database technology applied
to sensor network, and discuss the directions we intend to investigate in order to integrate database and
sensor network technologies.
The rest of the document is organized as follows. Section 2 analyzes the sensors architecture, describing
the hardware used in off the shelf sensors (2.2), a simple but powerful operating system (2.3), a routing
algorithm which is imposing itself as a standard (2.4) and a technique that can be used in an eventual
middleware layer (2.5). Section 3 analyzes the problem of query management and optimization, with respect
to classical databases (3.1) and streams (3.2), describing the state of the art in database management over
sensor networks (3.3). Conclusions and future works are left to Section 4.

2 Architectural issues in sensor networks
Current advances in CMOS technology enable the development of sensors embedding some computational
and communication commodities. While dramatically constrained with respect to other wireless mobile
systems like ad hoc networks, it is possible to organize many sensors in a network. In this way, huge sets of
measurements may be easily available for analysis, monitoring and research.
The most precious resource in such a system is the energy: for this reason is necessary to design energy
efficient communication and computation strategies (not necessarily disjoint). This requirement pushed
researchers in the direction of data centric strategies: communications are in general not relative to nodes,
but to data. In a few words, the network is designed in order to store an retrieve data (or to publish data
streams and subscribe to them), regardless of which nodes need or provide them.
Another key concept in the design of sensor networks is robust fault tolerance. If a node fails (e.g. for
hardware crashes, energy exhaustion or just accidental movement), all the operations in the networks must
continue normally, because it is unlikely that the faulty node will be repaired.
This document organization reflects the layer architecture of sensors. In Section 2.1 is given a brief description
of a base model of sensor networks. In Section 2.2 is analyzed the hardware composing the MOTES, which
are a real world implementation of sensors. The concepts behind their operative system (called TinyOS) are
described in Section 2.3.
A geographic routing, the de facto standard (at least in many simulations) used by many data localization
techniques, is reviewed in section 2.4.
Data centric diffusion and storage mechanisms for sensor networks are analyzed in Section 2.5, leaving to
Appendix 4 a description of analogous approaches adopted in the peer to peer community.

2.1 The model
We describe here a basic model of sensor networks with a few variants, useful for the purposes of this
document. A broader survey is presented in [1].
A sensor network is composed by a large amount of sensors (also called nodes) randomly spread over a
geographical area (sensing field). It is typically assumed the sensors are uniformly distributed with a fixed
density in the field, but they can be manually disposed to form fixed topologies. Each sensor is composed
at least by the following components:

• one or more sensing devices, used to measure environmental data,

2



• a processor and a small amount of memory,

• a low power broadcast1 transmitter, like a radio transceiver equipped with an omnidirectional antenna.

As in the ad hoc networking paradigm, nodes have to cooperate in order to enable multiple hops communi-
cations.

In general sensors do not move, or have a very low mobility, and they are very prone to failures, due
to hardware crashes, energy exhaustion or environmental interferences. If the sensor network applications
require data to be associated to the position they were measured in, nodes should be aware of their position
in the network (by means of an absolute or relative coordinate system)

Sensors are in general heterogeneous regarding their functionality (e.g. temperature sensors, visual sensors,
etc) and capacity (computation/memory) In the latter case it is possible to design protocols that focus on
an efficient usage of low capacity nodes, leaving all the heavy duties to high capacity ones. In the former
case, every single operation and communication must be optimized.

Sensors may be instructed to periodically take measures and perform data preprocessing. Typical tasks
may be:

• send the data, or a combination of data (average, sum, etc), to some interested node,

• store the data (which may be acquired later in time),

• send a message as a reaction to some observed event.

In the classical model there is at least one special node, called the sink, which has more capacity than sensors.
It may be thought as not energy constrained, and it may/may not communicate with a single broadcast with
all the nodes composing the network. Operation requests originate in large part at the sink, and data flows
in its direction.
Current approaches, however, aim at designing autonomous sensor networks, i.e. networks in which one or
more sinks periodically connect, eventually distributing tasks and collecting data. It is then vital to develop
efficient memorization mechanisms, which allows nodes to efficiently distribute data for storage and the sink
to collect the data without querying all the nodes.
It is clear that, given the stringent constraints of sensor networks, the application (and the networking layers)
should be tuned to the specific case the network is needed for. For example, routing and/or topology control
could be designed taking into account the application needs, in order to save energy.
It is generally accepted that a data centric approach can lead to better results in terms of application
complexity and network performances. Following this approach, nodes do not have an identifier known to
all the network, but may be seen as labelled by the data they process. Thus, mechanisms to reach the data
(and not the nodes) must be offered, detaching sensors from operations they perform, and introducing a
better degree of fault tolerance at lower levels in the software layers. Data diffusion ([5]) and data centric
storage ([22, 19]) will be analyzed in Section 2.5.

2.2 Hardware
We analyze the Motes architecture, presented in [6]. Since the Motes are sensors effectively developed and
used, they represent in some way the state of the art in the field, as well as a practical test bed for protocols
and sensor oriented applications.
A mote is composed by a MICA board (Figure 1(a)), including CPU and radio, and a sensor board (like
the MTS310CA shown in Figure 1(b)) offering several sensing facilities (the MTS310CA can measure light,
sound, temperature, 2 dimensional acceleration and 2 dimensional magnetic fields).

The MICA is equipped with an 4/8Mhz RISC processor ATMEL ATmega 103L. This processor has 32
general registers, 128 Kb (512 pages of 256 bytes each) of flash used as program memory and 4Kb of SRAM
used as data memory (expandable with 64K of external SRAM). It also has a 4 Mbit Flash used as external
memory with the help of a coprocessor.

1The broadcast nature of the transmitter is to ensure that communications will be possible without infrastructures and in
absence of a topological ordering of the nodes.

3



(a) The MICA board (b) The MTS310CA board

Figure 1: Motes components.

The instruction set is composed by 121 instructions (the majority executed in a single clock cycle, with
pipelined fetch/exec), but no floating point support. Concerning energy management, the processor has the
following states:

• active,

• idle, i.e. with the CPU stopped but the SRAM, timer, interrupt logic working,

• power down, i.e. shut down with only the interrupt logic on,

• power save (same as power down, but with an asynchronous timer running).

The MICA board is equipped with a RFM TR1000 916 Mhz radio transceiver (other frequencies are
available, given interferences with GSM). It is the lowest power radio in commerce at the moment, and it
operates in OOK (10 kb/s) or ASK (115 kb/s) mode, with a transmission range influenced by environmental
conditions (typical measured value is of the order of 10 meters). The radio is likely to be changed in future
Motes generations, because of its poor performances (moreover, as reported in [40], it uses about 4 µJ per
bit transmitted, enabling the transmission of only about 14 MB with the current state of the art micro
batteries.

Finally, it has three LEDS used as output device and a serial port for asynchronous data transfer (at the
byte level).

2.3 OS
On the top of the MOTES hardware (Section 2.2), a barebone operative system called tinyOS has been
developed. The system was kept to the minimum because of the tight space constraints of the architecture
and because many aspects like networking and sensors management are heavily application dependant.
The system is composed by a processor initialization routine (172 bytes), a small C runtime (82 bytes) and
an event scheduler (178 bytes) which is the core of the tinyOS. Several higher level modules (e.g. MAC layer
implementations, routing, etc) are freely available.
A complete application is a graph of components: each component represent a software module (which can
be used by or use other modules), and is composed by:

• a set of command handlers,

• a set of event handlers,

• an encapsulated fixed size memory frame,

• a set of tasks.

Basically, for a given component, command handlers represent the exported interface, while event handlers
are the interface to get the result of computation carried on in other components. The execution of commands
(i.e. operations carried on by underlying components) is asynchronous, and raises events when completed or
aborted.
Normally, commands are called in tasks, which may be seen as the application threads. In order to keep

4



complexity at the minimum, tasks and handlers run until their completion, and may be preempted just by
hardware interrupts, returning to execution after the interrupt service. This also enables the static allocation
of memory at compile time.
The language used to write applications is a C dialect, called nesC ([14]), and a powerful Mote emulator
with networking simulator capabilities ([13]) is also provided.

2.4 Routing
In this section we analyze the evolution of routing algorithms used in sensor networks.
Routing algorithms used in wired networks (e.g. Distance Vector, Link State and Path Vector) do not
perform well in wireless and mobile networks, given the transitory nature of links and the high number of
failures. Moreover, they require big routing tables, wasting a precious resource in sensors, and accurate
information about the state of other routers, which is very expensive to obtain when nodes move.
Algorithms introduced for ad hoc networks (e.g. AODV [15] and DSR [7] ) trade the optimality of routing
with the opportunity of establishing routes only when needed. With cashing of routes, a good compromise
is reached, avoiding the generation of new messages every time the same route is used.
In the case of sensor networks, both routes maintenance and routes caching should be kept as low as possible.
The former process, in general, causes an energy waste due to frequent messages routers (i.e. nodes) have
to exchange, while the latter requires storage capabilities that in a sensor are limited and precious to keep
recorded data.
We start by describing the data diffusion proposal, that merges routing (usually from or towards sink) and
topology maintenance, reserving more attention to the GPSR routing algorithm, which is increasingly used
in sensor netowrk given its generality and scalability.

Data Diffusion

Data diffusion ([5]) is one of the first proposals in which the focus was moved from communications between
a source and a destination to communications relative to some data.

The scenario fitting the data diffusion model is the following: nodes produce data, and they must be
delivered to all the interested nodes. Classic techniques to solve this problem are flooding (i.e. the data is
sent to all the neighbors, which in turn do the same) or gossiping (a subset of neighbors is randomly chosen
to forward). The former technique always reach all the interested nodes, but it is extremely expensive, while
the latter does not give any guarantees about successful delivery.

Alternatively, any node interested in some data should to discover the source of them (or the location
where they are taken). Once the data source is discovered, a communication channel is established and sensed
data are routed though this channel with a given rate. Multiple channels must be established through the
same nodes, thus wasting resources. If more nodes are responsible to take the same measures, their data
may overlap, causing again an energy (and a bandwidth) waste.

For this reason, in [5] it is proposed to uniquely label all the sensed data with some meta-data, with a
succinct representation in terms of space. For example, if all nodes have a unique id, the meta-data < id >
may be used to describe all the data collected by sensor id. A meta data (x, y) may represent all the data
collected at a given location, or a tuple (x, y, type) is data of a given type (with data types opportunely
coded) taken in a precise position. However, authors do not introduce a standard way to label data: every
application may choose the schema that best fits to the considered case. Intuitively, a meta-data is an
efficient (i.e. compact) way to advertise or to query some specific data.

The data diffusion approach uses a publish/subscribe approach: data producer publish their activity
sending ADV messages to all their neighbors. ADV messages contain the description (i.e. the meta-data)
of the produced data. Then, neighbors interested (or which received a request for that type of data) reply
with a REQ message, and the data is effectively sent. Figure 2 (from [5]) shows a simple example of data
diffusion.

This technique may be used, in case of large amounts of data (like periodically taken measures) in order
to build a spanning tree that covers all the interested nodes. When a component of the tree disappear, a new
ADV/REQ round may be run for the creation of a new tree. When a node not in the tree needs to receive
the data, it sends a REQ that reaches the nearest node already in the tree, and the new path is added.
Authors present also an energy aware version of the protocol: if a node energy drops under a threshold, the

5



Figure 2: Data diffusion.

node reduces its participation to the protocol (i.e. it does not forward).
Simulations show that the solution is a good compromise between the speed of data dissemination (higher
with the flooding technique) and the energy consumption.

Position awareness

As pointed out in Section 2.1, sensors are often aware of their geographical position, and this feature may
be exploited to reason in terms of final destination position instead of routes.
Normally it is assumed that the information about location is obtained by means of a GPS system. GPS,
however, may be too expensive in case of very large networks, or difficult to adopt in case of indoor systems.
Other solutions are analyzed in [4].
In [20] is presented a location diffusion method that overcomes to these problems. Authors assume a very
large number of nodes uniformly distributed on a rectangular area. They are interested in building a virtual
coordinate system that can be used by a greedy geographic routing algorithm. It is not a concern of the
paper to build a correspondence between virtual and real space.
In a complexity climax, the following scenarios are considered:

• nodes situated on the network border know their location (i.e. geographic coordinates) while others
do not,

• nodes situated on the border just know they are on the border, while others do not know anything,

• no information about location is present in any node.

In the first case, all the node that are not located on the network border start by assuming they are on
the center of the network, and iteratively compute their bidimensional coordinates in the following way:

xi =

∑
j∈Ni

xj

#Ni

yi =

∑
j∈Ni

yj

#Ni

In the previous formulas, Ni is the set of neighbors of node i, while #Ni is the cardinality of the set.
Simulations shown that after 1000 iterations, a routing success rate higher than 0.99 is obtained (better than
in the case of true coordinates), with an average path length just slightly worse than in the optimal case.
The high number of iterations necessary to achieve high success rate depends on the choice of the central
point as initial coordinate for all the network nodes. Figures 3(a)-3(d) (borrowed from [20]) shows a real
scenario, and how virtual coordinates approximate reality after 10, 100 and 1000 iterations.

Somehow paradoxically, the number of iterations needed to achieve a good success rate can be lowered in
the second presented scenario. If nodes sitting on the borders of the network know they are there, without
knowing their position, authors propose a protocol to distributely build virtual coordinates based on relative
hop distances between them. Border nodes sequentially flood the entire network with a beacon. In this way,
all the nodes in the network learn the relative distances between border nodes (when the protocol ends). It

6



(a) Real coordinates. (b) After 10 iterations.

(c) After 100 iterations. (d) After 1000 iterations.

Figure 3: Iterative process.

is possible to compute the coordinates of border nodes by choosing xis and yis that minimize the following
formula:

∑

i,j∈perimeterset

(hopDist(i, j)− dist(i, j))2

where hopDist(i, j) is the measured hop count between node i and node j, while dist(i, j) is the Euclidean
distance between the virtual coordinates of i and j.
After all nodes have computed virtual coordinates for the ones standing on the perimeter, the same protocol
described in previous scenario is started. Now nodes know their distance from perimeter nodes, and so may
choose better initial coordinates than the central point. In fact, the same success rate (i.e. over 99%) may
be reached with just 10 iterations (after the initial set up).
In order to avoid inconsistent computations caused by packet loss, a bootstrapping technique is used: two
special nodes start flooding the network with HELLO messages before the first phase of the protocol. All
the following steps will include also the bootstrap nodes coordinates, which can be thought as defining the
x and y axis.
Finally, if no information at all about positions is available, authors propose an extension to the protocol in
which nodes assume to be on the border if none of their neighbors has a higher hop distance from bootstrap
nodes2. After this step, the same protocol as explained may start.
Authors provide a large number of simulated scenarios, showing that the approach performs well in presence
of obstacles (i.e. holes in the topology) and even with low mobility.

An overview of GPSR routing

In [10], authors present a simple algorithm that allow nodes to route packets to a node positioned in a given
location, that requires, for every node, only the knowledge of theirs neighbors positions. The amount of
stored data is then proportional to nodes density and not to nodes number, and it needs to be updated with
a frequency that increases with nodes mobility (in general very low in sensor networks).
Nodes using GPSR then periodically broadcast their position (represented by two 64 bits IEEE floating
point numbers) to neighbors, and keep a table of neighbors positions. It is possible to reduce the number of
beacons with a piggybacking technique.
When a packet must be routed towards a given point, a node chooses the neighbor that have minimum
distance from the destination. Figure 4 (from [10]) shows a simple case in which node x, having to route a

2Authors use second step neighbors, in order to have a better solution.

7



packet to D, chooses y as next hop. There may be cases in which no neighbors are closer to the destination

Figure 4: Greedy decision.

(e.g. in presence of obstacles): then the packet must travel around the void region. From greedy forwarding,
the packets enter into perimeter forwarding: nodes lying on faces (i.e. edges) closer to the destination are
selected as forwarder. The perimeter mode finishes when a node closer to destination is reached (and the
greedy mode can be re-entered), or when there are no more faces to traverse. In [10] it is shown that if the
source and the destination are in the network, then this solution always work.
Simulations show that GPSR have a high packet delivery success rate, even in presence of mobility (the
random waypoint model was used to simulate movement), and that it finds the shortest routes (in terms of
number of hops) in almost all the cases, with an overhead sensibly lower than the one produced by DSR.
In [19], the GPSR is extended in order to deliver a packet to the node closest to a given destination.

2.5 Mapping data in locations
As outlined in the previous Sections, sensor networks are so constrained that is not practical to reuse the
networking layer proposed for other wireless mobile systems (e.g. ad hoc networks). In general, the network-
ing functionality are to be tuned to the sensor network application, in order to push all the optimizations to
the limit. Given the model outlined in Section 2.1, however, it is possible to see the network as a huge set
of data producers, and a set of nodes interested in some of the data.

Data centric storage
In order to avoid the huge number of broadcast operations which could arise when trying to localize a data
source (or interested destination) if no localization strategy is used, a technique used in the peer to peer
community has been borrowed and adapted (see Appendix 4 for a more detailed description of the concept).
In [19] is presented a technique called data centric storage, based on a geographical routing (a slightly
modified version of GPSR [10]).
The whole network is seen as a unique hash table, and every node may use two operations:

• put(key,value), which stores a value identified by key (based on the name of the data),

• get(key), which retrieves the data associated with key.

Note that at the application level it is not necessary (nor useful) to know where the data is actually stored.
In practice, a key is mapped on a geographical coordinate using a couple of hash functions. The node that
is the nearest to that point of the network is used as storage for the data associated with the key. Given the
geographic nature of the routing, it is easy to communicate with the point nearer to a desired coordinate.
Authors present a theoretical performance analysis, based on the following hypotheses:

• a network composed by n nodes, uniformly distributed in an area with high enough density,

• all the paths in the network are composed by O(
√

n) hops, a message flooding costs O(n) messages,

• nodes are programmed to detect some class of events produced by nodes not known in advance, and
to take some action after the detection.

8



It is analyzed the cost of different strategies using as metric the number of total messages sent over the
network, and messages processed by the hotspot (i.e. the most intensively used node).
Three strategies to collect data are presented and analyzed:

External storage: Upon the detection of an interesting event, data are sent to an external disk, in which
the sink may post queries. The cost (in terms of messages) per event storage is O(

√
n), the cost per

sink query is 0 (i.e. it connects just to the disk) and the cost per query posted by nodes is again
O(
√

n).

Local storage: Nodes which detect events store locally all the data, incurring in no cost. Queries are
flooded to all nodes, with a cost of O(n), and results are returned directly from interested nodes to the
sink, at the cost of O(

√
n) per event.

Data centric storage: The technique describe in this Section. After an event observation, data is stored
in some node in the network, with a cost of O(

√
n) per event, and queries are directed to nodes storing

the right data with the same cost per query.

If DTOTAL is the number of observed events, Q is the number of event types for which queries are issued
(assuming only a query per event), and Dq is the number of events detected for each issued query, then it is
possible to estimate the following costs:

Total
External Storage: DTOTAL

√
n

Local Storage: Qn + Dq
√

n
Data Centric Storage: Q

√
n + DTOTAL

√
n + Q

√
n

Hotspot
External Storage: DTOTAL

Local Storage: Q + Dq

Data Centric Storage: Q + Dq

Fixing all the terms and letting n →∞, then local storage will always incur in the highest costs. The ratio
of the Data Centric Storage cost over the External Storage cost (1 + Q+Dq

DT OT AL
) is low if many events are

detected.
Thus, data centric storage is the best approach when either n is large or many events are to be detected,
but not all will be queried. In the same paper, authors introduce some redundancy in order to provide
better fault tolerance while exploiting the geographical nature of the routing: data to be stored by a node
is replicated in all of its neighbors3.
A combination of data centric storage and data diffusion may also be imagined: given a data representation,
with the usage of hash function is possible to map it to a node in the network. This node, instead of having
a copy of the data, may provide the location of the data source. At this point, the node interested in the
data may be inserted in the path with the technique previously described.

Data centric storage oriented to range queries
In [12] a solution called DIMS, oriented to range queries was presented. Range queries are used when data
are represented in some ordered space, and users are interested in discovering where (or when) recorded data
fell into a subspace. For example, if the sensors record temperature and light conditions, a range query could
be the selection of all the events with temperature between 10◦C and 15◦C, with a light level under 20′′.
Clearly, this problem could be resolved with a simple extension of data centric storage to multiple dimension.
When querying for intervals, however, a desired property is that adjacent data are stored in near nodes, oth-
erwise a single query could affect all the nodes in the network many times.
For this reason authors of [12] propose to transform data into geographic coordinates with a locality pre-
serving hashing function, inspired by the k − d trees ([3]).
The basic idea is to assign to every node a unique zone in the network, and to store data in a zone whose

3More precisely, in all of the nodes located on its perimeter.

9



Figure 5: Division in zones after 3 steps. Figure 6: Association of nodes with zones.

code is obtained hashing the data itself. The hashing function however should preserve locality, mapping
contiguous data in contiguous zones.

The network is partitioned into hierarchical zones in the following (recursive) way:

First division: the whole network is divided into two zones, labelled 1 (the right part) and 0 (the left one),

ith division: if i is even, all the 2i−1 zones already existing are divided in 2 equal sub-zone with a horizontal
line, each labelled with the same label of the father followed by a 1 (the upper half) and by a 0 (the
lower one). If i is odd, then the division is made with a vertical line, and the labels are created by
appending a 1 (left part) and a 0 (right part) to the father label.

Figure 5 shows a simple example with 3 steps. Note that the whole division may be represented by a tree,
in which internal nodes represents zones divided into sub-zones, leaves are zones not divided, and edges are
labelled with 0 or 1. Thus, concatenating labels found on edges connecting the root to a node, the label of
the node is found.

The authors propose a mapping between zones and nodes composing a network in which each node controls
a different zone. Given that nodes are randomly deployed, the division in zones may not be complete. Every
node starts considering all the network as its zone, but with uncertain borders. All the nodes periodically
broadcast a beacon containing their position. On the reception of a beacon, a node x can determine if
there is another node y owning an adjacent zone, and combining its position with that of the node y, x can
determine the new division in zones (a better approximation of real division).
At the end of the process, every node know at least its adjacent zones. The persistence of some undecided
border after some time means that the zone in that direction may be empty, or that it is larger than the
communication range. Figure 6 shows a simple association. For every zone is defined a backup zone: if the
zone is empty, the owner of its backup zone owns it.
When a node generates a tuple of values (V1, . . . , Vm) that it must store, it transforms it into a zone code
with the simple algorithm in Figure 1 (where normalized values are assumed).
The hashing has the property that tuples with close values (componentwise) are stored in adjacent leaves in
the zone tree.

Every node is able to generate the zone in which a tuple of data has to be stored. The routing algorithm,
a modified GPSR, is able to correctly deliver the tuple to the chosen zone, or to one which is more suitable
for its storage (in case the producer node does not have full knowledge of the division in zones).
The authors also present a method to split queries, in order to directly query the right nodes, and enhance
their solution in order to improve fault tolerance (basically by replicating the data destined to a zone Z also
in the zone backup(Z).
Performances evaluation is given in terms of sent messages per query (the insertion is exactly the same as
in the case of data centric storage, and it is O(

√
N). The complexity depends on the distribution of query

ranges, and the authors consider four cases:

• Uniform distribution: a point query is as likely as a whole interval query. In this case the average
query complexity is O(N), exactly like when flooding is used.

10



Algorithm 1 Hashing algorithm
Let k be level of node i (i.e. number of bits in its zone code)
Let A1, . . . , Am be the values to store
dest={}
for i = 0 to k − 1 do

lb=0;
bit=1;
step=i÷m;
for j = 1 to step+1 do
if Ai−m·step ≥ lb and Ai−m·step < lb + 0.5/(step + 1) then

bit=0;
end if
lower_bound=lower_bound+0.5/(step);

end for
dest=dest.bit;

end for

• Bounded uniform distribution: only queries with size bounded by a constant B are possible, and they
have the same probability. In this case the complexity is O(

√
N).

• Alebraic distribution: the query range has distribution p(x) ∝ x−k for some 1 ≤ k ≤ 2. In this case
the complexity is O(N2−k) (for k = 1.5 the complexity is again O(

√
N)).

• Exponential distribution: the queries range is distributed following the law p(x) = ce−cx. Again, the
cost of the query is bounded by the cost to deliver it near the covering zone: O(

√
N).

2.6 Adapting low architectural levels to application needs
As pointed out in this survey, sensors are extremely simple devices which may be demanded to accomplish
complex tasks. This is reflected in a software architecture tuned to the application, in order to optimize
processing and communication. This approach makes the development of new applications difficult and
costly (in terms of time and efforts). For this reason researchers are focusing on general and reusable, yet
simple, solutions ad different levels. However, the approach that has been generally adopted can be called a
push strategy: solutions for a given architectural level are proposed independently from applications, with
the goal of optimizing a given metric (e.g. number of exchanged messages, or computational complexity). We
think a pull approach should be considered: given a (possibly broad) class of application, the whole software
architecture should be oriented to it. Low level layers can be highly enhanced by knowing application
requirement, without being too specialized (and thus not general enough).
We focus on autonomous sensor network, which do not rely on sinks permanently connected to the network.
For this reason we focus on a data centric storage approaches, based on some variant of GPSR routing.
Following the structure of this document, analyzing layer per layer, we make the following considerations:

OS

TinyOS is clearly an indispensable component offering a skinny abstraction of the physical architecture of
Motes. As pointed out, it has been voluntarily kept so simple in order to avoid heavy components which
could not be useful for all the applications. Its modular design, however, enables the development of reusable
components (e.g. MAC layer components, etc). Little work need to be done at this level.

Routing

For the applications we address, we consider routing algorithms based on GPSR, because they are scalable,
lightweight and in general well performing. One of the main problems is the location information distribution.
In particular, it is highly desirable to achieve accuracy, precision and efficiency. Accuracy and precision is
needed when location is an essential information associated to data (e.g. we want to discover where an event

11



happened). In [4] many proposed solutions are listed with their accuracy and precision (when bounds are
given).

Techniques proposed for sensor networks (like the one analyzed in Section 2.4 in general require a all-pairs
hop distance computation at least for the border nodes (O(

√
n) of the total network nodes), which is not

very efficient. If it is true that this process is run just once in the lifetime of the network, it is also true that
this lifetime is, in general, quite limited, and this phase should be optimized.

If the application layer frequently needs multicast or broadcast communication, it should be studied how
to efficiently extend the GPSR algorithm.

Middleware

Data centric storage approach made possible to effectively develop sensor networks. However, many problems
have not yet addressed. In particular, how to make the system reliable is still an open issue. If data are stored
in the network itself before to be acquired by the sink(s), it is very important that they are not lost, even
in case of multiple failures. Specially if the stored data are the result of an aggregation process. Analyzed
solutions introduce some degree of fault tolerance by means of brutal replication of data in multiple nodes.
This solution is obviously less effective (and more costly) than other approaches already known in other
fields. Thus, data centric storage should be completed by offering at least reliable (and possibly efficient)
storage and communications.

3 Query Processing Issues in Sensor Networks
Sensor networks are deployed to monitor and control the physical environment (sensor field) from remote
locations. Most existing architectures are centralized systems where nodes collect data about that environ-
ment and send it to an external node (sink) for storage and querying. The development of sensor nodes with
some processing power has led researchers to exploit this power to perform simple in-network computations
and then transmit processed data to the sink, besides of sending the raw information and leaving to the sink
the processing task. Nodes are deployed either inside the phenomenon to be monitored or very close to it.

Sensor nodes periodically sample the surrounding environment producing continuous data streams that
grow until nodes run out of battery power. Traditional DBMSs are unsuited to deal with such streams for
various reasons:

• sensor nodes produce and deliver data continuously without receiving requests for that data;

• queries over collected data can be less frequent than data insertions;

• produced data has often to be processed in real time because it can represent events, such as traffic
accidents, that need a rapid answer;

• queries run continuously because data streams never terminate, so, they can see system conditions
change during their execution;

• because of storage constraints, an entire stream can not be stored in the disk;

• because data streams are possibly infinite, only non-blocking operators can be used;

• the rate sensors nodes delivery data at is not reliable because a local source of interference can interrupt
wireless sensor connections; so data can be dropped, delayed or garbled; furthermore, if an operator
needing a sensor tuple tries to pull it from the sensor, it blocks if the tuple is not available, so, operators
must process data only when nodes make it available.

The remainder of the Chapter is organized as follows: Sections 3.1 and 3.2 describe traditional query opti-
mization and issues in data stream management, respectively; Section 3.3 presents some existing approaches
to processing queries in wireless sensor networks; finally, we first emphasize differences, positive and negative
aspects of these solutions and, then, we outline guidelines for future work in Section 3.4.

12



3.1 Query Optimization
Given a user query, the DBMS can follow several plans to process it and produce the result [38]. These plans
are equivalent with regard to the final result, but can present different costs. Task of the optimizer is to
choose the cheapest query plan.

Steps that a query follows through a centralized relational DBMS are as follows:

• the query parser checks if relations and attributes in the query exist in the database; if so, it translates
the query into an internal form, usually a relational algebra expression;

• the query optimizer generates algebraic expressions equivalent to the query by varying the order and
the implementation of operators and by specifying the use of existing data quick access structures;
query plans are usually represented as formulas or in tree form; then, the optimizer compares them
on the basis of the cost model and it chooses the one that is estimated to be the cheapest; the cost
module specifies the arithmetic formulas that are used to estimate the cost of query plans: it contains
a formula for every operator and data access structure;

• the code generator or the interpreter translates the plan produced by the optimizer into calls to the
query processor;

• the query processor executes the query.

In the case of flat queries, query tree leaves are relations and non-leaf nodes are algebraic operators like
selections, projections and joins. The operator corresponding to an intermediate node is applied to the
relations generated by its children and its result is sent up the tree. For complex queries, the number of
possible query trees may be enormous. In order to reduce it, the optimizer applies three restrictions in the
following order:

• selections and projections are processed on the fly and almost never generate intermediate relations.
Selections are processed when relations are accessed for the first time; projections are processed when
the results of other operators are produced.

• Cross products are never formed (unless they are asked for by the query) because their results are
usually large-sized: relations are always combined through joins. For example, consider a query on
the relations R1(A, ...), R2(A,B,...) and R3(B,...) and suppose that it applies the two predicates
R1.A=R2.A and R2.B=R3.B; the optimizer generates three plans (modulo join commutativity): (a) it
may combine R1 with R2 and the result with R3, (b) it may combine R2 with R3 and the result with
R1 or (c) it may combine R1 with R3 and the result with R2; the last plan has a cross product since it
joins relations R1 and R2 which are not joined in the query; so, the optimizer produces only the first
two plans.

• The inner operand of any join is always a database relation and not the result of another operator
because (a) the probability of using indices and hash functions increases and (b) nested joins can be
executed in a pipelined fashion.

The restrictions above reduce the number of alternative join trees to O(2N ) for a lot of queries with N
relations.

There exist different research strategies that the optimizer may follow in order to find the cheapest
execution plan for a given query; for example:

• Dynamic programming algorithm [47]: it builds all alternative join trees that satisfy the three restric-
tions, by iterating on the number of relations joined so far and it rejects suboptimal trees. The memory
requirements and the execution time of this algorithm grow exponentially with the number of joins in
the worst case because all partial plans generated in each step must be stored to be used in the next
one. Typically, a limit is placed on the number of join (around fifteen joins). For longer queries the
optimizer crashes because of memory requirements.

13



• Randomized algorithms: they address the inability of dynamic programming algorithm to deal with
large queries. Most important algorithms of this class think of all the alternative plans for a given
query as nodes of a graph: each node has a cost associated with it and the algorithm aims to find
the node with the minimum globally cost by performing random walks towards less-cost nodes in the
graph.

The optimizer estimates the size of the database relations and of results of (sub)queries and the frequency
distribution of attribute values. Several techniques proposed to perform this estimate use histograms. In a
histogram on the attribute A of the relation R, the domain of A is partitioned into buckets and a uniform
distribution is assumed in each bucket: for any bucket b and for any value vi ∈ b the frequency fi of vi is
approximated by

∑
vj∈b fj/|b|. There exist various classes of histograms:

• trivial histograms: the uniform distribution is made;

• equi-width histograms: the number of distinct attribute values is the same in each bucket;

• equi-depth histograms: the sum of the frequencies of the attribute values is the same in each bucket;

• serial histograms: the frequencies of the attribute values in each bucket are either all greater or less
than the frequencies of the attribute values associated with any other bucket; under various optimality
criteria these histograms are optimal the worst-case and average error; the problem is that identifying
the optimum serial takes exponential time in the number of buckets;

• end-biased histograms: some number of the highest frequencies and some number of the lowest fre-
quencies in an attribute are maintained in separated buckets and the remaining frequencies are put
into a single bucket; they are serial histograms, but identifying the optimum end-biased histogram
takes only slightly over linear time in the number of buckets; besides, end-biased histograms require
little storage since most of the attribute values are in a single bucket and do not have to be stored
explicitly; finally, estimate errors are not usually too far off from the corresponding errors that are got
with serial histograms.

In parallel databases, besides choosing the implementation of each operator, the use of indices, if and
when duplicates must be eliminated, and so on, the optimizer makes two further choices: the number of
processors that should be given to each operator (intra-operator parallelism4) or placing operators into
groups that should be executed simultaneously by the available processors (inter-operator parallelism that
can be subdivided into pipeling and independent parallelism). The scheduling alternatives arising from these
choices increase further the number of execution plans for a given query. Thus, most systems adopt some
heuristics to reduce the plan space. In the two-stage approach [37], in the first phase the optimal sequential
plan for a given query is identified using techniques outlined above; then, the optimal parallelization of that
plan is found.

In early distributed databases, because the network cost was dominant, semijoins were used in order to
only transmit the tuples that would have contributed to join results [27, 39]. Another solution to efficiently
execute joins between tables stored on different sites used Bloom filters5, large bit vectors that approximated
join columns and were transferred across sites to determine which tuples might have participated in a join
so that only these might be transmitted [39]: suppose that a user issues a query at the site S1 joining two
relations R1 at the site S1 and R2 at the site S2 and that join attributes are R1.A and R2.A; a simple query
plan could be sending a copy of R2 from S2 to S1 and executing the join over S1. In the early distributed
system this was particularly expansive since bandwidth was a limited resource; bandwidth requirement can
be reduced by using Bloom filters: a Bloom filter from column R1.A is generated and sent to S2; table R2

is scanned and the value R2.A in each tuple is hashed (hash functions hi used in the site S2 are the same as
the site S1): if the filter contains the bit 1 at positions hi(S2.A), that tuple is send to S1; here, R1 and the
stream coming from the site S2 are joined and the result is returned to the user.

4Deciding how many processors must be given to each operator is an important issue also in sensor networks where operators
can be executed by one or more nodes.

5Bloom filters are a technique to control if a given element can or can not belong to a set [28]; even if they return true, there
is a non-null probability that researched element is not in the set.

14



Predicate Migration Algorithm, which produces an optimal query plan for queries with expansive methods,
is presented and proved in [36]. Expansive methods are all those predicates the evaluation of which costs
more than retrieving data referenced in the predicates. For example, suppose you wish to know in what films
your favourite actor played, namely, if there exists at least one scene where that actor appears; thus, your
query will contain a predicate which, for each film, searches for actor’s image in each scene; the evaluation
of such a predicate is not trivial and clearly takes a long time. If the query to be optimized contains no
expansive methods, then Predicate Migration Algorithm is circumvented and standard query optimizers are
used. Predicate Migration slightly increases the time required to optimize any query: the additional cost
factor is polynomial in the number of operators in a query plan.

First, the case of queries over a single table is discussed and it is showed how to order predicates in such
a query in order to minimize the cost of applying them to the table. Let us consider the following query
where the table R has scheme R(A, ...) and p, p1, ..., pn are predicates over R:

select R.A
from R
where p and p1 and ... and pn

A traditional optimizer orders these predicates arbitrarily and, thus, it may apply expansive predicates before
cheapest ones. Let us see how Predicate Migration Algorithm solves the problem: supposing that an index
has been defined on one or more attributes of the table (such as p), all the predicates over those attributes
are applied first because their cost is almost zero; in fact, they are not actually evaluated but the index is
scanned and only the tuples satisfying predicates are retrieved. If p1,..., pn are the subsequent non index
predicates in the order in which they are applied to each tuple of the base table, and supposing that distinct
predicates are independent and any predicate pi costs ci and has selectivity si, then the cost of applying all
the non index predicates to the output of a scan containing N tuples is:

c = c1N + s1c2N + ... + s1s2...sn−1cnN

Migration Predicate Algorithm orders predicates in ascending order of the metric:

rank = selectivity−1
cost

Note that since the selectivity of any predicate is from 0 and 1 inclusive, the rank is never positive: the rank
of any predicate is low if (a) the cost of the predicate is low and (b) its selectivity is low. Query cost model
incorporates both selectivity and cost estimates for predicates; in fact, if predicate costs may differ by several
orders of magnitude, evaluating predicates only in increasing order of selectivity is not an efficient strategy
because there is the risk to apply first very expansive predicates, whereas evaluating first cheap ones would
be better in order to reduce the number of tuples which expansive predicates must be applied to. Note that
changing the position of predicates having the same rank has no effect on the cost of the query plan. It was
demonstrated that the algorithm is guaranteed to terminate in polynomial time and that it produces the
optimal plan tree.

Consider the case of queries with both selections and joins. Given a query join plan, let us see how to
minimize this plan’s cost (i.e., how to place optimally predicates over a single table and predicates over
multiple tables in the join plan) under the constraint that the order of the joins may not be changed. A
stream6 in a plan tree is a path from a leaf node to the root. A plan tree is optimized treating each of its
streams individually and sorting the nodes in the streams in ascending order of their rank. If the Predicate
Migration Algorithm is applied to all the possible join plans for a query, it is guaranteed to produce as output
a minimum cost plan for the query, which is the unique semantically correct and join-order equivalent tree
with only well-ordered streams. Unfortunately, Predicate Migration does not get along with traditional
query optimizers because they discard the join plans of suboptimal cost in order to reduce space and time
required to optimize queries with a lot of joins: the optimum of a stream could be obtained by optimizing
a join plan that the traditional optimizer has, however, pruned. But, if a subexpression has no expansive
predicates, its plans can be pruned because its predicate places will not be changed by Predicate Migration
Algorithm; or, if all the expansive predicates in a subexpression have greater rank than the rank of any join
in any plan for the subexpression, then the expansive predicates may be pulled to the top of the plan for the
subexpression and the part of the subexpression without the expansive predicates may be pruned as usual.

6Please, note that here the word “stream” is used with a different meaning from the rest of Chapter 3.

15



3.2 Stream Query Processing
A data stream is a real-time, continuous and ordered (by arrival time or a timestamp) sequence of data
items [35]. It is impossible to control the arrival order and to locally store an entire stream. Individual data
items may be modelled as relational tuples (e.g., [45]) or instantiation of objects (e.g., [29, 49]). Queries
over streams run continuously and return new results incrementally as new data arrives. Unless window
techniques are adopted in order to extract a finite number of values from a stream, data streams have to be
processed on-line and back-tracking over a stream is not feasible because of storage constraints.

3.2.1 Blocking/Non-blocking Operators

Projection and selection operators can be used in queries over streams without any modification compared
with traditional database. Other operators, such as sorts, aggregates and a few join implementations,
cannot be applied to a data stream because of their blocking nature. Such operators can be redefined to
allow aggregates and joins which take streams as input and produce results incrementally: whenever a new
tuple arrives, the aggregate is updated and its revised value is delivered to the user. If traditional blocking
operators must be used, there exist three techniques for unblocking them:

• asking the user to specify a subset (window) of the stream which they operate over: this subset can be
defined by a number of samples or by two time bounds;

• evaluating incrementally operators in order to avoid scanning a window several times (for example,
the AVERAGE aggregate may be incrementally updated by maintaining the cumulative sum and item
count);

• exploiting stream constraints: schema-level constraints include synchronization among timestamps in
multiple streams, clustering and ordering [26, 34, 45]; data-level constraints may consist of control
packets inserted into the stream that specify any conditions which will hold for all future data items,
for example no other tuple with timestamp smaller than τ will be produced by a given source.

3.2.2 Aggregation

Aggregation enables information about large amounts of data to be summarized; the idea is to represent a
set of items by a single value or to classify items into groups and determine one value per group. Typical
aggregates are minimum, maximum, sum, count and average. Aggregation can be a useful operation over
streams because it reduces the quantity of data to be transmitted and store. Unfortunately, aggregation is
blocking, namely, it requires that all input data are consumed before any output can be produced: this fact
and storage constraints make unusable traditional aggregate implementations over streams.

Let us see a non-blocking implementation of aggregates. User Defined Aggregates (UDAs) [51, 53] extend
SQL aggregate operators. For example, an (blocking) UDA equivalent to the AVG aggregate in SQL is a
procedure whose interface specifies input and output parameters (type and name); the procedure consists
of a local table containing partial state records (e.g., partial sum and count for AVG aggregate), and three
SQL statement blocks INITIALIZE, ITERATE and TERMINATE that may work on the table: the table
is allocated just before the INITIALIZE function is executed and deallocated just after the TERMINATE
function is completed. Suppose a user query searches for in what departments does the average of employee
salaries exceed S; the semantics is as follows: when the first tuple is processed, the table is allocated and
the INITIALIZE statement is executed inserting a record into the table; whenever a new tuple arrives, the
ITERATE block is executed inserting a new record or updating an existing record into the table (depends
on the aggregate); moreover, if the incoming tuple is the last one, the TERMINATE statement is also
executed returning the final result of the computation. Non-blocking UDAs support tumbling windows: the
TERMINATE statement will appears void and partial results will be returned by the statement ITERATE.
A non-blocking hash-based implementation for the calls of the UDAs has been designed for queries containing
a GROUP BY clause: the input stream is pipelined through the operations specified in the INITIALIZE
and ITERATE statements; the only blocking operations (if any) are placed in the TERMINATE statement
and, so, are executed only at the end of the computation.

16



3.2.3 Optimization Issues

Traditional cost metrics (e.g., how many accesses on the disk must be done to retrieve data) do not apply
to continuous queries over infinite data streams. More appropriate cost metrics can be:

• accuracy and delay vs. memory usage;

• output rate [50];

• power consumption [42, 52].

In particular, last metric is advisable in wireless sensor networks since sensor battery capacity is usually
limited: minimizing power usage has the great advantage of extending node lifetime and, therefore, delaying
human intervention for recharging or replacing batteries (note that a sensor network may be deployed to
monitor environments dangerous or difficult to be reached).

In relational DBMSs, all operators are pull-based: an operator requests data from one of its children in
the query plan only when needed. On the contrary, operators over streams process data without making a
request to the source. Subsection 3.3.2 presents a solution to reconcile pull-based and push-based operators;
a similar approach can be found in [25]. Furthermore, stream management systems are required to support
historical queries in addition to processing data produced in real time.

Execution of many similar queries together is needed to ensure scalability. Two approaches are proposed:

• similar queries share a plan that produces the union of results of individual queries [31]; a final selection
is then applied to this union;

• query predicates are stored in a table and whenever a new tuple arrives, the table is searched to see
what queries this tuple satisfies [30, 43].

The first approach can turn out useful in sensor networks: if multiple queries share single operations or
portions of processing, these operations or portions are executed only once in order to save power, making
available the result to all involved queries.

In relational databases, given a query the optimizer produces all possible plans by reordering joins in
the query and, then, it chooses the cheapest plan according to a particular cost metric. Some work in join
ordering has been done for data streams. The cost of a plan can change because processing time of an
operator or selectivity of a predicate or arrival time of a stream change [24]: query plan is dynamically
updated to match current system conditions; this is accomplished by tuple routing policies that attempt to
discover what operators must be scheduled first because they are fast and selective [24, 30, 43, 46].

Data streams can arrive from remote source. Distribution Optimization strategies try to reduce commu-
nication cost by reordering operators across sites [32, 48] and performing simple query functions, such as
filtering and aggregation, locally at a sensor or a network router [33, 41, 44, 52]. Some specific optimization
techniques have been proposed for ad hoc wireless sensor networks in order to decrease communication cost,
to save node battery capacity and to manage the fact that wireless links have limited bandwidth and are
prone to failures. For examples, since links are shared, if a query contains a MIN aggregate, any node does
not deliver its own value m if it hears a value of one of its neighbours smaller then m (Subsection 3.3.3).
Moreover, the node could broadcast redundant copies of its minimum to all neighbours in order to minimize
the chances of packet loss. This technique is unsuitable for other aggregates such as SUM and COUNT,
because duplicate values would alter the result. In this case, a sensor may split its own value and send
partial records to each of its neighbours; so, if a record is lost, the remainder of the aggregate should be still
computed.

3.3 Query Processing in Wireless Sensor Network
A centralized approach where data are extracted from devices in a predefined way and sent to a unique
front-end server for storage and querying, is not suitable for query processing in sensor networks for two
reasons [29]: (a) access to the network and processing of queries are separated and (b) valuable resources
are used to transfer large amounts of raw (and maybe unnecessary) data to the centralized database; in fact,
since sensor nodes are usually powered by batteries with a limited capacity, sensor networks must save energy

17



in order to extend their lifetime, but transmitting all the data to a central node consumes a lot of energy
(communication using a wireless medium is more expansive than processing). Since sensor nodes have some
computation ability, part of the processing can be moved from the front-end server into the sensor networks,
reducing power consumption.

In the following, we present a few alternatives to the centralized approach, in appearing order.

3.3.1 Cougar Approach

In [29] a model for sensor database systems is defined. Queries usually involve a combination of two types
of data: stored data and sensor data. The former includes the set of sensors in the network and their
attributes such as their location, and it can be represented as relations. The latter is periodically collected
by sensors from the physical environment; in particular, it is generated by signal processing functions that
take as input physical signals (e.g., temperature, light, sound, pressure and magnetism) sensed by sensors
and produce as output measurements of those phenomena. Since queries can require data aggregation over
time windows or data correlation in time, each output of a signal processing function has its production time
as a timestamp. Sensor data is represented as time series: time is discrete (natural numbers are used as the
time series ordering domain); sensor nodes share the same time scale and their clocks are synchronized; all
outputs which are generated by signal processing functions during a same time interval, are associated to a
position; if a sensor does not produce data during a time interval, a Null record is associated to the position
corresponding to this quantum; whenever a signal processing function produces an output, the record series
is updated at the position corresponding to the production time.

Queries over a sensor database are long running because sensor networks produce continuous data streams
in theory endlessly, in practice until nodes run out of battery power. A query involves stored data (relations)
and sensor data (sequences); except a few cases, a relational operator takes as input base relations or the
output of another relational operator, while a sequence operator manipulates sequences or outputs of other
sequence operators. During the execution of a long running query, relations and sequences might change: a
relation changes because of the insertion of a new record or the delete or modification of an existing one;
the only event which can change a sequence is a new insertion. Each query defines a persistent view that
is maintained during the time interval the query is running, in order to reflect the updates on the sensor
database. Persistent views can be maintained incrementally if (a) updates occur in increasing position order
and (b) the algebra used to compose queries does not allow sequences to be combined by any relational
operators.

In user’s point of view, sensors are modelled as Abstract Data Types (ADT): a sensor ADT is defined for
all sensors of a same type; the public interface of a sensor ADT consists of the signal processing functions
supported by this type of sensor; an ADT object in the database corresponds to a physical sensor in the
real world. Signal processing functions are modelled as scalar functions: their outputs are not modelled
as sequences but as result of successive executions of a scalar function during the span of a long running
query; thus, queries containing time constraints (e.g., aggregates over time windows) are not supported by
the Cougar approach.

As regards the internal representation, queries are processed on a centralized database; the query engine
includes a mechanism for interacting with sensor nodes where the signal processing functions are executed
and the results are sent to the front-end. The first version of Cougar does not consider a long running query
as a view: the system only computes the incremental results that could be used to maintain such a view,
these results are obtained by executing sensor ADT functions repeatedly and by combining the produced
outputs with stored data. A relational operator is used to model the execution of sensor ADT functions;
this operator is a variant of a join between the relation containing the sensor ADT attribute and the sensor
ADT function in a tabular form. This representation has been called a virtual relation, virtual because it is
not defined in the database system. A virtual relation is a tabular representation of a method; a record in a
virtual relation contains the input arguments and the output ones of the associated method: if a method M
takes n arguments, then its associated virtual relation has a scheme with n+3 attributes, where the first one
is the unique identifier of a device, attributes from 2 to n+1 are the input arguments of M, attribute n+2 is
the output of M and the last attribute is the output production time. Whenever a signal processing function
returns a result, a new record is appended to the associated virtual relation; records are never deleted or
updated in a virtual relation. A virtual relational is partitioned across all sensors of the same sensor ADT;
thus, a database is internally represented as a distributed database.

18



3.3.2 Fjord Approach

In [40] an architecture for query processing over sensor data streams is defined. This approach has two
advantages: (a) it allows users to issue queries that combine data streams that are continuously pushed into
the system by sensor nodes, with standard source data that is saved to disk and is extracted by traditional
operators when applications ask for it; (b) it defines power-sensitive operators (called sensor proxies) that
serve as mediators between the query processor and physical sensors. The architecture is as follows: users
issues queries to the server; the server processes each query, instantiates operators and locates proxies for
the sensors that can have data relevant to this query: the proxy accepts and runs queries on behalf on the
sensor, sparing the sensor to send data to all interested users; each sensor delivers sensed data to its proxy;
data is keyed by sample time and is logically separated into fields; the proxy converts these values in tuples
and sends them to the query processor; when the user stops the query, the proxy stops delivering tuples for
that query; the proxy continuously manages the sensor even when no query is running; a proxy is typically
used for a lot of sensors. Wired Internet connections or high power wireless radio link proxies to the server.

The sensor proxy has other important functions: in order to save energy and to extend the node lifetime,

• it can adjust the sampling rate of sensors depending on the user demand; in particular, if there is no
query on a sensor, the proxy can ask this sensor to power off, or if a sensor is sampling at a rate higher
than the one necessary to answer user queries, the proxy can reduce sensor rate;

• if current users are only interested in values within some interval, the proxy can ask sensors not to
deliver samples outside this interval;

• the proxy can ask sensor to aggregate values in predefined ways before sending them.

Fjords are the other component of this approach. They generalize traditional approaches to query plans,
supporting the combination of data streams and disk-saved data: when a new query is posed, the controller
running on the server instantiates operators (join, select, project, ...) and connects local operators via queues
to other local operators or to remote operators. Each query running on a machine is allocated its own thread
and that thread is multiplexed across operators via a scheduler that directs operators to consume inputs and
produce outputs if they are not explicitly invoked by their parent in the query plan.

Each operator has a set of input queues and a set of output queues, takes tuples from the input queues
in any chosen order and inserts results in some or all the output queues. Each queue routes data from its
input operator to its output operator without any transformation on this data. Fjords support both pull
queues and push queues: in the former, the input operator puts data into the queue that can be got by
the output operator; in the latter, the input operator produces data invoking its transition method when
the output operator calls its get method. Push queues are used to make data streams feasible: whenever a
sensor tuple arrives, the sensor proxy inserts it into the input queue of the Fjords that use that sensor as
source. If a queue fills, the oldest samples are usually discarded first because they represent less the current
state of sensors.

Besides of allocating a separated Fjord for each new query, the use of only one Fjord is proposed for all
similar queries over the same sensor since queries over streams are only interested in data produced since
the moment queries are issued: this sharing is enabled by instantiating stream scan operators with multiple
output queues and storing sensor tuples once in the query processor’s memory. Single Fjord approach reduces
power consumption compared with multi Fjord approach as (a) there is no overhead due to context switch
between threads and (b) sensor tuples have to be put in the buffer pool of the only one Fjord.

The Fjord approach is focused on sensor power saving whereas the Cougar one is more interested in
modelling sensor streams.

3.3.3 TAG Approach

TAG [41] offers an aggregation distributed service for ad hoc networks of TinyOS motes. Users pose ag-
gregation queries from a powered basestation with abundant resources; each query is routed to all nodes
of network that deliver data back to the user through a routing tree rooted at the basestation; as data
flows towards the user, every node aggregates data locally produced with data received from other nodes, as
specified in the query.

19



The routing tree is built as follows: the basestation periodically broadcasts into the network a message
asking other nodes for organizing into a tree and it specifies its ID (which is unique for each node) and its
level (zero) in the message. When the message arrives to a node whose level is not set, that node assigns
its level to be the level in the message plus one, decides that the sender of the message is its parent and
rebroadcasts the message after inserting its ID and its level. The tree building ends when all nodes have set
their level. When a node wants to send a message to the root, it routes the message to its parent, which
forwards it to its parent and so on until the message reaches the root. Routing messages are sent periodically
in order to adapt the tree to network changes. Each node which does not transmit a reading for a long time,
must periodically send a heartbeat to inform its parent and children that it has not failed.

TAG implements any aggregate via three functions: a merging function f, an initializer i and an evaluator
e. In general, the function f is defined as follows:

< z >= f(< x >, < y >)

where <x> and <y> are multi-valued partial state records computed over one or more sensor values and
representing the intermediate state over those values that will be required to compute an aggregate. For
example, in the case of AVG aggregate, each partial state record consists of a pair of values: the cumulative
sum S and item count C ; thus, f is defined as follows:

f(< S1, C1 >,< S2, C2 >) =< S1 + S2, C1 + C2 >

The initializer i specifies how to initialize a state record for a single sensor value; in the case of AVG, for
any sensor with value x the initializer returns the tuple <x,1>. Finally, the evaluator e takes a partial state
record and computes the actual value of the aggregate; in the case of AVG, the evaluator takes as input the
tuple <S,C> and returns S/C. It is worthwhile noting the correspondence between the three functions i, f,
e and the three blocks INITIALIZE, ITERATE, TERMINATE described in Subsection 3.2.2.

TAG classifies aggregates according to four properties that are very important to sensor networks:

• duplicate sensitivity: aggregates may or may not be affected by duplicates readings;

• loss tolerance: exemplary aggregates return one or more values representing the set of all values: their
behaviour is unpredictable when losses occur; summary aggregates compute some property over all
values: the value computed over a subset of data can be a robust approximation of the true aggregate
if either the subset is chosen randomly or the correlations in the subset can be accounted for in the
approximation logic;

• monotonicity: when two partial state records s1 and s2 are combined via f, the resulting state record s′

has the property that either ∀s1, s2 e(s′) ≥ MAX(e(s1), e(s2)) or ∀s1, s2 e(s′) ≤ MAX(e(s1), e(s2)):
this property may be used to reduce the number of messages in the network, as explained below;

• amount of state required for each partial state record: in distributive aggregates any partial state
record is the aggregate for the subset of data over which they are computed and the size of the
partial state records is the same as the size of the final aggregate; in algebraic aggregates the partial
state records are themselves aggregate for the subsets, but are of constant size; in holistic aggregates
no partial aggregation can be made and all the data must be aggregated together by the evaluator;
unique aggregates are similar to holistic ones, except that the amount of the state to be propagated is
proportional to the number of distinct values in the partition; finally, in content-sensitive aggregates
the partial state records are proportional in size to some (statistical) property of data in the partition,
for example see equi-width histograms in Section 3.1.

Query execution is a two phase process: a distribution phase where aggregate queries are sent to all nodes
down into the tree, and a collection phase where the aggregate values are routed up from children to parents.
Time is partitioned into epochs and only samples collected by devices during a same epoch may be aggregated
together. When a node p sends a query request down into the network, it specifies a time interval it expects
to hear partial state records from its children. When any child, for example q, receives the request, it wakes
up, synchronizes its clock with the time information in the message and, then, delivers the request to its
children setting the delivery interval for them to be before the time its parent expects q ’s record. The

20



distribution phase continues until all the nodes have received the query request. During the epoch after the
query propagation, each node listens for messages from children during an interval longer than one specified,
in order to overcome synchronization problems. It computes a partial state record combining children’s
values with its local sensor readings and it transmits this record up the routing tree during the interval
requested by its parent.

A query may contain a grouping clause; in this case, the root inserts the grouping condition into the query
request to be routed down the network. Query execution follows the approach described above except that
partial state records are tagged with a group ID. Any leaf node applies the grouping expression to compute
a group ID, tags its record with this group and sends it to its parent. When a node receives a record from
a child, it compares its own group ID with the one that is in its child’s record: if they coincide, the node
combines the two values according to the aggregation function specified into the query; otherwise, the node
stores its own value and the received one separately. If another child’s message arrives with a value in either
group, the node updates the right aggregate. During the next epoch, the node delivers to its parent the
values of the groups about which it collected information during the previous epoch. If the groups to be
stored exceed the available storage in any node, one or more groups must be evicted.

The main advantage of TAG compared with the centralized aggregation approach is to reduce the com-
munication required to compute an aggregate. Other important benefits are as follows:

• TAG tolerates disconnections and loss: nodes communications can be interrupted by a local interfer-
ence source, thus, aggregation requests or partial state records can result garbled or updated or lost;
furthermore, devices can run out of power. But, since channels are shared, nodes can reconnect by
snooping on their neighbours’ partial state records if information about queries is included in such
records.

• Each mote has to transmit only one message, whereas in the centralized approach nodes at the highest
levels have to route more records than the ones at the deepest levels.

• The fact that time is divided in epochs, enables to know when the processor is idle: during these
intervals, the radio and the processor can power off in order to consume very little power. TAG
provides for a periodic bootstrapping phase where nodes (in sleep mode) can wake up, learn queries
currently in the system, know its parent and synchronize with neighbours: devices which have not
heard from their neighbours, listen for several times during this period between sleep intervals.

In [41] there are presented several optimizations using the fact that motes communicate over shared channels:

• snooping can be used to reduce the number of messages sent for monotonic exemplary aggregates (e.g.,
MIN and MAX): if the query contains a MIN operator, a mote does not send its own value if it has
heard a neighbour transmitting a value less than its one;

• in an alternative technique for computing monotonic exemplary aggregates, such as a MIN, the root
computes the MIN on the highest k levels, then it aborts the result M and sends a new request asking
for values less than M: leaf nodes do not deliver a partial state record if their values are greater than
M, while intermediate nodes, however, must still forward records;

• network faults are monitored and adapted to at two levels: first, each node maintains a list of neighbours
and monitors the quality of the link to each of its neighbours by tracking the packets received from
each neighbour; each node assigns a locally unique sequence number with each message; if a node n
observes the link quality to its parent p is worse than that of some other node q, it chooses q as its
parent if q is closer or as close to the root as p and the node n is not q ’s parent. Second, if a node
n has not heard from its parent for some fixed period of time, it assumes that its parent is failed or
moved away; thus, it chooses a new parent from its neighbour list; if n chooses as its parent a node of
its subtree, its children must reselect their parent.

3.3.4 TinyBD Approach

TinyDB [42] is a distributed acquisitional query processor that runs on each node in a sensor network.
TinyDB runs on Berkeley Mica motes on top of the TinyOS. It represents the current state of the art. It

21



uses the ability of smart sensors to control where, when and how often data is acquired in order to reduce
power consumption; furthermore, it has a lot of features of a traditional query processor, such as selecting,
projecting, joining and aggregating data.

TinyDB assumes the existence of a unique table “sensors” with a column for each different type of physical
sensor in the network; at regular sample intervals a new tuple is appended to the table for each sensor node,
containing the unique ID and the location of the node, the sampling time and the reading of each sensor
physical.

The basic architecture is as follows: users submit their queries to a basestation (i.e., a powered PC) where
they are parsed and optimized to choose the order of sampling, selections and joins on individual nodes that
minimizes power consumption (note that sampling data and transmitting results cost more than running
single operators). Each node maintains a catalog of metadata associated with its attributes, events and
user-defined predicates: each event has a name, a signature and a frequency estimate; user predicates have a
name, a signature and a selectivity estimate; finally, metadata associated with each node attribute are: how
many energy and time are required to sample this attribute, if this attribute is constant or variable, what
range this attribute can take on, how fast this attribute can change. The catalog also includes names of
aggregates and pointers to their code: TinyDB adopts the implementation of aggregates via three functions
that initialize, merge and update the final value of partial state records as they flow through the system
(see Subsection 3.3.3 above). Finally, TinyDB stores the cost of processing and delivering sensed data. Each
node periodically sends a copy of its own catalog to the basestation where it is used by optimizer.

Sampling costs more than executing an operator, but if a predicate is required to be evaluated over an
attribute of a sensor node, the corresponding sensor must sample the physical environment. However, if
a predicate discards a tuple of the table “sensors”, all subsequent predicates must not examine that tuple
and, so, the expense of sampling any attribute referenced in those predicates can be avoided. Thus, these
predicates are expansive and must be ordered carefully. The problem of ordering expansive predicates has
been solved in traditional databases by Predicate Migration Algorithm, described in Section 3.1, but it is
somewhat different in TinyDB for two reasons: (a) expansive predicates are on a single table (“sensors”)
and (b) an attribute can be referred in multiple predicates. To overcome the problem, TinyDB treats the
sampling of a sensor as a particular operator and it tackles the issue of determining the minimum-cost order
of predicates and sampling operations, under the constraint that τi must precede pj if pj references the
attribute sampled by τi. The proposed solution is as follows: (a) besides of assuming a priori existence of
data, a data is acquired only when any predicate over that data must be evaluated, unless it was already
sampled in order to evaluate a previous predicate; (b) if a query requires two or more sampling operations,
they are performed in ascending order of sampling energy.

The second important aspect of TinyDB optimizer is about event-based queries, namely, queries that are
instantiated and executed only when particular events occur. It is possible for multiple instances of such a
query to be running at the same time, but this presents a problem: each instance of the query consumes
significant energy sampling and delivering results, apart from the other instances. In order to reduce power
consumption, a multi-query optimization technique based on rewriting is adopted: any event-based query
is rewritten as a sliding window join between the stream of events and the table “sensors”. This techniques
works badly if event frequency is low because the overhead of checking if event queue is empty is greater
than the advantage of having only one query running.

After a query has been optimized, the basestation broadcasts it into the network. When a node receives
the query, it controls if it and/or a few of its children in the routing tree can produce data for the query;
in the negative case, the subtree rooted at that node may be excluded from the query saving the energy
to disseminate, execute the query and transmit its results on several nodes. Suppose that what nodes have
to participate in the execution of queries, is indicated by a selection predicate on a constant attribute; to
enable each node to decide if a query applies locally and/or to its children, a semantic routing tree (SRT) is
used. Building an SRT is a two phase process: first an SRT building request is flooded by the basestation
into the network; this request specifies the attribute A the tree will be built over. When a node p receives
the request, if it has no child, p chooses a parent q from available ones and sends to q a parent selection
message that reports p’s value of A and p’s ID. If p has children, it delivers the SRT building request to
all of its children; when p has heard from all of its children, it chooses a parent and sends to it a selection
message indicating the range of values of A which it and its children cover. The first phase continues until
all nodes have heard the request. After the optimization, a query with a predicate over A is forwarded by

22



the root down the SRT and when it arrives at a node p, p checks if its interval of values of A has non null
intersection with the interval of values of A satisfying the query predicate. If so, p forwards the query to all
of its children and it prepares to receive their results. Also, if the query applies locally, p starts executing
it. If the query applies neither to p nor to any of its children, p forgets the query.

Once a query has been disseminated into the sensor network, the query processor begins executing it.
Time is divided in epochs. Nodes sleep for most of an epoch to minimize power consumption. Furthermore,
nodes are synchronized: they sleep in the same time intervals and they wake up at the same instants in
order to avoid losing results because a child sends a message to its parent while it is sleeping. When a node
wakes up, it samples sensors at the rate indicated (and dynamically adjusted) by optimizer based on lifetime
estimates and information about radio contention and available power. Samples are filtered and routed to
join and aggregation operators as specified in the query plan. Results are put into a queue with data received
from children, waiting for delivery to the node parent. The queue can fill, depending on the cardinality of
join, the number of queries running and the number of aggregates and groups. In that case, the system must
decide how to manage this situation: it can retransmit this value or combine it with some other value for
the same query or discard the tuple.

Note that TinyDB extends the TAG approach to cover all of types of queries and, in the mean time, it
improves TAG because every new query is only sent to nodes that can have data useful to answer that query,
instead of flooding the query to all the nodes.

3.4 Discussion
Let us compare the approaches outlined in Section 3.3, focusing on their differences, strength and weakness.
The four solutions belong to two different categories: Cougar proposal and Fjording architecture are enhanced
centralized architecture, whereas TAG and TinyDB are first attempts at a distributed execution of queries
in sensor networks. The first two solutions improve the centralized architecture by extracting from the
network only data required by user queries instead of all the data acquired by sensors from the physical
environment; the reason of this is to reduce power consumption on network nodes since sensor node battery
has limited capacity. But, as in the traditional centralized approach, data is still stored in a database on
a fixed node and retrieved from it in order to answer user queries. The two approaches focus on different
and complementary aspects of the problem: Cougar proposes a model for data streams and long-running
queries on such streams by using abstract data types. Cougar does not consider energy constraints of sensors
because it is devoted to battery powered sensors and it does not address the push-based nature of sensor
streams. On the contrary, Fjording approach adopts Cougar’s data model, but it focuses more on the issue
of energy-efficiently processing queries over never ending streams: first, it provides power-sensitive operators;
second, it supports shared operators for similar queries over the same sensor; third, proxies change sensors’
sampling and transmission rate according to user demand.

TAG is a first attempt to reduce power consumption on sensor nodes required to delivery data to a central
server: it uses the limited processing power of sensor nodes and takes part of the processing from the server
into the network. But it has two limits: (a) it deals with only aggregation queries and (b) queries are sent
to all nodes, also to nodes that have not data useful, which wastes energy and bandwidth. However, it is
worthwhile remembering that TAG presents several advantages compared with executing aggregate queries
in a centralized architecture: (a) in-network aggregation decreases traffic (and so, energy and bandwidth
requirement) through nodes; (b) transmission load is the same on any node no matter what their level is
in the routing tree, thus, power consumption is fairly uniform on each node; (c) it is a loss tolerant, power
sensitive and topology change adaptive solution and (d) it makes it easy to identify intervals where the
processor and the radio may be turned off over each sensor node.

TinyDB overcomes both limits of TAG by building an index over each constant attribute and using such
an index to send a query to only those nodes that can participate in query execution. TAG and TinyDB
address the issue of having a power sensitive sensor network, but from different points of view: the former
stresses the importance of in-network query processing, while the latter believes the target can be pursued by
controlling when and how often environment must be sampled and it introduces event and lifetime clauses for
this reason: event-based queries are instantiated and executed when another query or the operating system
generates some given event; lifetime-based queries must be executed for a given time interval (specified by
the user in the query) and physical environment is sampled at a rate as high as possible by taking available

23



node power and the lifetime requirement into account.
To our knowledge, physical and logic levels coincide in both TinyDB and all the other existing solutions.

This presents a few problems that have induced us to consider it useful to separate them. Let us investigate
these issues identifying several guidelines for future research. In TAG and in TinyDB there exists identity
between routing at network level and query routing, but this implies that any change of network topology
modifies query execution strategy.

Both TAG and TinyDB suppose that messages are exchanged by nodes using a routing tree and that
when a node sends a message to another node, the latter receives it. However, they do not address the issue
of what doing if data gets lost because the receiver is not hearing for any reason (interference, lack of energy,
...). Some mechanism of buffering could be introduced to save data whenever the receiver is disconnected,
so that it can receive when it connects again. Buffering is an expansive operation, given storage and energy
constraints over sensor nodes.

Let us see where different operators are executed. In general any aggregate is executed on the node
generating data (see Subsection 3.3.3 above): each node combines locally produced data with data received
from neighbours. For other operators, the routing tree or the SRT guides the choice of processing site.
However, it would be more efficient having distributed processing techniques based on load balancing, energy
saving, data reuse. Let us examine the first aspect: if a node must process a lot of queries, its battery capacity
runs out faster than other nodes: that node can delegate part of its task to another node. About the second
issue, if one query shares some or all the operations with other queries, as Fjording architecture suggests,
these operations can be executed only once at the most suitable site, saving energy.

An inefficient aspect of current approaches is the existence of a sink node linked to the node a user issues
queries from (i.e., the root of the routing tree or the SRT). That presents two problems: (a) if the sink is
a mobile device, when it moves, the routing tree can change; (b) the root runs out faster than other tree
nodes, so that the sink becomes disconnected from the sensor network.

Cougar, TAG and TinyDB view sensor data as a single table “sensors” with a column for each different
type of physical sensor in the network, which a new tuple is added to for each sensor node at regular intervals;
organizing acquired data into only one table has two main disadvantages: (a) each node is not said it has all
possible physical sensors and, if so, all of its tuples will present a Null value at the positions corresponding
to missing sensors, thus, the table “sensors” can contain rows with a lot of Null values: memory is wasted;
(b) moreover, think of a system where more frequent queries are not “what is the average temperature in the
rooms on the first floor at CNR?” but “what is the average temperature near the window (or at the ceiling or
at the floor or on the walls) in the rooms on the first floor at CNR?”; in this case, the table “sensors” would
not contain only one column for temperature sensor but one column for each logical temperature sensor, so
that Null values in the table and the waste of memory would increase; maybe, it would be worth creating a
table grouping logically related sensors, which defines what sensors sensing temperature at the window are,
and so on.

4 Conclusions and future work
This deliverable presents the state of the art in query optimization and processing over data produced by
sensor networks, considering current networking and architectural issues in such a class of systems.
In this respect we assume that the underlying sensor network architecture complies to the following charac-
teristics: the network is wireless and multihop, and it is composed by heterogeneous sensors (with respect to
computational, storage, sensing and energy capacity). The network is accessed through one or more special
mobile nodes, called sinks, which are not permanently connected: they connect to the network to issue new
queries and/or to collect results of previous queries.
We organized this review to reflect the classical (yet minimal) layer division in the software architecture. It
should be observed, however, that in the current solutions, which are either pushed from low layers (e.g. the
data centric approach, Section 2.5, offering a get/put repository to higher levels) or completely implemented
at higher layers (e.g. TinyDB - Section 3.3.4), the layers we identified tend to collapse due to the complexity
of developing software for devices like MOTES (Section 2.2).
We believe that a soft abstraction could greatly improve the expressive power of databases processing streams
of data produced by sensors, while not demanding much more in terms of nodes performances. A better
distinction between functionalities could lead to improvements in saved energy, performance and expressive-

24



ness.
For example, TinyDB is constrained to use a poor routing (available as a module running on top of the
TinyOS), and in order to disseminate queries and collect the results a semantic routing tree must be built. If
the network topology changes, the routing tree must be reconstructed, with a waste of energy. Using a more
flexible routing (like GPSR, Section 2.4) and defining query processing strategies independent of routing,
complex query plans and distributed query processing can be more effectively employed.
In TinyDB, the query optimization is executed by the sink node, which chooses a query plan that minimizes
a given cost measure (Section 3.3.4). However, energy is explicitly taken into account only when deciding
the sampling rate (a user can request a minimum network lifetime), while the sampling and pruning order is
decided based on the cost of sampling attributes (and only in the case of static or slowly varying attributes).
We believe that with more information coming from lower levels (and with an efficient way to share and
access them - e.g. a data centric storage approach, Section 2.5) the query optimization may be enhanced, e.g.
considering the sampling cost as increasing with energy consumption. Balancing the energy consumption
among all the nodes could result in a longer network lifetime without affecting the sampling rate.
This aspect is even more dramatic in heterogeneous networks, where lower capacity nodes may delegate part
of their tasks to other, more powerful nodes.
The commonly adopted approach considers sensors as sources of data streams, and the network as a unique
table, composed of a set of columns, one for each sensor type. Such a solution is not flexible from the user
point of view: theese concepts can be generalized, offering the opportunity to create logical table/streams
aggregating simple ones, and possibly offering a wide choice of compositional methods. In order to enable
such an enhancement, a low level stream system (the assonance with file system is not accidental) should
be developed, offering basic functionalities over simple streams, like creation, opening and input/output. At
an higher level, such a service could be used to aggregate streams into new (logical) streams, offering to the
database (and to the user) a powerful mechanism to manage and control sensed data.
The above requirements may impact on the lower layers, which should be reconsidered under this aspect. In
particular, unicast routing, data centric strategies and reliable and secure data storage and communication
services are expected to be the key elements to support this framework.

25



Appendix A

Peer to peer strategies for service localization
The peer to peer approach to distributed software is being adopted in an increasi ng number of cases, pushed
by the success of many file sharing applications and by the advantages such an architecture offers. One
of the drawbacks of the first products was the data localization: a query had to be sent to all the nodes
composing the network, in order to find who could serve it. This causes a huge number of communications
in the network, and a heavy usage of every node, which must serve all the queries for all the data.
We present here a few interesting solutions to this problem: CAN ([17]), Pastry ([16]) and Tapestry ([23]),
Chord ([21]) and finally a solution based on attenuated Bloom filters ([18]).
All but the last approach may be seen as a mapping of nodes and queries onto some topology in a d-
dimensional space. The mapping allows for a quick location of data, to improve routing. The solution based
on attenuate Bloom filters is a randomized approximation: data stored in some nearby node can be obtained
quickly with high probability. Otherwise, a deterministic solution is used.
We do not discuss in great detail all the issues every mechanism must consider (e.g. how to react to node
failures, etc), limiting the survey to the basic idea underlying each of them.

CAN ([17])
A Content Addressable Network is exactly a data centric network: data is addressed, not nodes. Nodes are
seen as disposed in a d-dimensional torus, and each node is responsible for a subspace disjoint from other
nodes subspaces (i.e. the torus is partitioned).

Figure 7: A content addressable network

Figure 7 (borrowed from [17]) shows a case in 2 dimensions (without the wrapping of sides).
When a new node connects to the network, it requests for an existing node subspace. The node receiving
the request gives a part of its space to the newcomer, which enters in the torus. In Figure 7, for example,
node A is associated with the square (0, 0)− (0.5, 0.5).
Every node knows its neighbors and is able to determine when one of them leaves. In case of departure of a
node, one of its neighbors merges the abandoned area with its own.
Thus, data are mapped in points, and are be stored in/retrieved from the node which owns the area containing
their coordinate. The routing in such a topology is a greedy coordinate-wise approaching, keeping this phase
very simple.

26



Pastry ([16]) and Tapestry([23])
We present these two solutions together, because they are very similar in spirit (i.e. Tapestry has a location
management system which is based on a routing layer very similar to the one offered with Pastry).

The topology created may be thought as a generalization of hypercubes: every node has a unique ID
represented as a number between 0 and Ba, for some base B = 2b. Thus, if a node keeps a table with
dloga(N)e rows, with at most B entries per row, it is able to find a path for a given ID with a simple table
lookup. In fact, table row i contains a set of pointers to nodes with an ID having a common prefix long i
digits. Column j in such a row contains a node with an ID equal to j at the position i + 1. Thus, if the
destinaion node has an ID with a prefix sharing x digits with the ID of the node that has to find the next
hop, and the first different digit is y. The optimal route for the message passes through the node pointed
out in row x, column y.

The Pastry solution is an approximation of the optimal approach, which keeps routing tables smaller
while offering better fault tolerance (at the expense of slightly longer paths). In practice, not all the possible
entries are kept, and in case a needed entry is missing, the packet is routed through the nearest7 node with
the same common prefix of the routing node.

Chord ([21])
The Chord approach can be seen as a monodimensional approach using the technique of consistent hashing
([11]).
Again, every node has a unique identifier (e.g. its IP address) which is reduced to an ID in 0 . . . 2m by means
of an hash function. Information about a key k is stored in the node which has an ID equal to the hashing
of k (in the first existing successor, if the node is not in the network). Figure 8 (borrowed from [21]) shows
a simple case with a network composed by 4 nodes.
If every node is aware of its successor in the circle, then a route from node i to node j may be easily found.

Figure 8: A chord ring.

However, in order to cut the length of the routes, while keeping a small routing table, node i records also
the first successor of node (i + 2j) mod m. Routing corresponds to tracing a logarithmic number of chords
per node in the network, which allow to reach any node in a logarithmic number of steps (if successors
information is kept updated).
When a node leaves the network, all the keys it stores are left to its successor, while, when a new node
appears, it retrieves the keys to store from its (new) successor.

A probabilistic approach ([18])
This method is quite different from the previously analyzed ones, but it still presents the core components
of each:

• compact representation of keys by means of hash functions
7The metric used to estimate proximity can be changed following the application needs

27



• topology knowledge

A Bloom filter is a simple lossy set representation data structure: an array of w bits. The elements of the set
are hashed to a tuple of values between 0 and w− 1, and the bits representing their encoded representation
are set. When looking for an element in a set, it is enough to look at the bloom filter elements corresponding
to its hashed value. If any of them is set to 0, then the element is not in the set. If they are all set to 1,
then there is a certain probability (which depends on the number and quality of hash functions and on w)
that the element is present in the set.
It is possible to use the same the same idea to quickly find values in a peer to peer network. Every node
maintains a set of bloom filters for every neighbor (where neighbors are nodes nearby following some metric).
The ith Bloom filter associated with neighbor j is the Bloom filter representing the set of keys reachable with
i hops through node j. In this way, a node looking for key k asks neighbors in which all the bits representing
k are set to 1 at a smaller value.
If the key is within a small number of hops, then it is efficiently found, otherwise a deterministic approach
must be used.
An efficient mechanism for disseminate keys to neighbors (in order to keep the Bloom filters updated) is
presented in [18]).

References
[1] Ian F. Akyildiz, WellJan Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. A survey on sensor

networks. IEEE Communications Magazine, pages 102–114, Aug. 2002.

[2] I.F. Akyyildiz, Y. Sankarasubramaniam W. Su, and E. Cayirci. Wireless sensor networks: a survey.
Computer Networks, (38):393–422, 2002.

[3] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Commun. ACM,
18(9):509–517, 1975.

[4] Jeffrey Hightower and Gaetano Borriello. Location systems for ubiquitous computing. IEEE Computer,
34(8):57–66, August 2001.

[5] W. R. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for information dissefinination
in wireless sensor networks. In Proc. ACM MobiCom ’99, pages 174–185, 1999.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture directions for
networked sensors. In Architectural Support for Programming Languages and Operating Systems, pages
93–104, 2000.

[7] D. Johnson, D. Maltz, and J. Broch. Dsr the dynamic source routing protocol for multihop wireless ad
hoc networks, 2001.

[8] G.N.C. Kirby, A. Dearle, R. Morrison, M. Dunlop, R.C.H. Connor, and P. Nixon. Active architecture
for pervasive contextual services. In International Workshop on Middleware for Pervasive and Ad-
hoc Computing (MPAC 2003), ACM/IFIP/USENIX International Middleware Conference (Middleware
2003), Rio de Janeiro, Brazil, pages 21–28, 2003.

[9] Crossbow Technology. MICA wireless measurement system datasheet.
www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA.pdf

[10] B. Karp and H. T. Kung. Greedy perimeter stateless routing (gpsr) for wireless networks. In Proc.
Sixth Annual ACM/IEEE International Confer-ence on Mobile Computing and Networking (MobiCom),
pages 243–254, 2000.

[11] David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel Lewin, and Rina Panigrahy.
Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the
world wide web. In ACM Symposium on Theory of Computing, pages 654–663, May 1997.

28



[12] Xin Li, Young Jin Kim, Ramesh Govindan, and Wei Hong. Multi-dimensional range queries in sensor
networks. In Proceedings of the first international conference on Embedded networked sensor systems,
pages 63–75. ACM Press, 2003.

[13] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim: accurate and scalable simulation of
entire tinyos applications. In Proceedings of the first international conference on Embedded networked
sensor systems, pages 126–137. ACM Press, 2003.

[14] The nesC home page: http://nescc.sourceforge.net/.

[15] C. Perkins. Ad hoc on demand distance vector (aodv) routing, 1997.

[16] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. In IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), pages 329–350, 2001.

[17] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A scalable content
addressable network. In Proceedings of ACM SIGCOMM 2001, 2001.

[18] Sean C. Rhea and John Kubiatowicz. Probabilistic location and routing. In Proceedings of INFOCOM
2002, 2002.

[19] Sylvia Ratnasamy, Brad Karp, Scott Shenker, Deborah Estrin, Ramesh Govindan, Li Yin, and Fang Yu.
Data-centric storage in sensornets with ght, a geographic hash table. Mob. Netw. Appl., 8(4):427–442,
2003.

[20] Ananth Rao, Christos Papadimitriou, Scott Shenker, and Ion Stoica. Geographic routing without
location information. In Proceedings of the 9th annual international conference on Mobile computing
and networking, pages 96–108. ACM Press, 2003.

[21] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan. Chord: A scalable
Peer-To-Peer lookup service for internet applications. In Proceedings of the ACM SIGCOMM, pages
149–160, August 2001.

[22] Scott Shenker, Sylvia Ratnasamy, Brad Karp, Ramesh Govindan, and Deborah Estrin. Data-centric
storage in sensornets. SIGCOMM Comput. Commun. Rev., 33(1):137–142, 2003.

[23] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for fault-tolerant wide-
area location and routing. Technical Report UCB/CSD-01-1141, UC Berkeley, April 2001.

[24] R. Avnur and J. M. Hellerstein. Eddies: Continuously Adaptive Query Processing. SIGMOD, 2000.

[25] B. Babcock, S. Babu, M. Datar, R. Motwani and J. Widom. Models and Issues in Data Stream Systems.
In Proc. ACM Symposium on Principles of Database Systems, 2002.

[26] S. Babu and J. Widom. Exploiting k-Constraints to reduce Memory Overhead in Continuous Queries
over Data Streams. Technical report, Nov. 2002.

[27] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve and J. B. Rothnie. Query Processing in a System
for Distributed Databases (SDD-1). In ACM Transactions on Database Systems, Vol. 6, No. 4, December
1981.

[28] B. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM,
Vol. 13, No. 7, July 1970.

[29] P. Bonnet, J. Gehrke and P. Seshadri. Towards Sensor Database Systems. In 2nd International Confer-
ence on Mobile Data Management, Hong Kong, January 2001.

[30] S. Chandrasekaran and M. J. Franklin. Streaming Queries over Streaming Data. VLDB, 2002.

29



[31] J. Chen, D. J. DeWitt, F. Tian and Y. Wang. NiagaraCQ: A Scalable Continuous Query System for
Internet Databases. SIGMOD, 2000.

[32] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, Y. Xing and S. B. Zdonik.
Scalable Distributed Stream Processing. In Proc. Conference on Innovative Data Syst. Res, 2003.

[33] C. D. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, O. Spatscheck. Gigascope: high performance network
monitoring with an SQL interface. SIGMOD, 2002.

[34] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan and M. Strauss. Surfing Wavelets on Streams: One-Pass
Summaries for Approximate Aggregate Queries. VLDB, 2001.

[35] L. Golab and M. T. Özsu. Issues in Data Stream Management. SIGMOD Record, Vol. 32, No. 2, June
2003.

[36] J. M. Hellerstein. Optimization Techniques for Queries with Expensive Methods. In ACM Transactions
on Database Systems, Vol. 23, No. 2, June 1998.

[37] W. Hong and M. Stonebraker. Optimization of Parallel Query Execution Plans in XPRS. In Proc. 1st.
International PDIS Conference, Miami, FL, December 1991.

[38] Y. E. Ioannidis. Query Optimization. Handbook for Computer Science, Ch. 45, pp 1038-1057, CRC
Press, Boca Raton, FL, 1996.

[39] L. F. Mackert and G. M. Lohman. R validation and performance evaluation for distributed queries.
VLDB, 1986.

[40] S. Madden and M. J. Franklin. Fjording the Stream: An Architecture for Queries over Streaming Sensor
Data. In 18th International Conference on Data Engineering, 2002.

[41] S. Madden, M. J. Franklin, J. M. Hellerstein and W. Hong. TAG: A Tiny AGgregation Service for
Ad-Hoc Sensor Networks. In 5th Annual Symposium on Operating Systems Design and Implementation
(OSDI), 2002.

[42] S. Madden, M. J. Franklin, J. M. Hellerstein and W. Hong. The Design of an Acquisitional Query
Processor For Sensor Networks. SIGMOD, 2003.

[43] S. Madden, M. A. Shah, J. M. Hellerstein and V. Raman. Continuously Adaptive Continuous Queries
Over Streams. SIGMOD, 2002.

[44] S. Madden, R. Szewczyk, M. J. Franklin, D. E. Culler. Supporting Aggregate Queries Over Ad-Hoc
Wireless Sensor Networks. In Proc. IEEE Workshop on Mobile Computing Systems and Applications,
2002.

[45] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. S. Manku, C. Olston, J. Rosen-
stein and R. Varma. Query Processing, Approximation, and Resource Management in a Data Stream
Management System. In Proc. Conference on Innovative Data Syst. Res, 2003.

[46] V. Raman, A. Deshpande and J. M. Hellerstein. Using State Modules for Adaptive Query Processing.
In Proc. International Conference on Data Engineering, 2003.

[47] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie and T. G. Price. Access Path Selection
in a Relational Database Management System. In Proc. ACM-SIGMOD Conference on the Management
of Data, Boston, MA, June 1979.

[48] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, M. J. Franklin. Flux: An Adaptive Partitioning
Operator for Continuous Query Systems. In International Conference on Data Engineering, 2003.

[49] M. Sullivan and A. Heybey. Tribeca: A System for Managing Large Databases of Network Traffic. In
Proc. USENIX Annual Technical Conference, 1998.

30



[50] S. Viglas and J. F. Naughton. Rate-based Query Optimization for Streaming Information Sources. SIG-
MOD 2002.

[51] H. Wang, C. Zaniolo, C. R. Luo. ATLAS: A Small but Complete SQL Extension for Data Mining and
Data Streams. VLDB 2003.

[52] Y. Yao and J. Gehrke. Query Processing in Sensor Networks. In Proc. Conference on Innovative Data
Syst. Res, 2003.

[53] C. Zaniolo, C. R. Luo, Y. Law and H. Wang. Incompleteness of Database Languages for Data Streams
and Data Mining: the Problem and the Cure. SEBD, 2003.

31


