
A PROPOSAL FOR A GENERIC

GRID SCHEDULING ARCHITECTURE ∗

Nicola Tonellotto
Institute of Information Science and Technologies, 56100 Pisa, Italy

Information Engineering Department, University of Pisa, 56100 Pisa, Italy

nicola.tonellotto@isti.cnr.it

Ramin Yahyapour
Robotics Research Institute, University of Dortmund, 44221 Dortmund, Germany

ramin.yahyapour@udo.edu

Philipp Weider
Central Institute for Applied Mathematics, Research Centre Jülich, 52425 Jülich, Ger-

many

ph.wieder@fz-juelich.de

Abstract In the past years, many Grids have been deployed and became commod-
ity systems in production environments. While several Grid scheduling
systems have already been implemented, they still provide only “ad hoc”
and domain-specific solutions to the problem of scheduling resources in
a Grid. However, no common and generic Grid scheduling system has
emerged yet. In this work we identify generic features of three com-
mon Grid scheduling scenarios, and we introduce a single entity that
we call scheduling instance that can be used as a building block for the
scheduling solutions presented. We identify the behavior that a schedul-
ing instance must exhibit in order to be composed with other instances
to build Grid scheduling systems discussed, and their interactions with
other Grid functionalities. This work can be used as a foundation for
designing common Grid scheduling infrastructures.

Keywords: Grid computing, Resource management, Scheduling, Grid middleware.

∗This paper includes work carried out jointly within the CoreGRID Network of Excellence

funded by the European Commission’s IST programme under grant #004265.



2

1. Introduction

The allocation and scheduling of applications on a set of heteroge-
neous, dynamically changing resources is a complex problem. There are
still no common Grid scheduling strategies and systems available which
serve all needs. The available implementations of scheduling systems
depend on the specific architecture of the target computing platform
and the application scenarios. The complexity of the applications and
the user requirements on the one side and the system heterogeneity on
the other don’t permit to efficiently perform manually any scheduling
procedure.

The task of scheduling applications does not only include the search
for a suitable set of resources to run applications with regard to some
user-dependent Quality of Service (QoS) requirements; moreover the
scheduling system may be in charge of the coordination of time slots al-
located on several different resources to run the application. In addition
dynamic changes of the status of resources must be considered. It is
the task of the scheduling system to take all those aspects into account
to efficiently run an application. Moreover, the scheduling system must
execute these activities while balancing several optimization functions:
one provided by the user with her objectives (e.g. cost, response-time)
as well as several other objectives represented by the resource providers
(e.g. throughput, profit).

These problems increase the complexity of the allocation and schedul-
ing problem. Note that Grid scheduling significantly differs from the
conventional job scheduling on parallel computing system. Several Grid
schedulers have been implemented in order to reduce the complexity of
the problem for particular application scenarios. However, no common
and generic Grid scheduler yet exists, and probably there will never be
one as the particular scenarios will require dedicated scheduling strate-
gies to run efficiently. Nevertheless several common aspects can be found
in these existing Grid schedulers which lead to assumption that a generic
architecture may be conceivable which not only simplifies the imple-
mentation of different scheduling but also provide an infrastructure for
the interaction between these different systems. Ongoing work [7]in the
Global Grid Forum is describing those common aspects, and starting
from this analysis we propose a generic architecture describing how a
generic grid scheduler should behave.

In Section 2 we analyze three common Grid scheduling scenarios,
namely Enterprise Grids, High Performance Computing Grids and Global
Grids. In Section 3 we identify the generic characteristics of the previ-
ous scenarios and their interactions with other Grid entities/services. In



A Proposal for a Generic Grid Scheduling Architecture 3

Figure 1. Example of a scheduling infrastructure for Enterprise Grids

Section 4 we introduce a single entity that we call scheduling instance
that can be used as a building block for the scheduling architectures pre-
sented and we identify the behavior that this scheduling instance must
exhibit in order to be composed with other instances to build the Grid
scheduling systems discussed.

2. Grid Scheduling Scenarios

In this Section three common grid scheduling scenarios are briefly pre-
sented. This list is neither complete nor exhaustive. However, it repre-
sents common architectures that are currently implemented in application-
specific Grid systems, either in research or commercial environments.

2.1 Scenario I: Enterprise Grids

Enterprise Grids represent a scenario of commercial interest in which
the available IT resources within a company are better exploited and
the administrative overhead is lowered by the employment of Grid tech-
nologies. The resources are typically not owned by different providers
and are therefore not part of different administrative domains. In this
scenario we typically have a centralized scheduling architecture; i.e. a
central broker is the single access point to the whole infrastructure and
manages directly the resource manager interfaces that interact directly
with the local resource managers (see Figure 1). Every user must submit
jobs to this centralized entity.

2.2 Scenario II: High Performance Computing
Grids

High Performance Computing Grids represent a scenario in which
different computing sites, e.g. scientific research labs, collaborate for



4

Figure 2. Example of a scheduling infrastructure for HPC Grids

Figure 3. Example of a scheduling infrastructure for Global Grids

joint research. Here, compute- and/or data-intensive applications are
executed on the participating HPC computing resources that are usually
large parallel computers or cluster systems. In this case the resources
are part of several administrative domains, with their own policies and
rules.

A user can submit jobs to the broker at institute or VO level. The
brokers can split a scheduling problem into several sub-problems, or
forward the whole problem to different brokers in the same VO.

2.3 Scenario III: Global Grids

Global Grids might comprise all kinds of resources, from single desk-
top machines to large-scale HPC machines, which are connected through
a global Grid network. This scenario is the most general one, covering
both cases illustrated above and introducing a fully decentralised archi-



A Proposal for a Generic Grid Scheduling Architecture 5

tecture. Every Peer-to-Peer broker can accept jobs to be scheduled, as
Figure 3 depicts.

3. Common functions of Grid Scheduling

The three scenarios illustrated in the previous section show several en-
tities interacting to perform scheduling. To solve scheduling problems,
these entities can perform several tasks as described in [3–4]. To per-
form them, they can interact with other entities/services, both external
ones and those part of the GSA implementation. Exploiting the infor-
mation presented in [7, 5], it is possible to identify a detailed list of core
independent functions that can be used to build specific Grid schedul-
ing systems. In the following a list of atomic, self-contained functions
is presented; these functions can be part of any complex mechanism or
process implemented in a generic Grid Scheduling Architecture (GSA).

Naming: Every entity in play must have a unique identifier for
interaction and routing of messages. Some mechanism must be in
charge of assigning and tracking unique identifiers to the involved
entities.

Security: Every interaction between different un-trusted entities
may need several security mechanisms. A scheduling entity may
need to certify its identity when contacting another scheduling in-
stance, when it is trying to collect sensible information about other
entities (e.g. planned schedules of other instances), or to discover
what interactions it is authorized to initiate. Moreover, the infor-
mation flow may need secure transport and data integrity guaran-
tees, and a user may need to be authorized to submit a problem
to a scheduling system. The security functions are orthogonal to
other ones, in the sense that every service needs security-related
mechanisms.

Problem Submission: The entity implementing this function is
responsible to receive a job to be scheduled from a user and sub-
mit it to a scheduling component. At this level, the definition of
job is intentionally vague, because it depends on the particular job
submitted (e.g. a bag of tasks, a single executable, a workflow, a
DAG). The job to be scheduled is provided using a user-defined
language, and must be translated into a common description that is
shared by some scheduling components.This description will there-
fore be exploited in the whole scheduling process. It should be able
to identify scheduling related terms and to build agreement tem-
plates used by the scheduling instances to schedule the job.



6

Schedule Report: An entity implementing this function must
receive the the answer of the scheduling instance to a previously
submitted problem and translate it into a representation consum-
able by the user.

Information: A scheduling instance must have coherent access
to static and dynamic information about resources characteristics
(computational, data, networks, etc.), resource usage records, job
characteristics, and, in general, services involved in the schedul-
ing process. Moreover, it must be able to publish and update
its own static and dynamic attributes to make them available to
other scheduling instances. These attributes include allocation
properties, local scheduling strategies, negotiation mechanism, lo-
cal agreement templates and resource information relevant to the
scheduling process [4]. It can be in addition useful to provide the
capability to cache historical information.

Search: This function can be exploited to perform optimized in-
formation gathering on resources. For example, in large scale Grids
it can be neither important nor efficient to collect information
about every resource, but just a subset of “good” candidate re-
sources. Several search strategies can be implemented (e.g. “best
fit” searches, P2P searches with caching, iterative searches). Ev-
ery search should include at least two parameters: the number
of records requested in the reply and a time-out for the search
procedure.

Monitoring: A scheduling infrastructure can monitor different
attributes to perform its functions: it can be useful to monitor e.g.
the status of an agreement or an allocation to check if they are
respected, the execution of a job to undertake next scheduling or
corrective actions, or the status of a scheduling description through
the whole system for user feedback.

Forecasting: In order to calculate a schedule it can be useful to
rely on forecasting services to predict the values of the quantities
needed to apply a scheduling strategy. These forecasts can be
based on historical records, actual and/or planned values.

Performance Evaluation: The description of a job to be sched-
uled can miss some information needed by the system to apply
a scheduling strategy. In this case it can be possible to exploit
performance evaluation methodologies based on the available job
description in order to predict the unknown information.



A Proposal for a Generic Grid Scheduling Architecture 7

Reservation: In order to schedule complex jobs as workflows and
co-allocated tasks, as well as jobs with guarantees, it is in gen-
eral necessary to reserve resources for particular time frames. The
reservation of a resource can be obtained in several ways: automat-
ically (because the local resource manager enforces it), on demand
(only if explicitly requested from the user), etc. Moreover, the
reservations can be restricted in time: for example only short-time
reservations (i.e. with a finite time horizon) can be available. This
function can require interaction with local resource managers and
can be in charge of keeping information about allotted reservation
and reserve new time frames on the resource(s).

Coallocation: This function is in charge of the mechanisms needed
to solve coallocation scheduling problems, in which strict con-
straints on the time frames of several reservations must be re-
spected (e.g. the execution at the same time of two highly in-
teracting tasks). It can rely on a low-level clock synchronization
mechanism.

Planning: When dealing with complex jobs (e.g. workflows) that
need time-dependent access to and coordination of several objects
like executables, data and network paths, a planning functionality,
potentially built on top of a reservation service, is required.

Agreement: In case quality of service guarantees concerning e.g.
the allocation and execution time of a job must be considered, an
agreement can be created and manipulated (e.g. accepted, rejected
and modified) by the participating entities. A local resource man-
ager can publish through its resource manager interface an agree-
ment template regarding the jobs it can execute and a problem
can include an agreement template regarding the guarantees that
it is looking for.

Negotiation: To reach an agreement the interacting partners may
need to follow particular rules to exchange partial agreements to
reach a final decision (e.g. who is in charge of providing the initial
agreement template, who may modify what, etc.). This function
should include a standard mechanism to implement several nego-
tiation rules.

Execution: This function is responsible to actually execute the
scheduled jobs. It must interact with the local resource manager
to perform the actions needed to run all the components of a job
(e.g. staging, activation, execution, clean up). Usually it interacts
with a monitoring system to control the status of the execution.



8

Banking: The accounting/billing functionalities are performed by
a banking system. It must provide interfaces to access accounting
information, charging (in case of reservations or use of resources)
and refunding (in case of agreement failures).

Translation: The interaction with several services that can be
implemented differently can force to translate information about
the problem from the semantics of one system to the semantics of
the other.

Data Management Access: Data transfers can be included in
the description of jobs. Although data management scheduling
shows several similarities with job scheduling, it is considered a
distinct, stand-alone functionality because the former shows sig-
nificant differences compared to the latter (e.g. replica manage-
ment and repository information) [2]. The implementation of a
scheduling system can need access to data management facilities
to program data transfers with respect to planned job allocations,
data availability and eligible costs. This functionality can rely on
previously mentioned ones, like information management, search,
agreement and negotiation.

Network Management Access: Data transfers as well as job
interactions can need particular network resources to respect guar-
antees on their execution. As in the previous case, due to its nature
and complexity, network management is considered a stand-alone
functionality that should be exploited by scheduling systems if
needed [1, 6]. This functionality can rely on previously mentioned
ones, like information management, search, agreement and negoti-
ation.

4. Scheduling Instance

It is possible to consider the different blocks in the previous examples
as particular implementations of a more general software entity called
scheduling instance. In this context, a scheduling instance is defined as a
software entity that exhibits a standardized behavior with respect to the
interactions with other software entities (which may be part of a GSA
implementation or external services). Such scheduling entities cooperate
to provide, if possible, a solution to scheduling problems submitted by
users, e.g. the selection, planning and reservation of resource allocations
for a job [4].

The scheduling instance is the basic building block of a scalable,
modular architecture for scheduling tasks/jobs/workflows/applications



A Proposal for a Generic Grid Scheduling Architecture 9

in Grids. Its main function is to find a solution to a scheduling problem
that it receives via a generic input interface. To do so, the scheduling
instance needs to interact with local resource management systems that
typically control the access to the resources. If a scheduling instance
can find a solution for a submitted scheduling problem, the generated
schedule is returned via a generic output interface.

From the examples depicted above it is possible to derive a high level
model of operations for a generic set of cooperating scheduling instances.
To provide a solution to a scheduling problem, a scheduling instance can
exploit several options:

It can try to solve the whole problem by itself interacting with
local resource managers that it is able to interact with.

If it can partition the problem in several sub-problems, it can try
to:

1 solve some of the sub-problems, if possible,

2 negotiate to forward the unsolved sub-problems to indepen-
dent scheduling instances,

3 wait for potential solutions coming from other scheduling in-
stances, or

4 aggregate localized solutions to find a global solution for the
original problem.

If it cannot partition the problem or cannot find a solution by
aggregating sub-problem solutions, it has two options:

1 it can report back that it cannot find a solution or

2 it can

– negotiate to forward the whole problem to another, dif-
ferent scheduling instance or

– wait for a solution to be delivered by the instance the
problem has been forwarded to.

A generic Grid Scheduling Architecture will need to cover these behav-
iors, but actual implementations do not need to implement all of them.
This model of operations is clearly modular, and permits to implement
several scheduling infrastructures, like the ones depicted in the previous
examples.

From them we can infer that a generic scheduling instance can exhibit
the following abilities:

interact with local resource managers;



10

interact with external services that are not defined in the Grid
Scheduling Architecture, like information, forecasting, submission,
security or execution services;

receive a scheduling problem (from other scheduling instances or
external submission services), calculate a schedule, and return a
scheduling decision (to the calling instance or an external service);

split a problem in sub-problems, receive scheduling decisions and
merge them into a new one;

forward problems to other scheduling instances.

However, an instance might exhibit only a subset of such abilities.
This depends on its interactions with other instances/services and its
expected behavior (e.g. the ability to split and/or forward problems).

If a scheduling instance is able to cooperate with other instances, it
must exhibit the ability to send problems or sub-problems, depending
on the case, and receive scheduling results. Looking at such an instance,
we call higher level instances the ones that are able to directly forward
a problem to that instance, and lower level instances the ones that are
able to directly accept a problem from that instance. A single instance
must act as a decoupling entity between the actions performed at higher
and lower levels: it is concerned neither with the previous instances
through which the problem flows (i.e. it has been submitted by an
external service or forwarded by other instances as a whole problem or
as a sub-problem), nor with the actions that the following instances will
undertake to solve the problem. Every instance will need to know just
the problem it has to solve and the source of the original scheduling
problem that helps to resolve, to avoid potential forwarding issues.

From a component point of view abilities as described above are ex-
pressed as interfaces. In general, the interfaces of a scheduling instance
can be divided in two main categories: functional interfaces and non-
functional interfaces. The former are necessary to enable the main be-
haviors of the scheduling instance, while the latter are concerned with
the management of the instance itself (creation, destruction, status no-
tification, etc.). We want to highlight that we considered only the func-
tionalities that must be directly exploited to support a general scheduling
architecture; for example, security services are from a functional point
of view not strictly needed to schedule a job, so they are considered
external services or non-functional interfaces. The functional interfaces
that a scheduling instance can expose are depicted in Figure 4 and in
detail described in the following:



A Proposal for a Generic Grid Scheduling Architecture 11I n p u t S c h e d u l i n g P r o b l e m s

O u t p u t S c h e d u l i n g P r o b l e m s I n p u t S c h e d u l i n g D e c i s i o n s
E x t e r n a l S e r v i c e s I n t e r a c t i o n

O u t p u t S c h e d u l i n g D e c i s i o n s
L o c a l R e s o u r c eM a n a g e r s I n t e r a c t i o n

Figure 4. Functional interfaces of a scheduling instance

Input Scheduling Problems Interface The methods of this inter-
face are responsible to receive a description of a scheduling problem
that must be solved, and start the scheduling process. This inter-
face is not intended to accept jobs directly from users; rather an
external submission service (e.g. portal or command line interface)
can collect the scheduling problems described with a user-defined
formalism, validate them and produce a neutral representation ac-
cepted as input by this interface. In this way, this interface is
fully decoupled from external interactions and can be exploited
to compose several scheduling instance as in the examples illus-
trated above, where an instance can forward a problem or submit
a sub-problem to other instances using this interface.

Every scheduling instance must implement this interface.

Output Scheduling Decisions Interface The methods of this inter-
face are responsible to communicate the results of the scheduling
process started earlier with a problem submission. Like the pre-
vious one, this interface is not intended to communicate the re-
sults directly to a user, rather to a visualization/reporting service.
Again, we can exploit this decoupling in a modular way: if an in-
stance received a submission from another one, it must use this
interface to communicate the results to the submitting instance.

Every scheduling instance must implement this interface.

Output Scheduling Problems Interface If an instance is able to
forward a whole problem or partial sub-problems to other schedul-



12

ing instances, it needs the methods of this interface to submit the
problem to lower level instances.

Input Scheduling Decisions Interface If an instance is able to sub-
mit problems to other instances, it must wait until a scheduling
decision is produced from the one which the problem was sub-
mitted to. The methods of this interface are responsible for the
communication of the scheduling results from lower level instances.

Local Resource Managers Interface The final goal of a scheduling
process is to find an allocation of the jobs to the resources. It
means that sooner or later the whole process has to interact with
local resource managers to allocate the jobs to the resources. While
some scheduling instances can be dedicated to the “routing” of the
problems, others interact directly with local resource managers to
find suitable schedules, and propagate the answers in a neutral
representation back to the entity that submitted the scheduling
problem. Different local resource managers can require different
interaction interfaces.

External Services Interaction Interfaces If an instance must inter-
act with an entity that is neither a local resource manager nor
another scheduling instance, it needs an interface that permits to
communicate with that external service that is exploited by the
scheduling architecture. For example, some instances may need
to gain access to information, billing, security and/or performance
predictor services.

Different external services can require different interaction inter-
faces.

5. Conclusion

In this paper we discussed a general model for Grid scheduling. This
model in based on a basic, modular component we called scheduling in-
stance. Several scheduling instance implementations can be composed
to build existing scheduling scenarios as well as new ones. The proposed
model has no claim to be the most general one, but the authors consider
this definition a good starting point to build a general Grid Schedul-
ing Architecture that supports cooperation between different scheduling
entities for arbitrary Grid resources. The future work will be directed to-
wards further specifying the interaction of the Grid scheduling instance
to other scheduling instances as well as to the other mentioned middle-
ware services. The outcome of this work should yield a common Grid
scheduling architecture that allows the integration of several different



A Proposal for a Generic Grid Scheduling Architecture 13

scheduling instances that can interact with eachother as well as be ex-
changed for domain-specific implementations.

References

[1] V. Sander (Ed.). Networking Issues for Grid Infrastructure. GGF Document
Series (GFD.37), 2004.

[2] R. W. Moore. Operations for Access, Management, and Transport at Remote
Sites. GGF Document Series (GFD.46), 2005.

[3] J. M. Schopf. Ten Actions When Superscheduling. GGF Document Series
(GFD.4), 2001.

[4] U. Schwiegelshohn and R. Yahyapour. Attributes for Communication between
Scheduling Instances. GGF Document Series (GFD.6), 2001.

[5] U. Schwiegelshohn, R. Yahyapour, and Ph. Wieder. Resource management for
future generation grids. Technical Report TR-0005, Institute on Scheduling and
Resource Management, CoreGRID - Network of Excellence, May 2005.

[6] D. Simeonidou and R. Nejabati (Eds.). Optical Network Infrastructure for Grid.
GGF Document Series (GFD.36), 2004.

[7] R. Yahyapour and Ph. Wieder (Eds.). Grid Scheduling Use Cases v1.2. GGF-
GSA Working Draft, 2005.


