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Abstract

Description Logic Programs (DLPs), which combine the expressive
power of classical description logics and logic programs, are emerging as
an important ontology description language paradigm. In this work, we
present fuzzy DLPs, which extend DLPs by allowing the representation
of vague/imprecise information.
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1 Introduction

Rule-based and object-oriented techniques are rapidly making their way into the
infrastructure for representing and reasoning about the Semantic Web: combin-
ing these two paradigms emerges as an important objective.

Description Logic Programs (DLPs) [6, 7, 9, 10, 11, 20, 25], which combine
the expressive power of classical Description Logics (DLs) and classical Logic
Programs (LPs), are emerging as an important ontology description language
paradigm. DLs capture the meaning of the most popular features of structured
representation of knowledge, while LPs are powerful rule-based representation
languages.

In this work, we present fuzzy DLPs, which is a novel extension of DLPs
towards the representation of vague/imprecise information.

We proceed as follows. We first introduce the main notions related to fuzzy
DLs and fuzzy LPs, and then show how both can be integrated, defining fuzzy
DLPs in Section 3. Section 4 concludes and outlines future research.



2 Preliminaries

Fuzzy DLs. DLs [1] are a family of logics for representing structured knowl-
edge. Each logic is identified by a name made of labels, which identify the
operators allowed in that logic. Major DLs are the so-called logic ALC [34]
(Attributive Language with Complement) and is used as a reference language
whenever new concepts are introduced in DLs, SHOZN (D), which is the logic
behind the ontology description language OWL DL and SHZF (D), which is the
logic behind OWL LITE, a slightly less expressive language than OWL DL (see
[18, 21]).

Fuzzy DLs [36, 40] extend classical DLs by allowing to deal with fuzzy/imprecise
concepts, like “Calla is a very large, long white flower on thick stalks”, allowing
to deal with so-called fuzzy or wvague concepts, like “creamy”, “dark”, “hot”,
“large” and “thick”, for which a clear and precise definition is not possible (an-
other issue relates to the representation of terms like “very”, which are called
fuzzy concepts modifiers). While in classical DLs concepts denotes sets, in fuzzy
DLs fuzzy concepts denote fuzzy sets [44].

Syntaz. While the method we rely on in combining fuzzy DLs with fuzzy
LPs does not depend on the particular fuzzy DL of choice, to make the paper
self-contained, we shall use here fuzzy ALC(D) [37], which is fuzzy ALC [36]
extended with explicit represent membership functions for modifiers (such as
“very”) and vague concepts (such as “Young”) [37]. We refer to [40] for fuzzy
OWL DL and related work on fuzzy DLs.

Fuzzy ALC(D) allows explicitly to represent membership functions in the
language via fuzzy concrete domains. A fuzzy concrete domain (or simply fuzzy
domain) is a pair (Ap, ®p), where Ap is an interpretation domain and ®p is the
set of fuzzy domain predicates d with a predefined arity n and an interpretation
d®: A — [0, 1], which is a n-ary fuzzy relation over Ap. To the ease of presen-
tation, we assume the fuzzy predicates have arity one, the domain is a subset of
the rational numbers Q and the range is [0, 1]g = [0,1] N Q. Concerning fuzzy
predicates, there are many membership functions for fuzzy sets membership
specification. However (see Figure 1), for k1 < a < b < ¢ < d < ko rational
numbers, the trapezoidal trz(a,b, ¢, d, [k1, ks2|), the triangular tri(a, b, c, [k1, ka)),
the left-shoulder ls(a, b, [k1, k2]), the right-shoulder rs(a, b, [k1, ko]) and the crisp
function cr(a,b, [k1, ko)) are simple, yet most frequently used to specify mem-
bership degrees and are those we are considering in this paper. To simplify the
notation, we may omit the domain range, and write, e.g. c¢r(a,b) in place of
er(a,b, [k1, k2]), whenever the domain range is not important. For instance, the
concept “less than 18 year old” can be defined as a crisp concept ¢r(0, 18), while
Young, denoting the degree of youngness of a person’s age, may be defined as
Young = [5(10,30). We also consider fuzzy modifiers in fuzzy ALC(D). Fuzzy
modifiers, like very, more_or_less and slightly, apply to fuzzy sets to change
their membership function. Formally, a modifier is a function f,:[0,1] — [0,1].

Now, let C, Ry, Re¢, L4, I. and M be non-empty finite and pair-wise disjoint sets
of concepts names (denoted A), abstract roles names (denoted R), concrete roles
names (denoted T'), abstract constant names (denoted a), concrete constant
names (denoted ¢) and modifiers (denoted m). R, contains a non-empty subset



Figure 1: (a) Trapezoidal; (b) Triangular; (c) Left-shoulder; (d) Right-shoulder; (e) Crisp

C — T|L]JA|CiNCy|CLUCy | ~C|VR.C|3R.C|VT.D|3IT.D|m(C)
D —  d|-d

m —  1lm(a,b,c,d)

d — trz(a,b,c,d, [k, ko]) | tri(a,b, ¢, [ki,k2]) | 1s(a,b, [ki,ks2]) |

rs(a,b, [ki,ko]) | cr(a,b, [k1,ka])

Figure 2: ALC(D) concepts

F, of abstract feature names (denoted r), while R, contains a non-empty subset
F. of concrete feature names (denoted t). Features are functional roles. The
set of fuzzy ALC(D) concepts is defined by the syntactic rules (d is a unary
fuzzy predicate) in Figure 2. A TBox T consists of a finite set of terminological
azioms of the form C7 C Cy (Cy is sub-concept of Cs) or A = C (A is defined
as the concept C), where A is a concept name and C' is concept. Using axioms
we may define the concepts of a minor and young person as

Minor = PersonllJage.<is (1)

YoungPerson = Personl1Jage.Young (2)

We also allow to formulate statements about constants. A concept-, role-
assertion axiom and an constant (in)equality axiom has the form a:C (a is
an instance of C), (a,b): R (a is related to b via R), a = b (a and b are equal)
and a % b, respectively, where a,b are abstract constants. For n € [0,1]g, an
ABox A consists of a finite set of constant (in)equality axioms, and fuzzy concept
and fuzzy role assertion azioms of the form (o, n), where « is a concept or role
assertion. Informally, («,n) constrains the truth degree of « to be greater or
equal to n. A fuzzy ALC(D) knowledge base K = (7T, .A) consists of a TBox 7
and an ABox A.

Semantics. We recall here the main notions related to fuzzy DLs (for more
on fuzzy DLs, see [36, 40]). The main idea is that an assertion a: C, rather being
interpreted as either true or false, will be mapped into a truth value ¢ € [0, 1]g.
The intended meaning is that ¢ indicates to which extend ‘a is a C’. Similarly
for role names. Formally, a fuzzy interpretation T with respect to a concrete
domain D is a pair Z = (AZ,.T) consisting of a non empty set AZ (called the
domain), disjoint from Ap, and of a fuzzy interpretation function - that assigns
(i) to each abstract concept C € C a function CT: AT — [0,1]; (i) to each
abstract role R € R, a function RZ: AT x AT — [0,1]; (iii) to each abstract




Lukasiewicz Logic Godel Logic Product Logic “Zadeh semantics”
1_ if £ = 0 then 1 if £ = 0 then 1 1_
- * else 0 else 0 *
T Ay max(z +y — 1,0) min(z, y) Ty min(z, y)
zVy min(z + y, 1) max(z,y) T+y—z-y max(z, y)
if x <y then 1 if x <y then 1 if x <y then 1
=Y elsel —z+y else y else y/x max(1 — @, y)

Table 1: Typical connective interpretation.

feature r € F, a partial function 7%: AT x AZ — [0,1] such that for all u € AT
there is an unique w € A% on which r%(u,w) is defined; (iv) to each abstract
constant a € I, an element in AT ; (v) to each concrete constant ¢ € I, an ele-
ment in Ap; (vi) to each concrete role T € R.. a function T7: AT x Ap — [0, 1];
(vii) to each concrete feature ¢t € F. a partial function tZ: AT x Ap — [0,1]
such that for all u € AT there is an unique o € Ap on which tZ(u, 0) is defined;
(viii) to each modifier m € M the function f,,:[0,1] — [0, 1]; (iz) to each unary
concrete predicate d the fuzzy relation d”: Ap — [0,1] and to —d the negation
of d°. To extend the interpretation function to complex concepts, we use so-
called t-norms (interpreting conjunction), s-norms (interpreting disjunction),
negation function (interpreting negation), and implication function (interpret-
ing implication) [17]. In Table 1 we report most used combinations of norms.

The mapping -Z is then extended to concepts and roles as follows (where u €
ATY: TZ(u) =1, L5 (u) =0,

(Cinc)fw) = C1fw) ACE(w)
(Ch u( Cziigu; = 0111 ((u))v CoT (u)
=) (u = —=C*(u

(mE@)E(w) = fm(CT(w))
(VR.C):(u) = inf,caz R (u,w) = CF(w)
(3R.C)E(u) = sup,caz BT (u,w) A CT(w)
(vT.D)E(u) = infeen, TZ(u,0) = DZ(0)
(3T.D)*(u) = sup,ea, T7(u,0) A D (o) .

The mapping -7 is extended to assertion axioms as follows (where a,b € I,):
(a:C) = CZ(a%) and ((a,b): R)* = RZ(a%,b%). The notion of satisfiability
of a fuzzy axiom E by a fuzzy interpretation Z, denoted I = E, is defined as
follows: I = Cy T Cy iff for all u € AT,C1% (u) < Gy (u); I | A = C iff for
all u € AT, AT(u) = C%(u); I |= {a,n) iff of > n; T = a ~ b iff a¥ = b%; and
T = a#biff a # b%. The notion of satisfiability (is model) of a knowledge
base K = (7, A) and entailment of an assertional axiom is straightforward.
Concerning terminological axioms, we also introduce degrees of subsumption.
We say that K entails C; C Cs to degree n € [0, 1], denoted K = (C) E Cy, n)
iff for every model Z of K, [inf,caz C17 (u) = CoF(u)] > n.

Example 1 ([40]) Consider the following simplified excerpt of a knowledge
base about cars:
SportsCar = Jspeed.very(High),
(mg_mgb: Ispeed.<i70, 1)
(ferrari_enzo: Ispeed.>3s0, 1),
(audi_tt: Ispeed. =243, 1)



speed is a concrete feature. The fuzzy domain predicate High has membership
function High = rs(80,250). It can be shown that

K = (mg-mgb: ~SportsCar, 0.72)
K [= (ferrari_enzo: SportsCar, 1)
K [= (audi_tt: SportsCar, 0.92) .

Note how the mazimal speed limit of the mgmgb car (< 170) induces an upper
limit, 0.28 =1 — 0.72, on the membership degree of being mg mgb a SportsCar.

Example 2 Consider K with terminological azioms (1) and (2). Then under
Zadeh logic K |= (Minor C YoungPerson, 0.5) holds.

Finally, given I and an axiom «, it is of interest to compute its best lower
degree bound. The greatest lower bound of a w.r.t. K, denoted glb(K, ), is
glb(K,a) = sup{n:K = (a,n)}, where supf) = 0. Determining the glb is
called the Best Degree Bound (BDB) problem. For instance, the entailments in
Examples 1 and 2 are the best possible degree bounds. Note that, K = (a,n)
iff glb(IC, &) > n. Therefore, the BDB problem is the major problem we have to
consider in fuzzy ALC(D).

Fuzzy LPs. The management of imprecision in logic programming has at-
tracted the attention of many researchers and numerous frameworks have been
proposed. Essentially, they differ in the underlying truth space (e.g. Fuzzy set
theory [2, 8, 22, 35, 42, 43|, Multi-valued logic [3, 4, 5, 13, 14, 23, 24, 26, 27, 28,
29, 30, 31, 33, 32, 39, 38]), and how imprecision values, associated to rules and

facts, are managed.
Syntaz. We consider here a very general form of the rules [38, 39]:

A~ f(B1,...,Bn), (3)

where f € F is an n-ary computable monotone function f : [0,1]g — [0, 1]g
and B; are atoms. Each rule may have a different f. An example of rule is

s < min(p, q) - max(—-r,0.7) + v ,

where p,q,7,s and v are atoms. Computationally, given an assignment I of
values to the B;, the value of A is computed by stating that A is at least
as true as f(I(Bi),...,I(Bp)). The form of the rules is sufficiently expressive
to encompass all approaches to fuzzy logic programming we are aware of. We
assume that the standard functions A (meet) and V (join) belong to F. Notably,
A and V are both monotone. We call f € F a truth combination function,
or simply combination function '. We recall that an atom, denoted A, is an
expression of the form P(ty,...,t,), where P is an n-ary predicate symbol
and all ¢; are terms, i.e. a constant or a variable. A generalized normal logic
program, or simply normal logic program, denoted with P, is a finite set of
rules. The Herbrand universe Hp of P is the set of constants appearing in P.
If there is no constant symbol in P then consider Hp = {a}, where a is an
arbitrary chosen constant. The Herbrand base Bp of P is the set of ground

1Due to lack of space, we do not deal with non-monotonic negation here, though we can
managed is as in [38].



instantiations of atoms appearing in P (ground instantiations are obtained by
replacing all variable symbols with constants of the Herbrand universe). Given
P, the generalized normal logic program P* is constructed as follows: (i) set P*
to the set of all ground instantiations of rules in P; (i) if an atom A is not head
of any rule in P*, then add the rule A < 0 to P* (it is a standard practice in
logic programming to consider such atoms as false); (iii) replace several rules
in P* having same head, A «— @1, A «— s, ... with A — 1 Vo V... (recall
that V is the join operator of the truth lattice in infix notation). Note that in
P*, each atom appears in the head of exactly one rule.

Semantics. An interpretation I of a logic program is a mapping from atoms
to members of [0,1]g. I is extended from atoms to the interpretation of rule
bodies as follows: I(f(B1,...,Bn)) = f(I(B1),...,1(By)). The ordering < is
extended from [0, 1]g to the set of all interpretations point-wise: (i) Iy < Iy
iff I1(A) < I(A), for every ground atom A. With I, we denote the bottom
interpretation under < (it maps any atom into 0).

An interpretation I is a model of a logic program P, denoted by I = P, iff
for all A — ¢ € P*, I(p) < I(A) holds. The semantics of a logic program P is
determined by the least model of P, Mp = min{l:I = P}. The ezistence and
uniqueness of Mp is guaranteed by the fixed-point characterization, by means
of the tmmediate consequence operator ®p. For an interpretation I, for any
ground atom A, ®p(I)(A) = I(p), where A «— ¢ € P*. We can show that
the function ®p is monotone, the set of fixed-points of ®p is a complete lattice
and, thus, ®p has a least fixed-point and I is a model of a program P iff [ is a
fixed-point of ®p. Therefore, the minimal model of P coincides with the least
fixed-point of ®p, which can be computed in the usual way by iterating ®p over
I, (38, 39].

Example 3 ([43]) In [{3], Fuzzy Logic Programming is proposed, where rules
have the form A «— f(Aq,...,Ay) for some specific f. [43] is just a special case
of our framework. As an illustrative example consider the following scenario.
Assume that we have the following facts, represented in the tables below. There
are hotels and conferences, their locations and the distance among locations.

HasLocationH HasLocationC
HotellID | HasLocationH ConferenceID | HasLocationC
hi hl1 cl cli
h2 hl2 c2 cl2

Distance
HasLocationH | HasLocationC | Distance
hl1l clil 300
hl1 cl2 500
hl2 cli 750
hl2 cl2 750




Now, suppose that our query is to find hotels close to the conference venue,
labeled c1. We may formulate our query as the rule:

Query(h) <« min(
HasLocationH(h, hl),
HasLocationC(cl,cl),
Distance(hl, cl,d), Close(d))

where Close(x) is defined as Close(x) = max(0,1 — x/1000). As a result to
that query we get a ranked list of hotels as shown in the table below.

Result List
HotelID | Closeness degree
hi 0.7
h2 0.25

3 Fuzzy DLPs

In this section we introduce fuzzy Description Logic Programs (fuzzy DLPs),
which are a combination of fuzzy DLs with fuzzy LPs. In the classical semantics
setting, there are mainly three approaches (see, [12, 15], for an overview), the
so-called axiom-based approach (e.g. [20, 25]) and the DL-log approach (e.g.,
[7, 9, 10]) and the autoepistemic approach (e.g., [6, 11]). We are not going to
discuss in this section these approaches. The interested reader may see [41]. We
just point out that in this paper we follow the DL-log approach, in which rules
may not modify the extension of concepts and DL atoms and roles appearing
the body of a rule act as procedural calls to the DL component.

We would like to note that the unique combination of DL and LPs for the
management of imprecision we are aware of is [41]. The major problems be-
hind [41] rely on the computational part. Indeed, [41] requires that the so-called
annotation terms (see [23]) are grounded, which makes the approach hardly fea-
sible in practice. We do not have here such restrictions.

Syntax. We assume that the description logic component and the rules com-
ponent share the same alphabet of constants. Rules are as for fuzzy LPs except
that now atoms and roles may appear in the rule body. We assume that no
rule head atom belongs to the DL signature. For ease the readability, in case
of ambiguity, DL predicates will have a DL superscript in the rules. Note that
in [9] a concept inclusion may appear in the body of the rule. We will not deal
with this feature. A fuzzy Description Logic Program (fuzzy DLP) is a tuple
DP = (K,P), where K is a fuzzy DL knowledge base and P is a fuzzy logic
program. For instance, the following is a fuzzy DLP:

LowCarPrize(x) — min(made_by(z, y),
ChineseCarCompany” ¥ (y)),
has_prize(z, z), LowPrize” (z)
made_by(z, y) —  makesPL(y, x),

LowPrize

15(5.000, 15.000)
ChineseCarCompany (Jhas_location.China)M
(3makes.Car)



with meaning: a chinese car company is located in china, makes cars, which are
sold as low prize cars. Low prize is defined as a fuzzy concept with left-shoulder
membership function.

Semantics. We recall that in the DL-log approach, a DL atom appearing in
a rule body acts as a query to the underlying DL knowledge base (see [9]). So,
consider a fuzzy DLP DP = (K,P). The Herbrand universe of P, denoted
Hp is the set of constants appearing in DP (if no such constant symbol exists,
Hp = {c} for an arbitrary constant symbol ¢ from the alphabet of constants).
The Herbrand base of P, denoted Bp, is the set of all ground atoms built
up from the non-DL predicates and the Herbrand universe of P. Then, the
definition of P* is as for fuzzy LPs. An interpretation I w.r.t. DP is a function
I: Bp — [0,1]p mapping non-DL atoms into [0,1]g. We say that I is a model
of a DP = (K, P) iff I* |=x P, where

1. I® =Piff forall A — p € P*, IN(p) < I°(A);

2. I°(f(Ar, .y An)) = FIR (A1), o TN (An);
3. IN(P (tl, coytn)) = I(P(t1,...,tn)) for all ground non-DL atoms P(¢1,...,tn);
4. I®(A(a)) = glb(IC a: A) for all ground DL atoms A(a);

5. IF (R(a, b)) = glb(K, (a, b): R) for all ground DL roles R(a,b).

Note how in Points 4. and 5. the interpretation of a DL-atom and role depends
on the DL-component only. Finally, we say that DP = (K, P) entails a ground
atom A, denoted DP | A, iff I E A whenever I = DP.

For instance, assume that together with the DP about low prize cars we
have the following instances, where 11 and 12 are located in China and caril
and car?2 are cars.

CarCompany Makes
CarCompany | has_location CarCompany | makes
cl 11 cl carl
c2 12 c2 car2

If the prizes are as in the left table below then the degree of the car prizes is
depicted in the right table below. Note that due to the definition of chinese car
companies, c1 and c2 are chinese car companies.

Prize LowPrizeCar
Car prize Car LowPrizeDegree
carl | 10.000 carl | 0.5
car2 | 7.500 car2 | 0.75

Interestingly, it is possible to adapt the standard results of Datalog to our
case, which say that a satisfiable description logic program DP has a minimal
model Mpp and entailment can be reduced to model checking in this minimal
model.



Proposition 1 Let DP = (K,P) be a fuzzy DLP. If DP is satisfiable, then
there exists a unique model Mpp such that Mpp < I for all models I of DP.
Furthermore, for any ground atom A, DP = A iff Mpp = A.

The minimal model can be computed as the least fixed-point of the following
monotone operator. Let DP = (K, P) be a fuzzy DLP. Define the operator Tpp
on interpretations as follows: for every interpretation I, for all ground atoms
A € Bp, given A «— p € P*

Tpp(I)(A) = I°(p) -

Then it can easily be shown that T'pp is monotone, i.e. I < I’ implies Tpp(I) <
Tpp(I'), and, thus, by the Knaster-Tarski Theorem Tpp has a least fixed-point,
which can be computed as a fixed-point iteration of Tpp starting with I .

Reasoning. From a reasoning point of view, to solve the entailment problem
we proceed as follows. Given DP = (K, P), we first compute for all DL atoms
A(a) occurring in P*, the greatest truth lower bound, i.e. na(q) = glb(KC,a: A).
Then we add the rule A(a) <= n4(,) to P, establishing that the truth degree of
A(a) is at least n4(4) (similarly for roles). Finally, we can rely on a theorem
prover for fuzzy LPs only either using a usual bottom-up computation or a top-
down computation for logic programs [3, 38, 39, 43]. Of course, one has to be
sure that both computations, for the fuzzy DL component and for the fuzzy LP
component, are supported. With respect to the logic presented in this paper,
we need the reasoning algorithm described in [37] for fuzzy DLs component 2,
while we have to use [38, 39] for the fuzzy LP component.

We conclude by mentioning that by relying on [38], the whole framework
extends to fuzzy description normal logic programs as well (non-monotone nega-
tion is allowed in the logic programming component).

4 Conclusions

We integrated the management of imprecision into a highly expressive family
of representation languages, called fuzzy Description Logic Programs, resulting
from the combination of fuzzy Description Logics and fuzzy Logic Programs.
We defined syntax, semantics, declarative and fixed-point semantics of fuzzy
DLPs. We also detailed how query answering can be performed by relying on the
combination of currently known algorithms, without any significant additional
effort.

Our motivation is inspired by its application in the Semantic Web, in which
both aspects of structured and rule-based representation of knowledge are be-
coming of interest [16, 19].

There are some appealing research directions. At first, it would certainly
be of interest to investigate about reasoning algorithm for fuzzy description

2However, sub-concept specification in terminological axioms are of the form A C C only,
where A is a concept name and neither cyclic definitions are allowed nor may there be more
than one definition per concept name A.



logic programs under the so-called axiomatic approach. Currently, very few is
known about that. Secondly, while there is a huge literature about fuzzy logic
programming and many-valued programming in general, very little is known in
comparison about fuzzy DLs. This area may deserve more attention.

References

(1]

(2]

(3]

(4]

(5]

(6]
[7]
(8]
(9]
(10]

(11]

(12]
(13]
(14]

(15]

(16]

(17]
(18]

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press, 2003.

T. H. Cao. Annotated fuzzy logic programs. Fuzzy Sets and Systems, 113(2):277-298,
2000.

C. Viegas Damasio, J. Medina, and M. Ojeda Aciego. A tabulation proof procedure
for residuated logic programming. In Proc. of the 6th European Conf. on Artificial
Intelligence (ECAI-04), 2004.

C. Viegas Damdsio, J. Medina, and M. Ojeda Aciego. Termination results for sorted
multi-adjoint logic programs. In Proc. of the 10th Int. Conf. on Information Processing
and Managment of Uncertainty in Knowledge-Based Systems, (IPMU-04), pages 1879—
1886, 2004.

C. Viegas Damésio and L. Moniz Pereira. Antitonic logic programs. In Proc. of the 6th
European Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR-01),
number 2173 in Lecture Notes in Computer Science. Springer-Verlag, 2001.

F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt, and A. Schaerf. An epistemic operator
for description logics. Artificial Intelligence, 100(1-2):225-274, 1998.

F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating datalog and
description logics. Journal of Intelligent Information Systems, 10(3):227-252, 1998.

R. Ebrahim. Fuzzy logic programming. Fuzzy Sets and Systems, 117(2):215-230, 2001.

T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set pro-
gramming with description logics for the semantic web. In Proc. of the 9th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR-04). AAAI Press, 2004.

T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Well-founded semantics for de-
scription logic programs in the semantic web. In Proc. RuleML 2004 Workshop, Int. Se-
mantic Web Conference, LNCS 3323, pages 81-97. Springer Verlag, 2004.

A. Lopatenko E. Franconi, G. Kuper and L. Serafini. A robust logical and computational
characterisation of peer-to-peer database systems. In Proc. of the VLDB Int. Workshop
on Databases, Information Systems and Peer-to-Peer Computing (DBISP2P-03), 2004.

Pan et al. Specification of coordination of rule and ontology languages. Technical report,
Knowledgeweb Network of Excellence, EU-IST-2004-507482, 2004. Deliverable D2.5.1.

M. C. Fitting. Fixpoint semantics for logic programming - a survey. Theoretical Computer
Science, 21(3):25-51, 2002.

M. Fitting. A Kripke-Kleene-semantics for general logic programs. Journal of Logic
Programming, 2:295-312, 1985.

E. Franconi and S. Tessaris. Rules and queries with ontologies: a unified logical frame-
work. In Workshop on Principles and Practice of Semantic Web Reasoning (PPSWR-
04), 2004.

B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: combining
logic programs with description logic. In Proc. of the 12th Int. Conf. on World Wide
Web, pages 48-57. ACM Press, 2003.

P. Hajek. Metamathematics of Fuzzy Logic. Kluwer, 1998.

I. Horrocks and P. Patel-Schneider. Reducing OWL entailment to description logic sat-
isfiability. Journal of Web Semantics, 2004. To Appear.

10



(19]

20]
(21]

(22]

23]

(24]

25]

(26]

(27]

28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

I. Horrocks and P. F. Patel-Schneider. Three theses of representation in the semantic
web. In Proc. of the 12th Int. Conf. on World Wide Web, pages 39-47. ACM Press,
2003.

I. Horrocks and P. F. Patel-Schneider. A proposal for an OWL rules language. In Proc.
of the 13th Int. World Wide Web Conf. (WWW-04). ACM, 2004.

I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL:
The making of a web ontology language. Journal of Web Semantics, 1(1):7-26, 2003.

M. Ishizuka and N. Kanai. Prolog-ELF: incorporating fuzzy logic. In Proc. of the 9th
Int. Joint Conf. on Artificial Intelligence (IJCAI-85), pages 701-703, Los Angeles, CA,
1985.

M. Kifer and V.S. Subrahmanian. Theory of generalized annotated logic programming
and its applications. Journal of Logic Programming, 12:335-367, 1992.

Laks V.S. Lakshmanan and N. Shiri. A parametric approach to deductive databases
with uncertainty. IEEE Transactions on Knowledge and Data Engineering, 13(4):554—
570, 2001.

A.Y. Levy and M.-C. Rousset. Combining horn rules and description logics in CARIN.
Artificial Intelligence, 104:165—209, 1998.

Y. Loyer and U. Straccia. The approximate well-founded semantics for logic programs
with uncertainty. In 28th Int. Symp. on Mathematical Foundations of Computer Science
(MFCS-2003), LNCS 2747, pages 541-550, 2003. Springer-Verlag.

Y. Loyer and U. Straccia. Default knowledge in logic programs with uncertainty. In
Proc. of the 19th Int. Conf. on Logic Programming (ICLP-03), LNCS 2916, pages 466—
480, 2003. Springer Verlag.

Y. Loyer and U. Straccia. Epistemic foundation of the well-founded semantics over bi-
lattices. In 29th Int. Symp. on Mathematical Foundations of Computer Science (MFCS-
2004), LNCS 3153, pages 513-524, 2004. Springer Verlag.

Y. Loyer and U. Straccia. Any-world assumptions in logic programming. Theoretical
Computer Science, 342(2-3):351-381, 2005.

C. Mateis. Extending disjunctive logic programming by t-norms. In Proc. of the 5th
Int. Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-99),
LNCS 1730, pages 290-304. Springer-Verlag, 1999.

C. Mateis. Quantitative disjunctive logic programming: Semantics and computation. AJ
Communications, 13:225-248, 2000.

J. Medina, M. Ojeda-Aciego, and P. Vojtas. Multi-adjoint logic programming with contin-
uous semantics. In Proc. of the 6th Int. Conf. on Logic Programming and Nonmonotonic
Reasoning (LPNMR-01), LNAI 2173, pages 351-364. Springer Verlag, 2001.

J. Medina, M. Ojeda-Aciego, and P. Vojtds. A procedural semantics for multi-adjoint
logic programming. In Proc. of thel0th Portuguese Conf. on Artificial Intelligence on
Progress in Artificial Intelligence, Knowledge Extraction, Multi-agent Systems, Logic
Programming and Constraint Solving, pages 290-297. Springer-Verlag, 2001.

M. Schmidt-Schaufl and G. Smolka. Attributive concept descriptions with complements.
Artificial Intelligence, 48:1-26, 1991.

E. Y. Shapiro. Logic programs with uncertainties: A tool for implementing rule-based
systems. In Proc. of the 8th Int. Joint Conf. on Artificial Intelligence (IJCAI-83), pages
529-532, 1983.

U. Straccia. Reasoning within fuzzy description logics. Journal of Artificial Intelligence
Research, 14:137-166, 2001.

U. Straccia. Description logics with fuzzy concrete domains. 21st Conf. on Uncertainty
in Artificial Intelligence (UAI-05), pages 559-567, Edinburgh, Scotland, 2005. AUAI
Press.

11



(38]

(39]

[40]

[41]

(42]

[43]
[44]

U. Straccia. Query answering in normal logic programs under uncertainty. In 8th Eu-
ropean Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty
(ECSQARU-05), LNCS 3571, pages 687—700, 2005. Springer Verlag.

U. Straccia. Uncertainty management in logic programming: Simple and effective top-
down query answering. 9th Int. Conf. on Knowledge-Based & Intelligent Information
& Engineering Systems (KES-05), Part II, LNCS 3682, pages 753-760, 2005. Springer
Verlag.

U. Straccia. A fuzzy description logic for the semantic web. In Elie Sanchez, editor,
Capturing Intelligence: Fuzzy Logic and the Semantic Web. Elsevier, 2006. To appear.

U. Straccia. Uncertainty and description logic programs over lattices. In Elie Sanchez,
editor, Capturing Intelligence: Fuzzy Logic and the Semantic Web. Elsevier, 2006. To
appear.

M.H. van Emden. Quantitative deduction and its fixpoint theory. Journal of Logic
Programming, 4(1):37-53, 1986.

P. Vojtds. Fuzzy logic programming. Fuzzy Sets and Systems, 124:361-370, 2004.
L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338-353, 1965.

12



