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Abstract

Automatic processing of IR sequences is a desirable target in Thermal Non-Destructive Evaluation (TNDE) of
materials. Unfortunately, this task is made difficult by the presence of many undesired signals that corrupt the useful
information detected by the IR camera. In this paper the Principal Component Analysis (PCA) is used to process IR image

sequences to extract features and reduce redundancy by projecting the original data onto a system of orthogonal com-

ponents. As a thermographic sequence contains information both in space and time, the way of applying the PCA to these
data cannot be straightforwardly borrowed from typical applications of the PCA where the information is mainly spatial
(e.g. remote sensing, face recognition). This peculiarity has been analysed and the results are reported. Finally, in
addition to the use of the PCA as an unsupervised method, its use in a ‘‘learning and measuring’’ configuration is
considered.
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1. Introduction

PCA is a quite old method, originated in 1901

by Pearson [1] and later developed by Hotelling

[2]. It has found its application in various fields

such as face recognition, remote sensing, and

image compression and is a common technique for
summarizing data of high dimension. It is a clas-

sical multivariate analysis that is useful for data

compression and detection of linear relationships.

It is essentially equivalent to Karhunen–Loeve

transformation and closely related to factor anal-
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ysis. All these methods are based on second order

statistics of the data. Recently, the PCA technique

was introduced in the thermal non-destructive

evaluation (TNDE) field for discriminating be-

tween optical and thermal effects in open-crack

detection [3]. In such an application, the PCA was

used to qualitatively enhance the thermal signal
due to the open-crack and to reduce the optical

effects regarded as false alarms. A more recent

application called Principal Component Ther-

mography (PCT) [4] has been proposed as a

method for defect depth characterization. In this

quantitative approach, a link between some prin-

cipal components and the thermal contrast was

found. This made it possible to formulate a cali-
bration function for the defect depth estimation.

These first applications of the PCA to thermal data
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showed some interesting potentialities that it is

worth investigating. The question is whether the

PCA can be straightforwardly borrowed from its

typical fields of application, or there is a better way

to take advantage of the specific nature of the

thermal signal. Indeed, a set of IR images coming
from a dynamic thermal test contains useful

information both in space and time. Furthermore,

most of the processing algorithms in TNDE are

based on the analysis of the thermal contrast

evolution in time, while spatial analysis is rarely

used. This peculiarity makes thermal sequences

different, for instance, from multispectral images

used in remote sensing. This paper reports on the
possible ways of applying the PCA to IR se-

quences captured in transient TNDE procedures.

The example of application to experimental data

will be reported. It will be shown that the signal

decomposition operated by the PCA provides

good, but generally not predictable results. This

is acceptable for qualitative analysis carried out

by an operator, but prevents the use of the PCA
in automated environments. To overcome this

problem and take a step toward quantitative

applications, a learning phase is introduced.
2. Basic principles of PCA

The PCA is a linear projection technique for

converting a matrix A of the dimension m� q to

the matrix Ap of the lower dimension s� q (s < m)

by projecting A onto a new set of principal axis.

This can be done by the matrix multiplication
Ap ¼ UTA where the columns of U are the pro-

jection vectors that maximize the variance retained

in the projected data Ap. This operation can be

also seen as a linear transformation that mini-

mizes the reconstruction error or a procedure to

obtain uncorrelated projected distributions. Each

principal axis corresponds to the normalized or-

thogonal eigenvector of the scatter matrix S ¼
ðA� AmeanÞðA� AmeanÞT of m� m elements. One

simple approach to the PCA is to use singular

value decomposition (SVD) of S:

S ¼ UDUT ¼ Us Un½ � Ds

Dn

� �
Us Un½ �T ð1Þ
where U is the eigenvector matrix (i.e. modal ma-

trix) and D is the diagonal matrix whose diagonal

elements correspond to the eigenvalues of S (in

descending order). Then the PCA transformation

from m-dimensional data to s-dimensional sub-
space (with sþ n ¼ m) is given by choosing the

first s column vectors. The matrix Ap taking into

account the first s principal components is given

by:

Ap ¼ UT
s A ð2Þ

The choice of s is based on the desired amount

of the variance proportion retained in the first s
eigenvalues:

r ¼
Ps

i¼1diPm
i¼1di

	 100 ð3Þ

where di is the ith element (eigenvalue) of the

diagonal matrix D. In many cases more than 95%

of variance is contained in the first three to five

components.
3. PCA applied to IR image sequences

Let us consider a typical thermal non-destruc-

tive test: a sample front surface is heated and the

transient thermal process is observed by an IR

camera. The acquired sequence of nt IR images

(nx � ny pixel) represents the source data volume

V to be processed with the PCA algorithm. A
pre-processing phase is needed to structure this

three-dimensional data set in a way convenient for

performing SVD. Before doing that, it is worth

explaining the meaning of the columns and rows of

the above mentioned matrix A with m� q ele-

ments. A represents a set of q measurements of

m-dimensional data. To make the PCA work

properly, the average value across each of the data
dimensions must be subtracted to compute the

matrix S. Hence Amean is an m� 1 vector that is

subtracted column-wise from A.

As the information contained in the original

volume V is both in space (e.g. defects geometry

and location) and time (thermal contrast evolu-



tion), there are two possible ways to convert V into

the matrix A.

Case 1: regarding V as a sequence of thermo-

grams, A1 has nx 	 ny rows (each column is an un-

rolled image) and nt columns. The data dimension

is nx 	 ny and the number of cases (or measure-
ments) is nt:A1mean is the mean image. From a

dimensional point of view, the principal axes are

images and the projected data are temporal pro-

files.

Case 2: V is considered as a sequence of thermal

contrast profiles, A2 has nt rows (each column is a

time profile) and nx 	 ny columns. The data dimen-

sion is nt and the number of cases is nx 	 ny :A2mean

is the mean temporal profile. Dimensionally speak-

ing, the principal axes are temporal profiles and the

projected data are images.

3.1. Computational aspects

From the computational point of view the main

difference between Cases 1 and 2 is the dimension

of the matrix S. As an example, let us consider a

sequence of 150 images 320 · 240 pixels each. In

the first case S1 is a huge matrix of 76,800 · 76,800

elements which requires an amount of RAM
hardly available in normal computers, in the sec-

ond case S2 is a much smaller 150 · 150 matrix. In

practice, it is always possible to use the second

approach because there is a simple relationship to

recover the eigenvector matrix of the Case 1 from

that obtained in the Case 2:

U1 ¼ A1ð � A1meanÞU2D
�1

2

2 ð4Þ

where U2;D2 are, respectively, the eigenvectors

and eigenvalues related to the second case. It is

worth noting that Eq. (4) is based on the

assumption that

A1ð � A1meanÞ ¼ A2ð � A2meanÞT : ð5Þ
Hence, in such a condition, apart from the

dimensional exchange between projection vectors

and projected data, computing the PCA on A1 or

A2 does not make any essential difference. For the

sake of simplicity, from here on, the components

having the same dimensions as the temporal pro-

files will be referred to as temporal components
(TC) independently of their nature of principal

vectors or projected data. Moreover, the first TC

(TC1) will be that related to the largest eigenvalue

and the following TC will follow the descending

order of the respective eigenvalues. Analogously,

the results of the PCA having the same dimensions
as an image will be called spatial components (SC).

All the following considerations will refer to the

Case 2 without using any subscript to denote the

matrix symbols.
3.2. Mean subtraction

Differently from the transposition of the matrix

A, the way Amean is computed influences the PCA

results. As it was mentioned before, it is possible to

subtract from each image the mean image or from
each temporal profile the mean profile. To better

analyse these two alternatives, experimental data

are processed and results discussed. A test was

carried out on a 3 mm thick steel plate with six

circular bottom holes (10 mm in diameter) located

at different depth, to simulate material loss due to

corrosion from 50% to 2% of the total thickness.

The sample was heated by two flash lamps deliv-
ering an energy pulse of 4800 J in 5 ms. An IR

camera FLIR� SC3000 was used to image the

specimen response. A sequence of 150 images was

acquired at a frequency of 50 Hz amounting to an

observation interval of 3 s.
3.2.1. Mean image subtraction

The first step was the normalization of the

images by the second image in order to reduce the

effects of a possible uneven heating pattern or
absorption distribution. The choice of the second

image instead of the first one available after the

flash, was made to reduce the reflection signals

coming directly from the heat source. Then the

volume of raw data was reduced to a two-dimen-

sional matrix A by a raster-like operation, the

mean image (i.e. the averaged row) was finally

subtracted from each row.
In such a way, the temporal profiles (columns of

A) are the original temperature evolutions centered

on zero (Fig. 1a). The PCA applied to A yields as a

first result the TC (Fig. 1b) that represent the



Fig. 1. Temperature profiles after subtracting the mean image (a); first three temporal components provided by PCA (b); dimen-

sionality curve (c); first three spatial components (d, e, f).
uncorrelated decomposed profiles. In Fig. 1c the

percentage of retained variance (Eq. (3)) is plotted

against the number of eigenvalues considered. It

can be seen that considering three components the

87.5% of variance is maintained (37 eigenvalues

are needed to keep 95% of variance). Moreover,
TC1 appears to be very similar to the mean tem-

perature decay of the sample, while the following

components look like thermal contrasts. Fig. 1d, e

and f show the SC related to the first three TC. The

SC1 (Fig. 1d) is the quite uniform image, except

for the shallowest defect already visible in the

normalizing image. This means that the contribu-

tion of TC1 is about the same for all the profiles.
The SC2 (Fig. 1e), on the contrary, exhibits low

values for the background and higher values for

defects (decreasing according to the severity of the

material loss). Finally SC3 still shows the marks of

the three largest defects (boundary effects on the

edges of the sample are visible as well).

3.2.2. Mean profile subtraction

The same procedure has been applied to the

same data set but subtracting the mean temporal

profile instead of the mean image. Results are re-

ported in Fig. 2. Fig. 2a shows how the input

profiles are now similar to thermal contrasts. In-

deed, after normalization, as the most part of the

sample is defect free, the mean profile is very close
to the normalized temperature evolution over a

sound area. Hence, the curves in Fig. 2a could be

regarded as normalized contrasts. With respect to

the previous case, now the SC1 is noisier (Fig. 2d)

and the three main defects are barely visible. No

marked evidence of the upper-right defect is seen.
While before the TC1 was similar to the mean

thermal decay, in this case it is a quite constant

profile (Fig. 2b). As for SC2 and SC3, the con-

siderations of the previous case hold on. In par-

ticular the defect visibility in the SC2 was

evaluated through the SNR in both cases and the

results proved to be the same. The amount of

variance retained considering three eigenvalues is
now 68%. To keep the 95% of information 80

eigenvalues are needed.

3.3. Other examples of application

Let us consider now another example of appli-

cation of the PCA to non-destructive testing of a

25 mm thick piece of opaque plastic with nine
square shaped bottom holes having 25 mm on a

side. The defects are located at different depths

(from 1.6 to 14.4 mm). The test was carried out

using another IR camera. The results are depicted

in Fig. 3 where four SC are considered. In this

case, the difference between the two cases is

emphasized. It is worth noting that the SC4 shows



Fig. 2. Temperature profiles after subtracting the mean profile (a); first three temporal components provided by PCA (b); dimen-

sionality curve (c); first three spatial components (d, e, f).

Fig. 3. TNDT of a plastic sample: spatial components provided by PCA after subtracting the mean image (a, b, c, d); spatial com-

ponents obtained subtracting the mean temporal profile (e, f, g, h).
a very regular pattern probably caused by the
malfunction of the camera synchronization device.

So far the examples reported above referred to a

transient regime. In the following example, a 5 mm

thick carbon fiber reinforced plastic (CFRP) plate

is tested. Defects are simulated with nine square

shaped Teflon� inserts having different sizes (12, 6

and 4 mm side length) and located at different

depths (0.25, 1.25 and 2.5 mm).The sample was
heated with a harmonic heat flux until the periodic
regime was reached. Results are shown in Fig. 4. It

can be noticed that in this case, compared to the

transient tests, the two processing methods pro-

vide quite different results in both qualitative and

quantitative aspects. For instance, the SC1 in the

second row seems to show only the distribution

of the uneven heating, while this information is

totally absent in the first row.



Fig. 4. TNDT of a CFRP in periodic regime: spatial components provided by PCA after subtracting the mean image (a, b, c, d); spatial

components obtained subtracting the mean temporal profile (e, f, g, h).
4. Learning and testing

The PCA can be also used in a ‘‘learning and

testing scheme’’. A training sequence is used to
compute the new system of principal axes that,

dimensionally, are temporal components. After-

wards, the training sequence is projected onto a

specific subset of them so that each original profile

is represented by its n coordinates, where n is the

number of the projection vectors considered.

These n-dimensional points (reference points) can

be subdivided into subsets, each one having a
specific meaning (for instance denoting a certain

defect depth). A testing sequence is then projected

onto the same principal vectors used before and
Fig. 5. Learning phase: after assigning the classes to defects depending

Testing phase: result of the classification procedure applied to a testi
the distances between each projected profile and

the reference points are computed. The closest

reference points will determinate the class assigned

to the profile under test. This procedure was ap-
plied to the steel sample described before. The

second and third TC were considered (n ¼ 2).

Classes from one to five represented the defect

depths and the class 6 was related to the sound

material. Two tests were carried out: one with the

sample in a horizontal position (used for the

learning phase) and one with the same sample

rotated (testing phase). Fig. 5 shows the classifi-
cation results. All the four defects were assigned to

the correct class. This procedure, that can be easily

made automatic, is useful when several tests have
on their severity, the training data were used for verification (a).

ng sequence (b).



to be performed on the same kind of samples.

Moreover, since a testing phase is based on matrix

multiplication, it requires a very short computa-

tion time.
5. Conclusion

The application of the PCA to TNDT has been

studied. The peculiarity of this application area

stems from the fact that the information is in both

space and time. This leads to the dual interpreta-

tion of the input data volume as a set of images or

a set of temporal profiles. To better understand
how the results are influenced by these two ways of

thinking, the PCA has been applied to both cases.

Some computational problems have been condi-

tioned by the large dimensions of the scatter ma-

trix. It has been shown that, in practice, this

problem can be overcome thanks to the property

of the eigenvectors matrix. The PCA technique has

been then applied to the experimental data in both
transient and periodic regime. It has been verified

that considering the initial sequence as either a set

of images or a set of temporal profiles influences

final results. In any case, the PCA has showed its

ability to extract features and condense infor-

mation into a few images. Anyway, so far, no
apparent connections have been found between

the principal components and the physical pro-

cesses involved in the test. Finally, the PCA tech-

nique was used for learning and testing. A

preliminary training stage provided the principal

components used as a reference system for imple-
menting the classification algorithm. This proce-

dure has been applied with promising results to the

experimental data related to corrosion character-

ization.
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