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Abstract: Third generation mobile communication systems offer many advanced types of 
multimedia services, as video streaming, video telephony and video conference. 
Transcoding is adopted to deliver video content to a broad range of end users with different 
preferences and bandwidth constraints. Temporal transcoding is one of the solutions to 
reduce the overall bit rate by dropping some frames of the video sequence. We propose a 
temporal transcoding architecture with a new frame skipping policy allowing real-time 
communication. Simulation results show that our temporal transcoding achieves a better 
performance than a quality one, and the proposed frame skipping strategy is able to strongly 
reduce the computation time of the transcoding process.  
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1 INTRODUCTION 

Third generation mobile communication systems (e.g. 
UMTS) offer new and attractive services to mobile users. 
These services involve different types of devices and 
communication links. A fair and flexible allocation of the 
limited radio bandwidth resources among different types of 
networks and services, with their respective quality 
requirements, is a critical issue. A typical strategy to 
approach this problem is transcoding, usually performed by 
servers of a communication system, or by gateways 
interconnecting different networks.  

Video transcoding is the process of converting a video 
sequence into another one with different features, without 
totally decoding and re-encoding, so by reducing 
complexity and running time, and enabling the 
interoperability of heterogeneous multimedia networks. 
Video transcoding can provide format conversion, 
resolution scaling (spatial transcoding), bit rate conversion 
(quality transcoding), frame rate conversion (temporal 
transcoding). Format conversion operates a syntax change 
from a video coding standard to another one. Spatial 
transcoding reduces the spatial resolution of a compressed 
video, it is required for facing the problem of limited size in 
many access terminals. Quality transcoding reduces the bit-
rate of a video sequence, by operating on the bit allocation 
for each frame and by tuning the quantization parameters. 
The consequence of this is a variable frame quality. When 
the bandwidth in a wireless network is very limited, the 
quality transcoding process, as we will show in this paper, 
can cause high degradation of the transcoded video quality, 
if the frame rate is held constant. 

We are interested in temporal transcoding. In order to 
distribute the same encoded video sequence to users through 
channels with different bandwidths (as for instance in a 
multicast session), a coded video sequence must be 
converted into specific bit rates for each outgoing channel. 
This is needed also when the bandwidth of a channel is 
temporarily reduced for accommodating additional users, 
when all channels are busy (subrating). Temporal 
transcoding does this by eliminating some frames in the 
sequence, in order to reduce its frame rate, without 
decreasing the quality of not dropped frames. When frames 
are skipped, recomputing the motion vectors (since the old 
ones are no longer valid because they refer to skipped 
frames) and the prediction errors (for the same reason), is in 
order. In addition, a frame skipping strategy must be 
adopted, that is a policy for deciding the frames to be 
dropped. In a real time setting, buffer control is a critical 
issue. Some buffer-based frame skipping policies to allow 
real time communication have been proposed (Bonuccelli et 
al., 2005). In this paper, we report our experience in the 
implementation of a H.263-based temporal transcoder, in 
comparison to a quality one with TMN8 rate control 
algorithm. Moreover, we propose a new skipping policy, 
able to reduce the time of the overall transcoding process. 

The paper is organized as follows. In Section 2, we 
address the temporal transcoding problem, and we survey 

the results in literature. In Section 3 we present our temporal 
transcoder architecture able to support real time 
communication, and in Section 4 we focus on the new 
skipping strategy. Experimental results are drawn in Section 
5. Finally, conclusions and future work are highlighted in 
Section 6. 

2 TEMPORAL TRANSCODING 

In temporal transcoding, three issues must be addressed: the 
motion vectors computation, the prediction errors 
computation, and the frame skipping policy. The typical 
strategy adopted in motion vectors computation is Motion 
Vector Composition (MVC) (Hwang et al., 1998; Shanableh 
and Ghanbari, 2000; Youn et al., 1999; Chen et al., 2002), 
together with a restricted motion estimation (RME). For 
each macroblock, a candidate motion vector is computed by 
composing the motion vectors of all dropped frames 
between the current frame and the last not dropped one. The 
new motion vectors are then obtained by searching around 
the candidate motion vector obtained by MVC, within a few 
pixels search area. In literature, four MVC algorithms are 
known: Bilinear Interpolation (Hwang et al., 1998), 
Telescopic Vector Composition (Shanableh and Ghanbari, 
2000), Forward Dominant Vector Selection (Youn et al., 
1999), and Activity Dominant Vector Selection (Chen et al., 
2002). The new prediction errors are obtained by 
computing, in the pixel domain, the differences between the 
current macroblock and the reference area, in the last not 
skipped frame, pointed by the new motion vector (obtained 
by MVC and RME). Then, these differences are encoded 
with the usual DCT (Discrete Cosine Transform) and 
quantization. An alternative way proposed in (Fung et al., 
2002) is to add the errors of the current macroblock to those 
of the macroblock or reference area in the previous skipped 
frame. About frame skipping policies, there are in literature 
several proposals. Many strategies are based on the motion 
activity value (Hwang et al., 1998; Fung et al., 2002). 
Motion activity gives a measure of the motion in a frame, 
and is defined as the sum of the motion vector components 
in that frame. A weighted definition of this metric has been 
proposed in (Bonuccelli et al., 2005), where the motion 
activity is given so that it assumes large value for both 
frames with few but large motion vectors and with many but 
small motion vectors. Another policy considering the 
variation of motion activity between the sequence where a 
frame is transcoded and the sequence where that frame is 
skipped, has been proposed in (Shu and Chau, 2004). A 
different approach has been pursued in (Correia et al., 
2003), where a rate control mechanism based on a buffer 
level prediction algorithm is proposed. 

3 OUR TEMPORAL TRANSCODER 

In current communication systems, many advanced 
multimedia applications have real time features. In order to 



  

meet the needs of real time applications, we developed a 
temporal transcoding architecture able to guarantee a fixed 
communication delay. As in (Bonuccelli et al., 2005), this is 
done by introducing a transcoder output buffer, that is 
usually used for facing the real time problem. Before 
describing our transcoder architecture, we give some 
definitions. The words “input" and ”output" are always 
related to the transcoder. We call IR the input bit rate, and R 
the output bit rate; ρ indicates the frame rate of the input 
video sequence. S and L are the size and the occupancy of 
the transcoder buffer, respectively. With l(f), we denote the 
size of the transcoded frame f. Disregarding transmission 
time, the delay τ introduced in the communication system, is 
determined by L/R: in this way, the maximum delay 
incurred by a data bit of the transcoded video sequence is at 
most S/R. We choose a maximum delay of τ=500 ms1 , that 
is considered the maximum admitted delay of a real time 
communication. In order to meet τ, we set the buffer size S 
to half the output bit rate R. 

We developed a temporal transcoder architecture that 
reduces the input bit rate IR of the incoming video 
sequence, by eliminating some frames, so that the output bit 
rate R turns out to be constant. Notice that the frame rate of 
the output video sequence is not constant, and we assumed 
that the skipped frames are replaced by the previous ones 
(freezing) at displaying time in the final decoder. 

In our transcoder, the motion vectors are computed by one 
of the four MVC algorithms2, previously mentioned, and 
RME procedure. The prediction errors are computed in the 
pixel domain. The architecture of our transcoder is shown in 

                                                
1 Our arguments are still valid also with lower values of τ 

Figure 1. The behavior of the transcoder is different 
according to the reference frame. In other words, at each 
frame, the transcoder performs some operations if the 
previous frame has been skipped, and some other operations 
if the previous frame has been transcoded. The switching 
between the two behaviors is represented in Figure 1 by the 
switch “PS/PT”. In addition, also transcoding or skipping of 
the current frame determines a different behavior (switch 
“CS/CT”). The left part of Figure 1 depicts the “local 
decoder” which has to decode every incoming frame 
in_frame by means of motion compensation with the 
previous decoded frame prev_dec_frame. When the 
reference frame has been transcoded, the only function 
performed is to store in prev_tran_frame, the pixels of the 
current frame in case that the Frame Rate Control (FRC) 
module decides to transcode it. Otherwise, if the FRC 
module decides to skip the current frame, only the motion 
vectors of the current frame are stored in skipped_mv, for 
being used at the next incoming frame. 

In case of skipped reference frame, it is needed to 
recompute the motion vectors and the prediction errors. The 
motion vectors are computed by means of motion vector 
composition (MVC module) and, eventually, restricted 
motion estimation  (RME module). The MVC module adds 
to the vectors of the incoming frame in_mv, the motion 
vectors chosen among skipped_mv, by one of the motion 
vector composition algorithms, described in Section 2. The 
RME module performs a resctricted motion estimation 
around the vectors given by MVC, in order to produce the 
best possible motion vectors. Then, the motion 

                                                                               
2 In our experiments we observed that the results obtained by these four 

algorithms are equivalent 

Figure 1   Our temporal transcoder architecture 



compensation is applied to the last not skipped frame 
prev_tran_frame to produce the  moto-compensated frame 
comp which is then subtracted from the current decoded 
frame to produce the prediction errors for the current frame. 
Finally, if the FRC module decides to transcode the current 
frame, the prediction errors out_pred_err will be added to 
comp in order to store the current frame in prev_tran_frame. 
After the DCT and Q modules, the prediction errors form 
the current frame together with the motion vectors out_mv. 
Otherwise, if the frame will be skipped out_mv will be store 
in skipped_mv. Before applying the skipping policy, it is 
needed to transcode each frame of the input video sequence, 
since, as we shall see in the following section, it is needed to 
know some features of the reconstructed frame (for 
instance, its size). Reconstructed frames are then skipped or 
placed in the buffer for being transmitted. We propose in 4.1 
a new frame skipping policy that avoids the computation of 
the transcoding process for the frames that will be skipped. 

4 FRAME SKIPPING POLICIES 

In order to meet the real time constraint, a buffer-based 
policy is proposed in (Bonuccelli et al., 2005). In that 
policy, two buffer thresholds, Blower and Bupper, are 
established for avoiding buffer underflow and overflow. 
Underflow occurs when the buffer occupancy is zero, and so 
the final decoder receives data of a frame after it is 
scheduled to be displayed, causing the stop of the video 
sequence (besides the non-utilization of the communication 
bandwidth). Buffer overflow occurs when the buffer 
occupancy exceeds the buffer size, and it increases the 
assumed delay τ. This is equivalent to a frame loss at the 
decoder, since at displaying time some bits of the 
corresponding frame are still in the transcoder output buffer 
waiting to be transmitted. Blower and Bupper are dynamically 
set according to the ratio IR/R. A frame is skipped if the 
buffer occupancy is greater than BupperS, and it is always 
transcoded if the buffer occupancy is lower than BlowerS. 
Independently from the value of the threshold, in the buffer-
based policy, the buffer overflow is avoided by imposing 
that the size of the transcoded frame does not exceed the 
free buffer space. The only exception is for the first frame, 
which is an intra frame, and it is always transcoded. For 
more details, see (Bonuccelli et al., 2005).  

In the next subsection, we describe a new policy that 
improves the computation time of the transcoding process of 
the above policy. 

4.1 Size-Prediction Policy 

In temporal transcoding, the size of a transcoded frame 
increases if many previous frames are skipped, that is when 
the motion vectors and prediction errors of the transcoded 
frame are obtained by adding those ones of the skipped 
frames. We observed experimentally that the size of a frame 
grows according to the logarithm of the number of the 
previously skipped frame by this law: 

)1ln()( += ffl α                                                         (1) 

where l(f) is the size of the frame transcoded after skipping f 
consecutive frames, and α is a constant proportional to the 
size of the first skipped frame. The size-prediction policy is 
applied when a frame is skipped. This policy predicts 
according to (1),  the size of the next frame, in order to 
avoid buffer overflow, if this size is higher than the free 
buffer space, the frame is skipped. We note that, in our 
assumptions, buffer occupancy decreases at a constant rate 
of R/ρ bits every 1/ρ seconds. The frame is transcoded only 
when its predicted size is lower than the free buffer space. 
However, as in the buffer-based policy of (Bonuccelli et al., 
2005), in order to avoid buffer underflow a frame is 
transcoded if the buffer occupancy is lower than a properly 
tuned threshold. Compared with the buffer-based policy 
mentioned in (Bonuccelli et al., 2005), this one has the 
advantage of predicting the size of a frame avoiding the 
computation needed to transcode it, and greatly reducing the 
time of the total transcoding process when many 
consecutive frames are skipped. As we will show in Section 
5.2, the performance of this policy is comparable to that of 
the buffer-based one. The pseudo-code of size-prediction 
policy is shown in Figure 2. 

Figure 2   The size-prediction  policy pseudo-code 

Size-Prediction Policy (frame f): 
If (f = first frame) then transcode f 

       Else  
       If ((L ≤ Blower(S)) & (L + l(f) ≤ S)) then transcode f 
          Else If (L + l(f) > S)  
            Do  
               skip frame f  
               predict the size of frame f + 1 
               f = f + 1 
              L = L - R/ρ 
            while ((L > Blower(S)) & (L + l(f) ≥ S)) 
            transcode f 

5 SIMULATION RESULTS 

We implemented an H.263-based transcoder and evaluated 
its performance with respect to a quality transcoder. We 
show the results in Section 5.1. Moreover, we evaluated a 
size-prediction policy with respect to the buffer-based 
policy of (Bonuccelli et al., 2005): results are described in 
Section 5.2. 

We considered three metrics: number of transcoded 
frames (indicating the video sequence smoothness), PSNR 
(indicating the quality of a video sequence by taking into 
account the differences of luminance values of 
corresponding pixels in the original and reconstructed 
frame), and total processing time. 

We computed the PSNR in this way: we considered as 
original video sequence, that one decoded after the front 
encoder. As reconstructed sequence, we used that obtained 
after the transcoding, where skipped frames are replaced 



  

with their previous ones (freezing). This way (that here we 
call PSNR1) of computing the PSNR allows us to measure 
the actual visual quality perceived by the final user. Another 
way (that we call PSNR2) is to consider only transcoded 
frames, so measuring the quality of single frames, without 
capturing the degradation introduced by frame dropping. 

We considered several video sequences of 300 frames in 
QCIF format and frame rate of 30 fps. In the following we 
show only the most significant experimental results about 
two different bit-rate reductions: the first with high bit-rates, 
i.e. from IR=256 Kbps and R=128 Kbps, and the latter with 
low bit-rates, i.e. IR=64 Kbps and R=32 Kbps. 

5.1 Temporal vs Quality transcoder 

We implemented a quality transcoder which decodes the 
incoming video sequence at bit rate IR, and re-encodes it 
with bit rate R, by using the same rate control algorithm of 
the front encoder (TMN8). We compared it with our 
temporal transcoder described in Section 3. As shown in 
Table 1, our temporal transcoder has a comparable 
computation time than the quality one, but obviously skips 
more frames, so it produces a sequence with lower 

smoothness. On the other hand, temporal transcoded frames 
have an higher quality, which it is the same of the front 
encoder. As shown in Table 1, the average PSNR1 values 
are greater than those of quality transcoder in most cases, 
especially at low bit-rates, where it is more evident the 

degradation of quality transcoder. For getting an idea of this 
degradation, look at Figure 3, were we report a frame of 
foreman video sequence encoded at IR=64 Kbps (on the 
left) and quality transcoded to R=32 Kbps (on the right). We 
perceive a quality degradation introduced by the quality 
transcoding. So, comparable values of average PSNR do not 
correspond to the same visual quality. This is shown also in 
Figure 4, where the PSNR1 values of the quality transcoded 
frames are quite constant, while the values of temporal 
transcoded frames are higher or lower depending whether 
the frame has been transcoded or skipped, respectively. 

5.2 Size-prediction policy evaluation 

We evaluated size-prediction policy, by comparing it with 
buffer-based policy of (Bonuccelli et al., 2005). We report 
in Table 2, the number of transcoded frames, the average 
PSNR1 and PSNR2, and the total time of the transcoding 
process. Notice that the two policies have almost the same 
performance in terms of number of transcoded frames and 
PSNR values, but the computation time of size-prediction 
policy is much lower (with a decrease of 30-45%). Besides, 
as we can see in Figure 5 (IR=64 Kbps and R=32Kbps), the 

two policies follow the same behavior, in terms of PSNR1 
values: in fact the two plots are very similar. The same 
behavior is obtained with IR=256 Kbps and R=128 Kbps. 

6 CONCLUSIONS  

We implemented an H.263-based temporal transcoder and a 
skipping strategy allowing real-time communication. We 
compared our temporal transcoder with a quality one and 
we concluded that the temporal one has better performance 
than the quality one especially at low bit rates. We also 
developed a new frame skipping policy that allows to speed 
up the transcoding process by avoiding any computation 
when frames are skipped. Besides, this policy guarantees 
real time communication. Simulations showed that this 

Figure 3   A frame of foreman video sequence coded with IR=64 
(on the left) and quality transcoded with R=32 Kbps (on the right) 

 

 Temporal transcoder Quality Transcoder 

 # Frames PSNR1  
(dB) 

Time 
 (sec) # Frames PSNR1 

 (dB) 
Time 
 (sec) 

IR=256 kbps, R=128 kbps 
Akiyo 96 43,48 9,1 300 39,64 9,6 
Mobile 161 30,18 8,2 298 27,02 9,9 

Foreman 110 32,38 9,4 299 34,77 9,7 
Coastguard 118 32,39 9,5 300 32,47 9,3 

IR=64 kbps, R=32 kbps 
Akiyo 104 40,10 7,2 291 35,57 7,3 
Mobile 142 26,60 6,6 156 25,97 6,9 

Foreman 112 29,88 7,7 218 28,76 7,1 
Coastguard 144 31,36 7,1 285 28,79 7,8 

Table 1   Temporal  vs Quality Transcoding 



policy performs as good as the buffer-based proposed in 
(Bonuccelli et al., 2005). We plan to develop an hybrid 
temporal/quality transcoding architecture and to test the 
behavior of our temporal transcoding architecture by 
implementing it with the emerging H.264 codec. 
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Figure 5   PSNR1 of coastguard video sequence with buffer-based and size-prediction policies (IR=256 Kbps, R=128 Kbps) 
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Figure 4   PSNR1 of foreman video sequence temporal and quality transcoded (IR=256 Kbps, R=128 Kbps) 

Table 2   Buffer-based vs. Size-prediction frame skipping policy 


