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Abstract

We present Annotated Answer Set Programming, that extends the ex-
pressive power of disjunctive logic programming with annotation terms,
taken from the generalized annotated logic programming framework.
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1 Introduction

The management of uncertainty and/or imprecision within logic programming has
attracted the attention of many researchers and numerous frameworks have been pro-
posed. Essentially, they differ in the underlying notion of uncertainty theory and im-
precision theory (see e.g. for Probability theory [21, 27], Fuzzy set theory [30, 32, 33],
Multi-valued logic [4, 5, 6, 7, 8, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 31], Pos-
sibilistic logic [3, 10, 29]) and how uncertainty/imprecision values, associated to rules
and facts, are managed.

Under uncertainty theory fall all those approaches in which statements rather than
being either true or false, are true or false to some probability or possibility/necessity,
while under imprecision theory fall all those approaches in which statements are true
to some degree, which is taken from a truth space (see [11] for a clarification be-
tween the notions of uncertainty and imprecision). In this work we deal with impreci-
sion and, thus, statements have a degree of truth. Current frameworks for managing
imprecision in logic programming can roughly be classified into Annotation Based
(AB) and Implication Based (IB). In the AB approach (e.g. [15, 27]), a rule is of
the form A : f(β1, . . . , βn) ← B1 : β1, . . . , Bn : βn which asserts “the value of atom A
is at least (or is in) f(β1, . . . , βn), whenever the value of atom Bi is at least (or is
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in) βi, 1 ≤ i ≤ n”. Here f is an n-ary computable function and βi is either a con-
stant or a variable ranging over an appropriate truth domain. In the IB approach,
(e.g. [4, 8, 16, 25, 31, 32, 33] a rule is of the form A

α← B1, ..., Bn which says that
the value associated with the implication B1 ∧ ... ∧ Bn → A is α. Computationally,
given an assignment I of values to the Bi, the value of A is computed by taking the
“conjunction” of the values I(Bi) and then somehow “propagating” it to the rule head.
The values the atoms may have are taken from a lattice.

However, only a few deal with disjunctive logic programs ([22, 23]) and only [22]
deals with (a restricted form of) disjunctive logic programs with non-monotone nega-
tion under the IB approach. In this work we will consider disjunctive logic programs
with negation. However, the approach we follow in this paper is annotation-based.
We deserve more attention to the implication-based approach in future work.

We proceed as follows. In the next section we provide some basic definitions about
disjunctive logic programs [14]. We then present annotated disjunctive logic programs
in which we extend the rules with annotation terms and conclude with an outlook to
some topics for further research.

2 Answer Set Programming

We recall disjunctive logic programs under the answer set semantics.
A term t is defined as either a constant or a variable. An atom is of the form

P (t1, . . . , tn), where all ti are terms and P is a n-ary predicate symbol. Ground
atoms are atoms without variables. A literal L is either a positive literal L = A, or
a negative literal L = ¬A, where A is an atom. A ground literal is a literal without
variables. An extended literal is a literal or an expression of the form not(L) (“L is
not provable”), where L is a literal. A ground extended literal is an extended literal
without variables. For a set X of extended literals, X− = {not(L) | not(L) ∈ X},
while ¬X = {¬L | L ∈ X , L literal}, where we define ¬¬A = A. A disjunctive logic
program, also called answer set program (asp) P, is a finite set of rules of the form
γ ← δ where γ and δ are finite sets of extended literals. For ease, we may omit the
graph brackets in a rule. γ is called the head of the rules, while δ is called the body. The
head is interpreted as the disjunction of its components, while the body is interpreted
as a conjunction. A fact is a rule with empty body, while a constraint is a rule with
empty head. For ease, we may also write a fact as γ in place of γ ←.

We call programs where for each rule γ− ∪ δ− = ∅, programs without negation
as failure (naf). Programs, where in each rule |γ| = 1 are called normal. Programs
without naf, containing positive literals only, are called positive. Programs that do not
contain variables are called ground.

The Herbrand universe HP of P is the set of constants appearing in P. If no
constant appears in P, then HP = {a} for an arbitrary constant a. The grounded
program, P∗, is obtained from P by substituting every variable in P by every possible
constant in HP . The Herbrand base BP of P is the set of ground atoms A that can
be constructed using the predicate symbols in P and constants in HP .

An interpretation I of a grounded program P is any consistent set of literals being a
subset of BP∪¬BP . I satisfies a literal L iff L ∈ I. Furthermore, we say that I satisfies
an extended literal not(L) iff I does not satisfy L, i.e. L 6∈ I. An interpretation I of
a grounded program P without naf satisfies a rule γ ← δ in P iff γ ∩ I 6= ∅ whenever
δ ⊆ I. An interpretation I is a model of a grounded program P without naf iff it
satisfies every rule in P. I is a minimal model of P iff I is a model of P and there is
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no model J ⊂ I of P.
For a grounded program P and an interpretation I, the Gelfond-Lifschitz trans-

formation [14], is the program P[I] without naf, obtained by deleting in P, (i) each
rule that has not(L) in its body with L ∈ I; (i) each rule that has not(L) in its head
with L 6∈ I; and (i) all not(L) in the bodies and heads of the remaining rules. Finally,
an interpretation of a program P (possibly not grounded) is an interpretation I of the
grounded program P∗. An interpretation I of a program P is a stable model of P iff
I is a minimal model of P∗[I]. It can easily be shown that, if I is a stable model of
P, then I is a model of P∗.

Example 1 Consider the program P with rules A← not(B) and B ← not(A). Then
I1 = {A} and I2 = {B} are the only stable models of P.

3 Annotated ASP

Classically, n-ary predicates may be seen as functions from their domain into the
complete lattice L = 〈{f, t},�〉, where f stands for false, while t stands for true and
f � t. We generalize this by considering arbitrary complete lattices L = 〈T,�〉 as our
truth-space, with the restriction that the truth-set T is countable. With ⊥ and > we
indicate the top and the bottom element of lattice, respectively. The meet is denoted
∧, while the join is denoted ∨.

We map now n-ary predicates into functions from their domain into T . The as-
sociated value c ∈ T indicates the degree of truth of a predicate. We assume there is
a function from T to T , wich is called negation function (denoted ¬) such that it is
anti-monotone w.r.t. �.

Typical complete lattices are (just mentioning a few): given a set of rational val-
ues T , consider LT = 〈T,≤〉. Then L{0,1} corresponds to the classical truth-space,
where 0 stands for ‘false’, while 1 stands for ‘true’, while L[0,1]Q , which relies on
the unit interval, restricted to the rationals, is quite frequently used as truth-space.
In L[0,1]Q , ¬c = 1 − c is a frequently used negation function. For any n ∈ N,

Ln = {0, 1
n
, 2

n
, . . . , n−1

n
, 1} together with ¬c = 1 − c is often used in the context

of many-valued logics. Another frequent truth-space is Belnap’s FOUR [1], where T
is {f, t, u, i} with f � u � t and f � i � t. Here, u stands for ‘unknown’, whereas i
stands for ‘inconsistency’. We denote the lattice as LB . Additionally, besides ¬f = t,
we have ¬u = u and ¬i = i. Another truth-space is L4, where T is {f, cf, ct, t} with
f � cf � ct � t. Here, cf stands for ‘close to false’, whereas ct stands for ‘close to
true’. Besides ¬f = t, we have ¬cf = ct.

In annotated ASP, from a syntax point of view, we extend ASP with annota-
tion terms, which are taken from the so-called Generalized Annotated Logic Programs
(GAP) framework [15] (see also [28]). So, fix a complete lattice L = 〈T,�〉. Let
us define an annotation function of arity n to be a total and computable function1

f : T n → T . Assume a new alphabet of annotation variables, which will denote a
value in T and can only appear in so-called annotation terms. An annotation item,
ξ, is defined inductively: (i) as a truth value c ∈ T , or as an annotation variable x,
or (ii) is of the form f(ξ1, . . . , ξn), where f is an n-ary annotation function and all ξi

are annotation items. An annotation term, τ , is of the form 〈ξ, ξ′〉, where ξ and ξ′

are annotation items. Informally, an annotation term 〈c1, c2〉 (c1, c2 ∈ T ) is supposed

1The result of f is computable in a finite amount of time.
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to denote the set of truth values {c ∈ T : c1 � c � c2}, i.e. an interval. We say that
c ∈ 〈c1, c2〉 iff c1 � c � c2.

Now, let L be a literal and τ an annotation term. An annotated literal, a-literal
for short, denoted L̄, is of the form L:τ . The intended meaning is that “the truth-value
of L lies in the interval τ”. An extended a-literal is of the form not(L̄), where L̄ is a
a-literal. The intended meaning of not(L:τ) is that “it is not provable that the truth
of L lies in the interval τ”. A a-disjunctive logic program, also called a-answer set
program (a-asp), or simply a-program P, is a finite set of a-rules of the form γ ← δ,
where γ and δ are finite sets of extended a-literals.

While the informal semantics of rules of an a-asp may be intuitive, the formal de-
velopment is more involved as for the classical counterpart. In order to avoid straight-
forward repetition, if not stated otherwise, definitions related to a-asp, parallels those
for asp. Furthermore, in grounding a a-literal L:τ , we assume that the annotation
term τ is grounded as well, i.e. annotation variables are replaced with truth values
in T and annotation items of the form f(ξ1, . . . , ξn) are replaced with the result of
the computation of f(ξ1, . . . , ξn). Note that a grounded a-program P may contain an
infinite, but countable (as L is countable), number of rules due to the grounding of
annotation terms. While from a semantics point of view this is unproblematic, from
a computational point of view this may lead to undecidability in general. We will
see later on some useful cases in which decidability is guaranteed. We denote with
P∗ the grounded program obtained from P. For a grounded a-program P, BP is the
set of ground atoms A that can be constructed using the predicate symbols in P and
the constants in HP . Note that (i) the Herbrand base of P contains the constants
appearing in P while it does not contain ground annotation terms occurring in P; and
(ii) BP contains atoms A and not annotated atoms.

A a-interpretation I of a grounded a-program P is any (possibly partial) function
I : BP → T (some ground atoms may be left unspecified). The set of defined atoms
in I is denoted def(I). In the following, whenever we write I(A), we assume that
A ∈ def(I). We extend and interpretation I to literals L = ¬A in the obvious way:
I(L) = ¬I(A). A a-interpretation I satisfies a ground a-literal L:τ iff I(L) ∈ τ . Note
that we can always assume that a-literals are positive, by replacing ¬A:[ξ1, ξ2] with
A:[¬ξ2,¬ξ1]. Like for disjunctive logic programs, we say that I satisfies an extended
a-literal not(L:τ) iff I does not satisfy L:τ , i.e. I(L) 6∈ τ . Finally, a a-interpretation
I of a grounded program P without naf satisfies a rule γ ← δ iff if I satisfies every
a-literal in δ then I satisfies some a-literal in γ. I is a a-model of program P without
naf iff it satisfies every rule in P.

Example 2 Consider the grounded a-program P without naf, with the two facts,
namly {A:〈0.2, 0.7〉, B:〈0.3, 0.6〉} and C:〈0.1, 0.3〉, over L[0,1]Q

2. The a-program above
has infinitely many models I, which map I(C) ∈ 〈0.1, 0.3〉 and either I(A) ∈ 〈0.2, 0.6〉
or I(B) ∈ 〈0.3, 0.6〉. Note that I must be defined on C, but may not necessarily be
defined on both A and B.

Now, consider the following two partial functions I1 and I2, assigning to atoms
intervals and defined as follows: I1(A) = 〈0.2, 0.7〉, I1(C) = 〈0.1, 0.3〉 and I2(B) =
〈0.3, 0.6〉, I2(C) = 〈0.1, 0.3〉. Then for each a-model I of P, we have that for some
i = 1, 2, def(Ii) ⊆ def(I) and for all ground atoms D ∈ def(Ii), I(D) ∈ Ii(D).
Essentially, I1 and I2 are minimal in terms of defined atoms and the intervals are
the ‘most precise’ intervals that can be inferred from the program. I1 and I2 represent
concisely all the models of the a-program above. 2

2Note that the first one is has a disjunction in the head.
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In the following we formally define the above concept of “interval interpretation”.
So, let C(T ) be the set of all closed sub-intervals of T , i.e. the set of pairs 〈c1, c2〉,
for c1, c2 ∈ T . Note that we do not impose c � c′. For two intervals 〈c1, c2〉 and
〈c3, c4〉 in C(T ), we define 〈c1, c2〉 �p 〈c3, c4〉 iff c1 � c3 and c4 � c2. That is, the
former interval is less narrow than the latter. For instance, 〈0, 1〉 �p 〈0.2, 0.6〉 �
〈0.3, 0.5〉 � 〈0.6, 0.2〉 � 〈1, 0〉. Similarly, for two intervals σ1 and σ2 in C(T ), we define
σ1 ≺p σ2 iff σ1 �p σ2 and σ2 6�p σ1. Furthermore, we define ¬〈c1, c2〉 = 〈¬c2,¬c1〉.
It follows that the �p-least interval is 〈⊥,>〉 (complete ignorance about the atom’s
truth boundaries), the �p-greatest interval is 〈>,⊥〉 (maximal inconsistency about
the atom’s truth). The attentive reader will notice that �p corresponds exactly to the
so-called knowledge order on interval bilattices introduce by Fitting [13]. It models
the fact that the more precise intervals are the more knowledge we have about the
atom’s truth.

An interval interpretation I of a grounded program P without naf, is a (possibly
partial) function I : BP → C(T ). That is, an interval interpretation I is a represen-
tative of a whole family of a-interpretations I: we write I ∈ I iff def(I) = def(I )
and for all A ∈ def(I ), I(A) ∈ I (A). We extend interval interpretations I to
ground literals L = ¬A in the obvious way: I (L) = ¬I (A). Furthermore, for in-
terval interpretations I1 and I2, we define I1 �p I2 iff def(I1) ⊆ def(I2) and for
all A ∈ def(I1), I1(A) �p I2(A). Furthermore, I1 ≺p I2 iff I1 �p I2 and either
def(I1) ⊂ def(I2) or for some A ∈ def(I1), I1(A) ≺p I2(A). The �p-greatest
interval interpretation, I>, assigns to all ground atoms in BP the maximal inconsis-
tent interval 〈>,⊥〉, while the �p-least interval interpretation, I⊥ is undefined on all
ground atoms in BP , i.e. def(I⊥) = ∅.

An interval interpretation I satisfies a ground a-literal L:τ iff τ �p I (L). That
is, I assigns to L a more precise interval than the constraint imposed by τ . We say
that I satisfies a rule γ ← δ iff if I satisfies every a-literal in δ then I satisfies some
a-literal in γ. I is an interval model of program P without naf iff it satisfies every
rule in P. Furthermore, I is minimal as well iff there is no interval model I ′ ≺p I
of P. For instance, in Example 2, I1 and I2 are the only two minimal interval models
of P.

As in[15], there are positive a-porgrams P, which have an unique minimal model,
which may not be computed in finite time. In fact the grounded a-program without
naf, containing all ground instances of the rules over L[0,1]Q

A:〈0, 1〉.
A:〈x+1

2
, x′〉 ← A:〈x, x′〉

B:〈1, 1〉 ← A:〈1, 1〉
(1)

is not finite, i.e. P∗ is not finite. However, P has unique minimal interval model
I (A) = I (B) = 〈1, 1〉. Note also that the least and unique interval model I of
the a-program with two facts A:〈0, 0.3〉 and A:〈0.4, 0.5]〉 assigns I (A) = 〈0.4, 0.3〉.
Therefore, the program has an interval model, but no a-model (indeed there cannot
be an interpretation assigning to A a value c such that c ∈ 〈0.4, 0.3〉, i.e. 0.4 ≤ c ≤ 0.3),
which indicates that on A the a-program is inconsistent 3.

Given a grounded a-program (possibly with naf) P and a a-interpretation I for P,
the Gelfond-Lifschitz transformation is the grounded positive a-program P[I], obtained
by deleting in P, (i) each rule that has not(L̄) in its body and I satisfies L̄; (ii) each

3We may use this property to manage inconsistencies of this kind, but we will not investi-
gate this feature in this paper.
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rule that has not(L̄) in its head and I does not satisfy L̄; and (iii) all not(L̄) in the
bodies and heads of the remaining rules.

A a-interpretation I of a a-program P (possibly not grounded) is a a-interpretation
of its grounded version P∗. I is a stable a-model of P iff I ∈ I for a minimal interval
model I of P∗[I]. Essentially, in order to check if a a-interpretation I, assigning
truth values to atoms, is a stable model of P we (i) consider its grounded version P∗
in which we replace all variables in atoms with all possible combinations of constants
of the Herbrand base and all annotation variables with all possible combinations of
truth values of T ; (ii) then we compute the Gelfond-Lifschitz transformation P∗[I] of
P∗ with respect to I; (iii) as now P∗[I] is positive it has a minimal interval model I .
I will provide us the most precise interval we can infer for all the atoms; and finally
(iv) we check if indeed the a-interpretation I we want to check satisfies the interval
constraints imposed by I .

For instance, in Example 2, we have that any stable a-model I of P is such that
I ∈ I1 or I ∈ I2. In the following example we will illustrate with an extensive
example all the above definitions.

Example 3 Consider the following a-programs P1,P2,P3 and P4, where

P1 = {r1, r2} , P2 = {r1, r3}
P3 = {r1, r4} , P4 = {r1, r5}

and the rules r1, . . . r5 are

r1 : A:〈0.6, 0.8〉.
r2 : B:〈0.4, 0.5〉 ← not(A:〈0.2, 0.3〉)
r3 : B:〈0.4, 0.5〉 ← not(A:〈0.2, 0.7〉)
r4 : B:〈x, x′〉 ← A:〈x, x′〉
r5 : B:〈x, x′〉 ← not(A:〈x, x′〉)

Now, let us analyze the behavior of each program Pi.
Case P1. P1 is already grounded, but with not and the Herbrand base is BP1 =
{A, B}. In any a-model I of P2 we have that I(A) ∈ 〈0.6, 0.8〉, I(B) ∈ 〈0.4, 0.5〉 and,
thus, I does not satisfy A:〈0.2, 0.7〉. Therefore, I does satisfy not(A:〈0.2, 0.7〉). Then
P1

∗[I] contains the rule r1 and the fact B:〈0.4, 0.5〉, which is obtained from the rule
r2 by removing not(A:〈0.2, 0.7〉), according to the Gelfond-Lifschitz transformation.
P1

∗[I] has an unique minimal interval model I , which is I (A) = 〈0.6, 0.8〉, I (B) =
〈0.4, 0.5〉. Therefore, I ∈ I holds and, thus, I is a stable a-model of P1.
Case P2. P2 is already grounded, but with not and the Herbrand base is BP2 = {A, B}.
In any a-model I of P2 we have that I(A) ∈ 〈0.6, 0.8〉. If further I(A) 6∈ 〈0.6, 0.7〉 then
I(B) ∈ 〈0.4, 0.5〉 else I may or may not be defined on B. Now, assume the case
I(A) ∈ 〈0.6, 0.7〉 and I undefined on B. Then P2

∗[I] contains the rule r1, but does not
contain the rule r3, as I does satisfy A:〈0.2, 0.7〉. Hence, the minimal interval model I
of P2

∗[I] is such that I (A) = 〈0.6, 0.8〉, while I is undefined on B, i.e. B 6∈ def(I ).
Therefore, I ∈ I and, thus, I is a stable a-model of P2. On the other hand, assume
the case I(A) 6∈ 〈0.6, 0.7〉 and I(B) ∈ 〈0.4, 0.5〉. Then P2

∗[I] contains the rule r1 and
the rule B:〈0.4, 0.5〉, which is obtained from the rule r3 by removing not(A:〈0.2, 0.7〉),
according to the Gelfond-Lifschitz transformation (I does not satisfy A:〈0.2, 0.7〉 and,
thus, does satisfy not(A:〈0.2, 0.7〉)). Therefore, P2

∗[I] has an unique minimal interval
model I , which is I (A) = 〈0.6, 0.8〉, I (B) = 〈0.4, 0.5〉. Therefore, I ∈ I holds and,
consequently, I is a stable a-model of P2. Therefore, for any stable a-model I of P2,
I(A) ∈ 〈0.6, 0.8〉 and if I(A) 6∈ 〈0.6, 0.7〉 then I(B) ∈ 〈0.4, 0.5〉 else I is undefined on
B.
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Case P3. P3 is not grounded, but without not and the Herbrand base is BP3 = {A, B}.
Then P3

∗, besides rule r1 contains all instantiations of rule r4, namely:

B:〈0.6, 0.6〉 ← A:〈0.6, 0.6〉
B:〈0.6, 0.8〉 ← A:〈0.6, 0.8〉
B:〈0.8, 0.6〉 ← A:〈0.8, 0.6〉
B:〈0.8, 0.8〉 ← A:〈0.8, 0.8〉

In any a-model I of P3, i.e. of P3
∗, we have that I(A) ∈ 〈0.6, 0.8〉, I(B) ∈ 〈0.6, 0.8〉

and, as P3
∗ is not-free, P3

∗[I] = P3
∗. Now, P3

∗[I], i.e. P3
∗, has an unique minimal

interval model I , which is I (A) = 〈0.6, 0.8〉, I (B) = 〈0.6, 0.8〉. Therefore, for any
a-interpretation I, with I(A) ∈ 〈0.6, 0.8〉, I(B) ∈ 〈0.6, 0.8〉, I ∈ I holds and, thus, I
is a stable a-model of P3.
Case P4. P4 is not grounded, with not and the Herbrand base is BP4 = {A, B}. Then
P4

∗, besides rule r1 contains all instantiations of rule r5, namely:

B:〈0.6, 0.6〉 ← not(A:〈0.6, 0.6〉)
B:〈0.6, 0.8〉 ← not(A:〈0.6, 0.8〉)
B:〈0.8, 0.6〉 ← not(A:〈0.8, 0.6〉)
B:〈0.8, 0.8〉 ← not(A:〈0.8, 0.8〉)

For any a-model I of P4, i.e. of P4
∗, we have that I(A) ∈ 〈0.6, 0.8〉. Therefore, in any

interpretation I satisfying I(A) ∈ 〈0.6, 0.8〉,
P4[I] ={r1}∪

{B:〈c, c′〉|I(A) 6∈ 〈c, c′〉, c, c′ ∈ {0.6, 0.8}} .

In particular, B:〈0.8, 0.6〉 ∈ P4[I], as I(A) 6∈ 〈0.8, 0.6〉. Also, e.g. if I(A) = 0.7
then also {B:〈0.6, 0.6〉, B:〈0.8, 0.8〉} ⊆ P4

∗[I], as neither I(A) ∈ 〈0.6, 0.6〉 nor I(A) ∈
〈0.8, 0.8〉. Anyway, the least interval model I of P4

∗[I] is such that I (A) = 〈0.6, 0.8〉
and I (B) = 〈0.8, 0.6〉. While I(A) ∈ 〈0.6, 0.8〉 = I (A), it cannot be I(B) ∈
〈0.8, 0.6〉 = I (B) and, thus, I 6∈ I . Therefore, P4 has no stable a-model. 2

3.1 Reasoning

Computing stable models is difficult in general as e.g. the a-program P (1) shows.
Indeed, in the general deciding whether an a-interpretation is a stable model is unde-
cidable [15]. Despite this negative result, we show that there are two interesting cases
under which it is decidable whether a a-interpretation is a stable model or not.

In the first case, we require that in the lattice L = 〈T,�〉, the set of truth values T
is finite. From a practical point of view this is a limitation we can live with, especially
taking into account that computers have finite resources, and thus, only a finite set of
truth values can be represented. In particular, this includes also the case of the the
rational numbers in [0, 1]Q under a given fixed decimal precision p (e.g. p = 2). Note
that the truth spaces described at the beginning of Section 3 fall into this category.

As in the truth space L = 〈T,�〉, T is finite, for any a-program P, its grounding
P∗ and its Herbrand base BP are finite as well. As, BP and T are finite, there are
also finitely many a-interpretations I and interval interpretations I of P∗. 4. Now,

4Of course, reasoning in annotated LPs is at least as hard as for classical disjunctive logic
programming [9, 12], as annotated LPs subsume classical disjunctive logic programs.
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let I be an a-interpretation. Then P∗[I] can be computed from P∗ in finite time.
Also, computing the set of minimal interval models I of P∗[I] can be done in finite
time, though, exponential many interval minimal models may exist (note that classical
disjunctive logic programs may have exponential many minimal models). Finally, I is
a stable a-model of P iff I ∈ I for a minimal interval model I of P∗[I]. As I ∈ I
can be checked in finite time as well, checking whether I is a stable a-model of P is
decidable.

In the second case, we require that annotation functions f appearing in annotations
terms have a finite generation (see [2]). This technique has been used also in [31].
Essentially, if CP are all the truth constants c ∈ T appearing in P, then f has a finite
generation iff the f-closure of CP , i.e. the smallest set that contains CP and is closed
under f , is finite. For instance, min, max and 1− x are such functions, while e.g. the
product is not. As a consequence, if P is a a-program in which all annotation functions
appearing in annotation terms have finite generation, then its grounding P∗ is finite
as well. Therefore, checking whether a a-interpretation I is a stable a-model of P is
decidable.

4 Conclusions

We have defined annotated disjunctive logic programs, which are disjunctive logic
programs where computable functions are used to annotate the atoms to manage
truth degrees. We defined their syntax and semantics and have show cases for which
deciding whether a a-interpretation I is a stable a-model of P is decidable. We also
conjecture that in these cases a a-program can be mapped into classical disjunctive
logic programs (so to inherit the result thereof [9, 12] 5), allowing a fast prototyping of
our framework. The intuition, given an annotated LPs P, is to consider its grounded
version P∗. Then, let CP be the set of all truth values appearing in P∗. Each n-ary
(ground) a-atom P (t1, . . . , tn):〈c1, c2〉 of P∗ is replaced with an n+3-ary propositional
atom P (t1, . . . , tn, c1, z, c2), where z is variable and each atom has a different z. The
intended meaning is that the degree of truth of P (t1, . . . , tn) is z and z ∈ 〈c1, c2〉.
Then we need additional rules to model appropriately the intervals. For instance, for
each (ground) a-atom A:〈c1, c2〉, we consider the rule

z ∈ 〈c1, c2〉 ← A(c1, z, c2) ,

where z ∈ 〈c1, c2〉 is a predicate (with obvious meaning) which can easily be defined
as CP is finite. We also add rules of the form

A(c3, z, c4)← A(c1, z, c2), z ∈ 〈c3, c4〉

to propagate truth values among intervals. We do not further develop this approach
due to lack of space. However, we conjecture that along this line we may obtain a
stable model preserving classical disjunctive logic program. We will deserve to this
topic more attention in a long version of this work.

Another objective is to extend the IB framework to disjunctive logic programs
to a larger extend than [22]. Our starting point is [31] where arbitrary combination
functions may be used in normal logic programs (recall that [22] restricts these to be
special t-norms and s-norms).

5Of course, now the size of the complete truth lattice and the computational complexity
of annotation functions in annotations terms are also parameters of the overall computational
complexity.
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