

A fast skipping policy for H.263
video transcoder����
Maurizio A. Bonuccelli����
Dipartimento di Informatica,
Università di Pisa, Via Buonarroti 2, Pisa, Italy
E-mail: bonucce@di.unipi.it

Francesca Lonetti*����
Dipartimento di Informatica,
Università di Pisa, Via Buonarroti 2, Pisa, Italy
E-mail: lonetti@di.unipi.it
*Corresponding author

Francesca Martelli
Istituto di Scienze e Tecnologie dell’Informazione,
Consiglio Nazionale delle Ricerche, via Moruzzi 1, Pisa, Italy
E-mail: f.martelli@isti.cnr.it

Abstract: Third generation mobile communication systems offer many advanced types of
multimedia services, as video streaming, video telephony and video conference.
Transcoding is adopted to deliver video content to a broad range of end users with different
preferences and bandwidth constraints. Temporal transcoding is one of the solutions to
reduce the overall bit rate by dropping some frames of the video sequence. We propose a
temporal transcoding architecture with a new frame skipping policy allowing real-time
communication. Simulation results show that our temporal transcoding achieves a better
performance than a quality one, and the proposed frame skipping strategy is able to strongly
reduce the computation time of the transcoding process.

Keywords: video transcoding, frame skipping, video quality.

Biographical notes: Maurizo A. Bonuccelli is a Professor at Computer Science
Department of University of Pisa, Italy. He has been associated with that department since
1982, with the only exception the years 1990-1994, during which he was a Professor of
computer science at the University of Rome, La Sapienza, Rome, Italy. During 1981 he
took a sabbatical leave with IBM T.J. Watson Research Center, Yorktown Heights, NY,
working in the computer communications group. He spent September, 1993, at ICSI,
Berkeley, CA, with the TENET group. His field of interest is the design and management
of communication, computer networks, and distributed parallel processing systems, with a
special emphasis on algorithmic and complexity issues. He is interested also in video
coding and transcoding.

Francesca Lonetti received the Laurea degree in Computer Science from the University of
Pisa in 2003. Since 2004 she is a Ph.D. student at Computer Science Department of
University of Pisa. She is involved also in “Video Transcoding for Mobile Telephony”
project, at PisaTel Lab of ISTI–CNR, Pisa. Her current research interest is video coding and
transcoding for multimedia systems and wireless networks.

Francesca Martelli received the Laurea degree in Computer Science from the University of
Pisa in 2000. Since 2001, she is a grant owner at PisaTel Lab of ISTI–CNR, Pisa, within the
project “Video Transcoding for Mobile Telephony” in collaboration with Ericsson Lab Italy
She is also a Ph.D. student at Computer Science Department of University of Pisa. Her
research mainly focuses on packet scheduling algorithms in single-hop multichannel
systems; moreover she is interested in mobile ad hoc networking and video transcoding for
3rd generation telephony.

� This work has been supported by Ericsson Lab Italy, within the PisaTel Lab at ISTI-CNR
� Also at Istituto di Scienze e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche, via Moruzzi 1, Pisa, Italy

1 INTRODUCTION

Third generation mobile communication systems (e.g.
UMTS) offer new and attractive services to mobile users.
These services involve different types of devices and
communication links. A fair and flexible allocation of the
limited radio bandwidth resources among different types of
networks and services, with their respective quality
requirements, is a critical issue. A typical strategy to
approach this problem is transcoding, usually performed by
servers of a communication system, or by gateways
interconnecting different networks.

Video transcoding is the process of converting a video
sequence into another one with different features, without
totally decoding and re-encoding, so by reducing
complexity and running time, and enabling the
interoperability of heterogeneous multimedia networks.
Video transcoding can provide format conversion,
resolution scaling (spatial transcoding), bit rate conversion
(quality transcoding), frame rate conversion (temporal
transcoding). Format conversion operates a syntax change
from a video coding standard to another one. Spatial
transcoding reduces the spatial resolution of a compressed
video, it is required for facing the problem of limited size in
many access terminals. Quality transcoding reduces the bit-
rate of a video sequence, by operating on the bit allocation
for each frame and by tuning the quantization parameters.
The consequence of this is a variable frame quality. When
the bandwidth in a wireless network is very limited, the
quality transcoding process, as we will show in this paper,
can cause high degradation of the transcoded video quality,
if the frame rate is held constant.

We are interested in temporal transcoding. In order to
distribute the same encoded video sequence to users through
channels with different bandwidths (as for instance in a
multicast session), a coded video sequence must be
converted into specific bit rates for each outgoing channel.
This is needed also when the bandwidth of a channel is
temporarily reduced for accommodating additional users,
when all channels are busy (subrating). Temporal
transcoding does this by eliminating some frames in the
sequence, in order to reduce its frame rate, without
decreasing the quality of not dropped frames. When frames
are skipped, recomputing the motion vectors (since the old
ones are no longer valid because they refer to skipped
frames) and the prediction errors (for the same reason), is in
order. In addition, a frame skipping strategy must be
adopted, that is a policy for deciding the frames to be
dropped. In a real time setting, buffer control is a critical
issue. Some buffer-based frame skipping policies to allow
real time communication have been proposed (Bonuccelli et
al., 2005). In this paper, we report our experience in the
implementation of a H.263-based temporal transcoder, in
comparison to a quality one with TMN8 rate control
algorithm. Moreover, we propose a new skipping policy,
able to reduce the time of the overall transcoding process.

The paper is organized as follows. In Section 2, we
address the temporal transcoding problem, and we survey

the results in literature. In Section 3 we present our temporal
transcoder architecture able to support real time
communication, and in Section 4 we focus on the new
skipping strategy. Experimental results are drawn in Section
5. Finally, conclusions and future work are highlighted in
Section 6.

2 TEMPORAL TRANSCODING

In temporal transcoding, three issues must be addressed: the
motion vectors computation, the prediction errors
computation, and the frame skipping policy. The typical
strategy adopted in motion vectors computation is Motion
Vector Composition (MVC) (Hwang et al., 1998; Shanableh
and Ghanbari, 2000; Youn et al., 1999; Chen et al., 2002),
together with a restricted motion estimation (RME). For
each macroblock, a candidate motion vector is computed by
composing the motion vectors of all dropped frames
between the current frame and the last not dropped one. The
new motion vectors are then obtained by searching around
the candidate motion vector obtained by MVC, within a few
pixels search area. In literature, four MVC algorithms are
known: Bilinear Interpolation (Hwang et al., 1998),
Telescopic Vector Composition (Shanableh and Ghanbari,
2000), Forward Dominant Vector Selection (Youn et al.,
1999), and Activity Dominant Vector Selection (Chen et al.,
2002). The new prediction errors are obtained by
computing, in the pixel domain, the differences between the
current macroblock and the reference area, in the last not
skipped frame, pointed by the new motion vector (obtained
by MVC and RME). Then, these differences are encoded
with the usual DCT (Discrete Cosine Transform) and
quantization. An alternative way proposed in (Fung et al.,
2002) is to add the errors of the current macroblock to those
of the macroblock or reference area in the previous skipped
frame. About frame skipping policies, there are in literature
several proposals. Many strategies are based on the motion
activity value (Hwang et al., 1998; Fung et al., 2002).
Motion activity gives a measure of the motion in a frame,
and is defined as the sum of the motion vector components
in that frame. A weighted definition of this metric has been
proposed in (Bonuccelli et al., 2005), where the motion
activity is given so that it assumes large value for both
frames with few but large motion vectors and with many but
small motion vectors. Another policy considering the
variation of motion activity between the sequence where a
frame is transcoded and the sequence where that frame is
skipped, has been proposed in (Shu and Chau, 2004). A
different approach has been pursued in (Correia et al.,
2003), where a rate control mechanism based on a buffer
level prediction algorithm is proposed.

3 OUR TEMPORAL TRANSCODER

In current communication systems, many advanced
multimedia applications have real time features. In order to

meet the needs of real time applications, we developed a
temporal transcoding architecture able to guarantee a fixed
communication delay. As in (Bonuccelli et al., 2005), this is
done by introducing a transcoder output buffer, that is
usually used for facing the real time problem. Before
describing our transcoder architecture, we give some
definitions. The words “input" and ”output" are always
related to the transcoder. We call IR the input bit rate, and R
the output bit rate; ρ indicates the frame rate of the input
video sequence. S and L are the size and the occupancy of
the transcoder buffer, respectively. With l(f), we denote the
size of the transcoded frame f. Disregarding transmission
time, the delay τ introduced in the communication system, is
determined by L/R: in this way, the maximum delay
incurred by a data bit of the transcoded video sequence is at
most S/R. We choose a maximum delay of τ=500 ms1 , that
is considered the maximum admitted delay of a real time
communication. In order to meet τ, we set the buffer size S
to half the output bit rate R.

We developed a temporal transcoder architecture that
reduces the input bit rate IR of the incoming video
sequence, by eliminating some frames, so that the output bit
rate R turns out to be constant. Notice that the frame rate of
the output video sequence is not constant, and we assumed
that the skipped frames are replaced by the previous ones
(freezing) at displaying time in the final decoder.

In our transcoder, the motion vectors are computed by one
of the four MVC algorithms2, previously mentioned, and
RME procedure. The prediction errors are computed in the
pixel domain. The architecture of our transcoder is shown in

1 Our arguments are still valid also with lower values of τ

Figure 1. The behavior of the transcoder is different
according to the reference frame. In other words, at each
frame, the transcoder performs some operations if the
previous frame has been skipped, and some other operations
if the previous frame has been transcoded. The switching
between the two behaviors is represented in Figure 1 by the
switch “PS/PT”. In addition, also transcoding or skipping of
the current frame determines a different behavior (switch
“CS/CT”). The left part of Figure 1 depicts the “local
decoder” which has to decode every incoming frame
in_frame by means of motion compensation with the
previous decoded frame prev_dec_frame. When the
reference frame has been transcoded, the only function
performed is to store in prev_tran_frame, the pixels of the
current frame in case that the Frame Rate Control (FRC)
module decides to transcode it. Otherwise, if the FRC
module decides to skip the current frame, only the motion
vectors of the current frame are stored in skipped_mv, for
being used at the next incoming frame.

In case of skipped reference frame, it is needed to
recompute the motion vectors and the prediction errors. The
motion vectors are computed by means of motion vector
composition (MVC module) and, eventually, restricted
motion estimation (RME module). The MVC module adds
to the vectors of the incoming frame in_mv, the motion
vectors chosen among skipped_mv, by one of the motion
vector composition algorithms, described in Section 2. The
RME module performs a resctricted motion estimation
around the vectors given by MVC, in order to produce the
best possible motion vectors. Then, the motion

2 In our experiments we observed that the results obtained by these four

algorithms are equivalent

Figure 1 Our temporal transcoder architecture

compensation is applied to the last not skipped frame
prev_tran_frame to produce the moto-compensated frame
comp which is then subtracted from the current decoded
frame to produce the prediction errors for the current frame.
Finally, if the FRC module decides to transcode the current
frame, the prediction errors out_pred_err will be added to
comp in order to store the current frame in prev_tran_frame.
After the DCT and Q modules, the prediction errors form
the current frame together with the motion vectors out_mv.
Otherwise, if the frame will be skipped out_mv will be store
in skipped_mv. Before applying the skipping policy, it is
needed to transcode each frame of the input video sequence,
since, as we shall see in the following section, it is needed to
know some features of the reconstructed frame (for
instance, its size). Reconstructed frames are then skipped or
placed in the buffer for being transmitted. We propose in 4.1
a new frame skipping policy that avoids the computation of
the transcoding process for the frames that will be skipped.

4 FRAME SKIPPING POLICIES

In order to meet the real time constraint, a buffer-based
policy is proposed in (Bonuccelli et al., 2005). In that
policy, two buffer thresholds, Blower and Bupper, are
established for avoiding buffer underflow and overflow.
Underflow occurs when the buffer occupancy is zero, and so
the final decoder receives data of a frame after it is
scheduled to be displayed, causing the stop of the video
sequence (besides the non-utilization of the communication
bandwidth). Buffer overflow occurs when the buffer
occupancy exceeds the buffer size, and it increases the
assumed delay τ. This is equivalent to a frame loss at the
decoder, since at displaying time some bits of the
corresponding frame are still in the transcoder output buffer
waiting to be transmitted. Blower and Bupper are dynamically
set according to the ratio IR/R. A frame is skipped if the
buffer occupancy is greater than BupperS, and it is always
transcoded if the buffer occupancy is lower than BlowerS.
Independently from the value of the threshold, in the buffer-
based policy, the buffer overflow is avoided by imposing
that the size of the transcoded frame does not exceed the
free buffer space. The only exception is for the first frame,
which is an intra frame, and it is always transcoded. For
more details, see (Bonuccelli et al., 2005).

In the next subsection, we describe a new policy that
improves the computation time of the transcoding process of
the above policy.

4.1 Size-Prediction Policy

In temporal transcoding, the size of a transcoded frame
increases if many previous frames are skipped, that is when
the motion vectors and prediction errors of the transcoded
frame are obtained by adding those ones of the skipped
frames. We observed experimentally that the size of a frame
grows according to the logarithm of the number of the
previously skipped frame by this law:

)1ln()(+= ffl α (1)

where l(f) is the size of the frame transcoded after skipping f
consecutive frames, and α is a constant proportional to the
size of the first skipped frame. The size-prediction policy is
applied when a frame is skipped. This policy predicts
according to (1), the size of the next frame, in order to
avoid buffer overflow, if this size is higher than the free
buffer space, the frame is skipped. We note that, in our
assumptions, buffer occupancy decreases at a constant rate
of R/ρ bits every 1/ρ seconds. The frame is transcoded only
when its predicted size is lower than the free buffer space.
However, as in the buffer-based policy of (Bonuccelli et al.,
2005), in order to avoid buffer underflow a frame is
transcoded if the buffer occupancy is lower than a properly
tuned threshold. Compared with the buffer-based policy
mentioned in (Bonuccelli et al., 2005), this one has the
advantage of predicting the size of a frame avoiding the
computation needed to transcode it, and greatly reducing the
time of the total transcoding process when many
consecutive frames are skipped. As we will show in Section
5.2, the performance of this policy is comparable to that of
the buffer-based one. The pseudo-code of size-prediction
policy is shown in Figure 2.

Figure 2 The size-prediction policy pseudo-code

Size-Prediction Policy (frame f):
If (f = first frame) then transcode f

 Else
 If ((L ≤ Blower(S)) & (L + l(f) ≤ S)) then transcode f
 Else If (L + l(f) > S)
 Do
 skip frame f
 predict the size of frame f + 1
 f = f + 1
 L = L - R/ρ
 while ((L > Blower(S)) & (L + l(f) ≥ S))
 transcode f

5 SIMULATION RESULTS

We implemented an H.263-based transcoder and evaluated
its performance with respect to a quality transcoder. We
show the results in Section 5.1. Moreover, we evaluated a
size-prediction policy with respect to the buffer-based
policy of (Bonuccelli et al., 2005): results are described in
Section 5.2.

We considered three metrics: number of transcoded
frames (indicating the video sequence smoothness), PSNR
(indicating the quality of a video sequence by taking into
account the differences of luminance values of
corresponding pixels in the original and reconstructed
frame), and total processing time.

We computed the PSNR in this way: we considered as
original video sequence, that one decoded after the front
encoder. As reconstructed sequence, we used that obtained
after the transcoding, where skipped frames are replaced

with their previous ones (freezing). This way (that here we
call PSNR1) of computing the PSNR allows us to measure
the actual visual quality perceived by the final user. Another
way (that we call PSNR2) is to consider only transcoded
frames, so measuring the quality of single frames, without
capturing the degradation introduced by frame dropping.

We considered several video sequences of 300 frames in
QCIF format and frame rate of 30 fps. In the following we
show only the most significant experimental results about
two different bit-rate reductions: the first with high bit-rates,
i.e. from IR=256 Kbps and R=128 Kbps, and the latter with
low bit-rates, i.e. IR=64 Kbps and R=32 Kbps.

5.1 Temporal vs Quality transcoder

We implemented a quality transcoder which decodes the
incoming video sequence at bit rate IR, and re-encodes it
with bit rate R, by using the same rate control algorithm of
the front encoder (TMN8). We compared it with our
temporal transcoder described in Section 3. As shown in
Table 1, our temporal transcoder has a comparable
computation time than the quality one, but obviously skips
more frames, so it produces a sequence with lower

smoothness. On the other hand, temporal transcoded frames
have an higher quality, which it is the same of the front
encoder. As shown in Table 1, the average PSNR1 values
are greater than those of quality transcoder in most cases,
especially at low bit-rates, where it is more evident the

degradation of quality transcoder. For getting an idea of this
degradation, look at Figure 3, were we report a frame of
foreman video sequence encoded at IR=64 Kbps (on the
left) and quality transcoded to R=32 Kbps (on the right). We
perceive a quality degradation introduced by the quality
transcoding. So, comparable values of average PSNR do not
correspond to the same visual quality. This is shown also in
Figure 4, where the PSNR1 values of the quality transcoded
frames are quite constant, while the values of temporal
transcoded frames are higher or lower depending whether
the frame has been transcoded or skipped, respectively.

5.2 Size-prediction policy evaluation

We evaluated size-prediction policy, by comparing it with
buffer-based policy of (Bonuccelli et al., 2005). We report
in Table 2, the number of transcoded frames, the average
PSNR1 and PSNR2, and the total time of the transcoding
process. Notice that the two policies have almost the same
performance in terms of number of transcoded frames and
PSNR values, but the computation time of size-prediction
policy is much lower (with a decrease of 30-45%). Besides,
as we can see in Figure 5 (IR=64 Kbps and R=32Kbps), the

two policies follow the same behavior, in terms of PSNR1
values: in fact the two plots are very similar. The same
behavior is obtained with IR=256 Kbps and R=128 Kbps.

6 CONCLUSIONS

We implemented an H.263-based temporal transcoder and a
skipping strategy allowing real-time communication. We
compared our temporal transcoder with a quality one and
we concluded that the temporal one has better performance
than the quality one especially at low bit rates. We also
developed a new frame skipping policy that allows to speed
up the transcoding process by avoiding any computation
when frames are skipped. Besides, this policy guarantees
real time communication. Simulations showed that this

Figure 3 A frame of foreman video sequence coded with IR=64
(on the left) and quality transcoded with R=32 Kbps (on the right)

 Temporal transcoder Quality Transcoder

 # Frames PSNR1
(dB)

Time
 (sec) # Frames PSNR1

 (dB)
Time
 (sec)

IR=256 kbps, R=128 kbps
Akiyo 96 43,48 9,1 300 39,64 9,6
Mobile 161 30,18 8,2 298 27,02 9,9

Foreman 110 32,38 9,4 299 34,77 9,7
Coastguard 118 32,39 9,5 300 32,47 9,3

IR=64 kbps, R=32 kbps
Akiyo 104 40,10 7,2 291 35,57 7,3
Mobile 142 26,60 6,6 156 25,97 6,9

Foreman 112 29,88 7,7 218 28,76 7,1
Coastguard 144 31,36 7,1 285 28,79 7,8

Table 1 Temporal vs Quality Transcoding

policy performs as good as the buffer-based proposed in
(Bonuccelli et al., 2005). We plan to develop an hybrid
temporal/quality transcoding architecture and to test the
behavior of our temporal transcoding architecture by
implementing it with the emerging H.264 codec.

ACKNOWLEDGEMENT

We thank Ericsson Lab Italy team working on video
transcoding, in particular Giovanni Iacovoni and Salvatore
Morsa for introducing us in this research area, and for
helpful discussions. We thank also Luca Leonardi and
Gianni Rosa for their contribution to this work as part of
their Master Theses.

 REFERENCES

Bonuccelli, M.A., Lonetti, F. and Martelli, F. (2005) ‘Temporal
Transcoding for Mobile Video Communication’, To appear in
the Proceedings of the 2th International Conference on Mobile
and Ubiquitous System: Networking and Services, San Diego,
CA, USA. Available at: http//www.di.unipi.it/~f.martel/

 publications.html
Hwang, J.N., Wu, T.D. and Lin, C.W. (1998) ‘Dynamic frame-

skipping in video transcoding’, Proceedings of 2nd Workshop
on Multimedia Signal Processing, Redondo Beach, CA, USA,
December, pp.616–621.

Shanableh, T. and Ghanbari, M. (2000) ‘Heterogeneous video
transcoding to lower spatio-temporal resolutions and different
encoding formats’, IEEE Transactions on Multimedia, Vol. 2,
No. 2, pp.101–110.

Youn, J., Sun, M.T. and Lin, C.W. (1999) ‘Motion vector
refinement for high-performance transcoding’, IEEE
Transactions on Multimedia, Vol. 1, No. 1, pp.30–40.

Chen, M.J., Chu, M.C. and Pan, C.W. (2002) ‘Efficient motion-
estimation algorithm for reduced frame-rate video transcoder’,
IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 12, No. 4, pp.269–275.

Fung, K.T., Chan, Y.L. and Siu, W.C. (2002) ‘New architecture for
dynamic frame-skipping transcoder’, IEEE Transactions on
Image Processing, Vol. 11, No. 8, pp.886–900.

Shu, H. and Chau, L.P. (2004) ‘Frame-skipping Transcoding with
motion change consideration’, Proceedings of International
Symposium on Circuits and Systems, Vancouver, Canada,
May, pp. 773–776.

Correia, P.D.F., Silva, V. and Assunção, P.A. (2003) ‘A method
for improving the quality of mobile video under hard
transcoding conditions’, Proceedings of International
Conference on Communications, Anchorage, Alaska, USA,
May, pp. 928–932.

Figure 5 PSNR1 of coastguard video sequence with buffer-based and size-prediction policies (IR=256 Kbps, R=128 Kbps)

10

20
30

40

50

0 49 98 147 196 245 294
Fra m e Num be r

P
S

N
R

(d
B

) tem poral quality

 Buffer-based Size-prediction

 #Frames PSNR1
(dB)

PSNR2
(dB)

Time
(sec) #Frames PSNR1

(dB)
PSNR2

(dB)
Time
(sec)

IR=256 kbps, R=128 kbps
Akiyo 96 43,48 52,56 9,1 94 43,02 52,22 6,1
Mobile 161 30,18 34,30 8,2 154 29,29 34,39 5,3
Foreman 110 32,38 44,49 9,4 110 32,23 44,29 6,5
Coastguard 118 32,39 41,69 9,5 113 31,82 41,57 6,1
IR=64 kbps, R=32 kbps
Akiyo 104 40,10 44,62 7,2 102 39,64 44,30 4,1
Mobile 142 26,60 27,81 6,6 127 25,75 27,79 4,1
Foreman 112 29,88 36,10 7,7 109 29,29 36,45 4,6
Coastguard 144 31,36 34,82 7,1 129 30,60 34,93 4,4

14
18
22
26
30
34

50 70 90 110 130
Fra m e Nu m be r

P
S

N
R

(d
B

)

buffer-bas ed s iz e-predic t ion

Figure 4 PSNR1 of foreman video sequence temporal and quality transcoded (IR=256 Kbps, R=128 Kbps)

Table 2 Buffer-based vs. Size-prediction frame skipping policy

