
EUROCON 2005 Serbia & Montenegro, Belgrade, November 22-24, 2005

Abstract — MaD-WiSe is a wireless sensor network

database designed to per form in-network distr ibuted query
processing and to manage acquired data. This paper br iefly
presents the MaD-WiSe system and its query processing
model based on data streams. Then, it focuses on the MaD-
WiSe graphical user inter face, which supports query
definition and injection and query results collection.

Keywords —Wireless Sensor Networks, Databases, Stream
Data Processing.

I. INTRODUCTION

CCESSING and processing data produced in a wireless
sensor network [1] using a database-like approach

[2]-[4] has several advantages. Sensors can be deployed in
the physical environment once for all and applications that
manipulate their data can be created, refined, and modified
afterwards without any physical intervention on the sensors
themselves. In fact, data management activity performed in
the network is remotely controlled by interactively issuing
queries, expressed in a high level language, which specify
what data are of interest for a certain task, and how they
should be manipulated. Changing the behavior of the data
management activity in the network corresponds to execute
actions like stopping a query execution and/or formulating
a new one.

We have proposed a new database approach to data
management in sensor networks (called MaD-WiSe) that
attempts to overtake some of the typical limitations of
systems recently proposed in this field. More specifically
our approach addresses the following issues:

• in-network distributed processing of queries that
relate data acquired by different nodes;

• execution of temporal aggregates;
• offering opportunities for network topology and

data statistics aware query optimization;

Work funded in part by the European Commission in the framework

of the "SatNEx" NoE project (contract N. 507052).
Giuseppe Amato is with the Istituto di Scienza e Tecnologie

dell'Informazione del CNR, 56100 Pisa, Italy (phone: +39 050 3152906,
fax: +39 050 3152811, e-mail: amato@isti.cnr.it).

Paolo Baronti is with the Istituto di Scienza e Tecnologie
dell'Informazione del CNR, 56100 Pisa, Italy (phone: +39 050 3152887,
fax: +39 050 3152811, e-mail: baronti@isti.cnr.it).

Stefano Chessa is with the Istituto di Scienza e Tecnologie
dell'Informazione del CNR, 56100 Pisa, Italy, and with the Department
of Computer Science, University of Pisa, via Buonarroti 2, 56100 Pisa,
Italy (phone: +39 050 3152887, fax: +39 050 3152811, e-mail:
chessa@isti.cnr.it).

For this purpose we employed a data model based on
data streams [5] with very fine-grained granularity: data
produced by a single transducer can also be modeled as a
single data stream. The algebra of our query processor is
composed of operators that take data streams as input and
produce data streams as output. A query is represented as a
combination of operators of the query algebra connected
by data streams. Data streams can connect operators
executed on different nodes, offering the opportunity of
real distributed query processing (a query can be processed
across several nodes in which different parts are
independently executed). In our approach time is divided
into epochs, and queries are repetitively executed in every
epoch considering data produced in current epoch.
Contrary to most of existing approaches, in an epoch
several samples can be acquired by the same transducer
depending on the query formulation.

The above model allows us to (in-network) process
queries that relate data produced by different nodes,
process temporal and spatial aggregates, and opens up new
opportunities for more effective query optimization
techniques that take into account network topology,
transducer statistics, and costs.

In this paper we briefly describe the MaD-WiSe system
and the query processing model, and we focus specifically
on the user interface that we have designed to formulate,
send and monitor query execution in a wireless sensor
network.

II. THE MAD-WISE SYSTEM

The MaD-WiSe system allows the interaction with a
sensor network as a relational database. It consists of two
main parts. The first one runs on the sensors and is
responsible for implementing the actual data acquisition,
data processing and data forwarding activities requested in
the network. The second part is a Graphical User Interface
(GUI) application that runs on a PC connected to the sink
and allows a user to program, by means of queries, the
sensor network and to view the corresponding results.

The GUI application has two distinctive characteristics:
• it allows the user to graphically draw a query;
• it leverages on the ability of the sensor software

of being dynamically reprogrammable.
The sensor software offers a set of functionalities that

can be activated upon reception of command messages. By
sending appropriate command messages, the GUI may
request a specific sensor to execute operators of the query
algebra and to manage data streams. Operators of a query

MaD-WiSe: Programming and Accessing Data
in a Wireless Sensor Networks

G. Amato, P. Baronti, and S. Chessa, Member, IEEE

A

can be distributed on different sensors enabling in-network
distributed query processing. By means of command
messages the GUI may also request that the currently
running query be stopped and replaced with another. In
this way it is possible to change the behavior of the sensors
on the basis of user needs without physically acting on
them (i.e. without uploading a new firmware on the
sensors). A user can do this simply interacting with the
GUI. After starting a certain distributed query and
observing the data coming back from the sensors, the user
can decide to replace the current query with a new one.
With a few mouse clicks he can define the new distributed
query and instruct the GUI to send the appropriate
messages to the sensor network. Next section briefly
introduces the sensor architecture and the data model, and
Section IV presents the GUI application.

III. THE SENSOR ARCHITECTURE

We implemented our system on the mica2 motes [6].
These sensors were developed at UC Berkeley and are
widely used in academic environments. They are equipped
with an 8 MHz microcontroller, 4 KB of data memory, 128
KB of instruction memory, a radio, and several transducers
for light, temperature, acceleration and others. The
operating system is TinyOs [7], [8] which is simple and
offers basic hardware abstraction functionalities.

The sensor side of the MaD-WiSe system is organized
into three layers, as depicted in Figure 1. The arrows
indicate use relations among the layers. The layers interact
through well defined interfaces and are autonomous with
respect to each other. Each layer can be replaced with a
new (different) implementation provided it complies with
the existing interfaces.

The Network layer sits on top of the standard MAC
layer of TinyOS. It provides 2 types of communication
services to the above layers. It offers both a connectionless
and a connection-oriented service. At network startup a
distributed protocol assigns a tuple of virtual coordinates
to each sensor which is used by a multi-hop geographic
routing protocol [9]. The network layer also implements an
application-driven energy efficiency protocol for the
connection-oriented service [10].

The Stream System Layer offers abstraction mechanisms
for data access by means of data streams. It can be thought
of as the equivalent of a file system on a sensor network,
the main difference being that, in the latter, data is
continuously produced as a consequence of acquisition
from transducers or processing. The basic concept is the
stream: a unidirectional data channel implemented over the
connection-oriented service of the Network layer. It carries
a flow of records (in the simplest case each record contains
a sensed data or a combination of data sensed by different
transducers). A stream is implemented as a finite size
queue that holds recently acquired records. The Stream
System offers functionalities to create/remove streams as
well as read and write records from/to existing streams.

There are three types of streams: local, remote, and
sensor streams. A local stream is local to a sensor in the

sense that writing to and reading from the stream can only
be requested by code running on the sensor. A remote
stream is a data channel between two distinct sensors:
writing to a remote stream happens on one sensor while
reading from the stream happens on the other sensor. A
sensor stream is directly connected to a transducer to
carries-out data originated from it. Readings are only
possible on this type of streams, given that the stream is
automatically fed by the associated transducer.

The Query Processor Layer implements the query
processor of a distributed database over the Stream
System. It can be programmed remotely to take part in a
distributed query execution. Queries are defined in terms
of operators connected by streams. Streams play the role
of relations (tables) and operators manipulate them
similarly to relational algebra operators. However there are
some fundamental differences. Tables are (more or less)
static collections of records while streams are flowing
records. Correspondingly, operators do not act on static
relations but process records on-the-fly when they arrive.
We have adapted some of the relational algebra operators
to fit our data model.

During query processing the time is divided into epochs.
In an epoch a transducer can be asked to acquire several
values. The concept of epoch has been introduced to
process blocking operators such as temporal aggregation
operators. For instance, if the epoch is set to 10 minutes we
can process queries asking for the average temperature
during periods of ten minutes.

Defining a query for the query processor means defining
what activities must be carried out by each sensor in the
network. Among the activities we distinguish: data
acquisition from local transducers, data processing and
data forwarding. All these activities are expressed through
streams and operators. Operators are active entities that
take some inputs and produce an output. Inputs and output
take the form of streams (we can think of streams as the
means to connect operators). In more concrete terms an
operator reads a record from its input stream(s), performs
calculations/tests on the basis of its defining properties and
the input record(s) and writes a (possibly) modified
version of the inputs to the output stream.

IV. THE GUI APPLICATION

The GUI application is implemented in Java and runs on
a PC connected to the sink. The purpose of the GUI is to
let the user interact with the sensor network, graphically
defining queries and viewing query results.

Query Processor Layer

Stream System Layer

Network Layer

MAC Layer

MaD-WiSe

Fig. 1. Software layers.

Figure 2 illustrates a snapshot of the main application
frame. As can be seen, three areas are identifiable: the
sensor canvas (the largest, white, area), a tool bar on the
left and a status bar on the bottom.

The sensor canvas is used to display the sensors. Each
sensor is represented by a blue square containing its
numeric id. The sink is distinguishable by its dark gray
color (it appears circled in Figure 2). Clicking on a sensor
square selects it, turning its color to red. Selecting a sensor
is important since the interface buttons defining the query
operate on the currently selected sensor. Since the position
of the sensors is acquired from the sensors themselves we
have an accurate representation of the network topology,
including communication range.

The first 5 buttons of the tool bar allow the user to open
new streams and connect existing streams through
operators (i.e. they define queries). The next button (View)
pops up a frame (the query canvas) showing what
operators and streams are currently defined on the selected
sensor, and depicts them graphically arranged in a tree (the
query tree). Operators are represented by circles while
streams appear as sticks (thick lines) connecting operators
(see Figure 4 for a sample query and the query canvases of
the sensors involved). In other words the query canvas
illustrates what data sensing and data processing activities
are currently defined on the sensor. The graphic tree-like
representation of the query changes dynamically as new
query objects are created so the user is visually aided in the
query construction process. Colors and labels help in
identifying the different stream types and operators.

The actual interaction with the sensor hardware begins
when button Start is pressed. This instructs the application
to send any command messages required to let the actual
sensors open streams and set up operators as graphically
defined by the user (i.e. it starts the query). In practice the
GUI sends messages to the sink, which is physically
connected to the PC. The query processor on the sink will
relay these messages to the sensor network using the
connectionless service from the Network Layer.

Button Data is only meaningful when a query is running
and pops up a frame containing a text area where data
records arriving from the sink are displayed one by one.
By this functionality the user can monitor the query results.

The Open button allows the creation of a new stream.

Its parameters are the stream type (sensor, local, or remote)
and a stream id. The stream id must be unique sensor-wide
and it has two purposes: the identification of the streams
on the graphical representation of the query tree (on the
query canvas) and the choice of inputs and output when
defining operators (see below).

When creating a sensor stream, the user must select the
associated transducer (which appears as circle with a letter
inside, indicating the type of transducer) and the sampling
type which can be periodic or on demand. Periodic sensor
stream have an associated sampling rate that indicates the
period between consecutive readings from the transducer.
On the contrary, an on demand sensor stream has no
sampling rate since it is not sampled automatically. A
reading from the transducer must be explicitly requested
by the operator reading from the stream.

For a local stream there is no other information to
supply besides the stream id. Figure 3 illustrates the query
canvas of sensor 2 after creation of a periodic sensor
stream for light (named “Light”), of an on demand sensor
stream for temperature (named “Temp”), and a local
stream (named “Filter”).

When creating a remote stream, the user has to specify a
remote sensor, the stream id used on that sensor, and a
global id for the stream which must be unique network-
wide (to let the two endpoints recognize the same network
channel). A remote stream is graphically represented with
2 sticks: one in the query canvas of the local sensor and
another in the query canvas of the remote sensor.

We now describe how operators can be requested.
A dialog for operator Select (σ) is activated by button

Select. Operator σ reads records from its input stream,
evaluates a predicate on its fields and writes it unchanged
to the output stream only if the predicate is satisfied.
Through the Select dialog the user chooses the input and
output streams from a combo box listing the available
streams (not already in use by other operators). The combo
boxes used for stream selection identify the streams
through the symbolic ids that the user assigned them at
stream creation time. The user finally selects the predicate
type (one of =, �, <, ≤, >, ≥), the left operand (one of the
fields of the input record) and the right operand (another
field of the input record or a numerical constant).

Button Project pops up a dialog for defining operator
Project (π). Its purpose is to read records from its input
stream, select some of the fields and write a new record

Fig. 2. GUI main frame.

Fig.3 Creation of sensor and local streams.

containing only the selected fields to the output stream.
The dialog has combo boxes for selecting the input and
output streams as well as the project fields.

Operator � (button Bridge) is a convenience operator
that transfers records unmodified from its input stream to
the output stream. Its main use is to pass records from a
sensor stream directly to a remote stream.

A more complex operator is Join (). It has 2 input
streams which the user selects from combo boxes. Records
from both input streams must have a timestamp field
(which is always the case unless it was removed by a π
operator). The purpose of is to join records from the
input streams on the basis of a common timestamp value.
The resulting record contains all fields from both input
records.

There are 2 implementation strategies for the Join
operator. In the sync-join implementation one of the input
streams is an on demand sensor stream and the other
stream is any other type of stream (we call it the driving
stream since it drives the join process). When a record
arrives on the driving stream, the operator asks for a
record from the on demand sensor stream and makes the
join. The other implementation is the merge-join. In this
case neither of the two input streams is on demand.
Records can arrive on either stream at any time. Upon
receiving a record from any of the input streams it attempts
to combine it with a record from the other stream.

The reason to provide on demand sensor streams is
energy efficiency. Figure 4 illustrates the query canvases
of sensors 2 and 3 after we define a operator on sensor 2
with “Filter” as the driving stream, “Temp” as the on
demand sensor stream and “S3” as the output. What
happens on sensor 2 is that light is read periodically
(unconditionally) but the readings are filtered by operator
σ. Only if the light reading passes the filter predicate the
record is written to stream “Filter” and reaches operator .
Upon receiving a record on stream “Filter” (and only upon
this event) requests a temperature reading (stream
Temp) and joins it with the light reading. The temperature
transducer only operates when needed. This could produce
significant energy savings if light rarely passes the filter
predicate and the temperature transducer consumes more
power than the light transducer.

Figure 4 shows that writes on the remote stream with
id “S3” with destination on the sensor 3. In fact the query

canvas of sensor 3 shows the remote stream (locally called
“S2”), which is attached to a fictitious “network” operator
to indicate a (remote) writer for “S2” .

Figure 5 shows a complex query involving three sensors,
two and one σ operators, and the respective query result
on the frame activated by the Data button.

Additional operators for computing spatial and temporal
aggregates can be requested as well. We omit their
description given space limitations.

V. CONCLUSION

We have described the MaD-WiSe system and its user
interface. The MaD-WiSe system is under further
development to include advanced query optimization
strategies and efficient query injection.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless Sensor Networks: a Survey” , Computer Networks, vol.
38, no. 4, pp. 393–422, March 2002.

[2] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “The
Design of an Acquisitional Query Processor For Sensor Networks” ,
In 2003 Proc. SIGMOD Conf., pp. 491.502.

[3] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG:
a Tiny AGgregation Service for Ad-Hoc Sensor Networks” , in 2002
Proc. Symp. on Operating Systems Design and Implementation
(OSDI).

[4] Y. Yao and J. E. Gehrke, “The Cougar Approach to In-Network
Query Processing in Sensor Networks” , Sigmod Record, vol. 31,
no. 3. Sept. 2002.

[5] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, S. B. Zdonik: “Aurora: a New
Model and Architecture for Data Stream Management” , VLDB J.
vol. 12, no. 2, pp. 120–139, 2003.

[6] Crossbow Technology Inc. Mica2 website.
http://www.xbow.com/products.

[7] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J.
Pister, “System Architecture Directions for Networked Sensors” , in
2000 Proc. Int. Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IX), pp. 93–104.

[8] TinyOs Community Forum. Tinyos website. http://www.tinyos.net.
[9] A. Caruso, S. Chessa, S. De, and A. Urpi, “GPS Free Coordinate

Assignment and Routing in Wireless Sensor Networks” , in 2005
Proc. IEEE INFOCOM.

[10] G. Amato, P. Baronti, and S. Chessa, “Connection-Oriented
Communication Protocol in Wireless Sensor Networks” , Technical
Report 2005-TR-10, Istituto di Scienza e Tecnologie
dell'Informazione - CNR, Pisa, Italy, 2005.

Fig 4. Creation of a operator.

Fig 5. Query results.

