Temporal Transcoding for Mobile Video Communication*

Maurizio A. BonuccelliX:?)

Francesca Lonetti(%?)

Francesca Martelli®1

(1) Dipartimento di Informatica, Via Buonarroti, 2, 56127 Pisa, Italy
Ph: +39.050.2212755/3108 Fax:+39.050.2212726
(2) ISTI-CNR, Via Moruzzi, 1, 56124 Pisa, Italy
Ph: +39.050.3153468 Fax: +39.050.3152924

e-mail: {bonucce,lonetti}@di.unipi.it, f.martelli@isti.cnr.it

Abstract

Third generation mobile communication systems
will provide more advanced types of interactive and
distribution services, and video is one of the most
prominent applications for multimedia communi-
cations. Adapting the media content to different
networks characteristics (communication links and
access terminals), in order to enable video deliv-
ery with acceptable service quality, is one of the
most important problems in this setting. In this pa-
per, we consider one of the video adaptation meth-
ods, namely video transcoding, and we present new
buffer-based strategies for temporal video transcod-
ing in a real-time context. Simulation results show
that our strategies achieve a good performance in
hard transcoding conditions also.

1 Introduction

Third generation mobile communication systems
(e.g. UMTS) offer new and attractive services (as
video streaming, video telephony, video conference)
to mobile users. These services involve different
types of devices and communication links. A fair
and flexible allocation of the limited radio band-
width resources among different types of services,
with their respective quality requirements, is a crit-
ical issue.

Video delivery in heterogeneous communication
environments is enabled by one of the following
three strategies [3]. Simulcast distribution is the de-
livery of independently encoded copies of the same
video content, each one compliant to varying fea-
tures, such as bit/frame rates and spatial resolu-
tion. The disadvantage of this strategy is the high
number of copies of the same video, which implies
transmission bandwidth and storage resources over
usage. Scalable media model provides a base layer

*This work has been supported by FEricsson Lab Italy,
within the PisaTel Lab at ISTI - CNR.
tContact author.

for minimum requirements, and one or more en-
hancement layers, to offer improved qualities at
increasing bit/frame rates and resolutions. This
strategy leads to overall video quality degradation
with the increasing level of scalability, particularly
when the base layer is encoded at a low bit rate.
Furthermore, it requires layered encoding and de-
coding capabilities in sender’s and receiver’s de-
vices, difficult to implement in low-power mobile
terminals.

The third strategy is content adaptation, bet-
ter known as transcoding, typically performed by
servers of a communication system, or by gateways
interconnecting different networks. Transcoding al-
lows users to encode, transmit and decode accord-
ing to their features (such as channel bandwidth
and terminal complexity) and preferences (such as
desired video quality).

Video transcoding is the process of converting
a video sequence into another one with different
features, without totally decoding and re-encoding,
so by reducing the complexity and the running
time, and enabling the interoperability of heteroge-
neous multimedia networks [4]. Video transcoding
could provide format conversion, resolution scal-
ing (spatial transcoding), bit rate conversion (qual-
ity transcoding), frame rate conversion (temporal
transcoding). Format conversion operates a syn-
tax change from a video coding standard to an-
other one, for instance, from MPEG encoded video
stream to H.263 encoded one.

Spatial transcoding, i.e. reduction of the spa-
tial resolution of the compressed video is required
for facing the problem of limited size in many ac-
cess terminals. The simplest case is the 2:1 down-
scaling [8, 9]. Recent works investigate the spa-
tial transcoding with arbitrary down-sampling ratio
[10, 12].

In order to distribute the same encoded video
sequence to users through channels with different
capabilities, the coded video sequence must be con-
verted into specific bit rates for each outgoing chan-

nel. Quality transcoding does this by operating on
the bit allocation for each frame and by tuning the
quantization parameters of every macroblock of the
frame according to the target bit rate. The conse-
quence of this is a variable frame quality. When the
bandwidth in a wireless network is very limited, the
quality transcoding process can cause high degra-
dation of the transcoded video quality if the frame
rate is constant.

Temporal transcoding is a process that eliminates
some frames in the sequence, in order to reduce the
frame rate of the video sequence, without decreas-
ing the video quality of not skipped frames. When
frames are skipped, recomputing the motion vec-
tors (since the old ones are no longer valid because
they refer to skipped frames) and the prediction er-
rors (for the same reason), is in order. This is done
by re-using the motion vectors and the prediction
errors in the input video sequence as much as pos-
sible. In addition, a frame skipping strategy must
be adopted, that is a policy for deciding the frames
to be dropped.

In a real time setting, the buffer control is a criti-
cal issue, and it is influenced by the number of con-
secutive dropped frames. We propose a new buffer-
based frame skipping policy allowing real time com-
munication. We propose also other three skipping
policies to be used together with the buffer-based
one: the first is based on the amount of motion
present in the frames, with the goal of dropping
frames with less movements; another which at-
tempts to limit the number of consecutive skipped
frames, in order to avoid (as we shall see in the fol-
lowing) an irreversible situation in which a purely
temporal transcoder is not able to produce output.
The third one, is a random strategy, that has the
advantage of being simple, but statistically good.

We implemented our temporal transcoder with
MPEG4 codec, and we evaluated the performance
of our frame skipping strategies by considering two
metrics: the number of transcoded frames (indi-
cating the smoothness of the video sequence), and
the PSNR (indicating the quality of transcoded
frames). We observed that constant output bit
rate, real time constraints, and good quality are
provided by all strategies.

The paper is organized as follows. In Section 2,
we address the temporal transcoding problem and
survey the results present in literature; in Section 3,
we describe our temporal transcoder, able to sup-
port real time communications. In Section 4 we
present our frame skipping strategies. Experimen-
tal results are drawn in Section 5. Finally, conclu-
sions and future work are highlighted in Section 6.

2 Temporal transcoding

As said before, in temporal transcoding three issues
must be addressed: the computation of the motion
vectors, the computation of the prediction errors,
and the frame skipping policy.

For the first problem, the typical strategy is the
Motion Vector Composition (MVC), together with
a restricted motion estimation called Refined Search
(RS). For each macroblock, a candidate motion vec-
tor is computed by composing the motion vectors of
all dropped frames between the current frame and
the last not dropped frame. The new motion vec-
tors are then obtained by searching around the can-
didate motion vector obtained by the MVC, within
a few pixels search area. In literature, four MVC
algorithms are known: Bilinear Interpolation [7],
Telescopic Vector Composition [9], Forward Domi-
nant Vector Selection [13], and Activity Dominant
Vector Selection [1].

There are in literature two ways for computing
the new prediction errors: a standard one (the
same used by the encoder), is by computing, in the
pixel domain, the differences between the current
macroblock and the reference area, in the last not
skipped frame, pointed by the new motion vector
(obtained by MVC and RS). Then, these differences
are encoded with the usual DCT and quantization.
An alternative way [5, 6], is to add the errors of the
current macroblock to those of the macroblock or
reference area in the previous skipped frame. Ac-
cording to our experiments, the first strategy guar-
antees better video quality but it requires a greater
computation time. The second one is faster, since
it does not perform DCT, quantization and inverse
DCT and inverse quantization, when the motion
vector of the current frame points to a macroblock
in the previous skipped frame (this typically hap-
pens with null motion vectors). So its prediction
errors are already present in the input coded bit
stream. When the motion vector points to a refer-
ence area which does not overlap a macroblock in
the previous skipped frame, the prediction errors of
this area are not available in the input data. The
re-quantization introduced for computing these er-
rors brings additional re-enconding errors. Such er-
rors degrade the quality of the reconstructed frame.
Since each non skipped frame is used as refer-
ence for the following non skipped frames, quality
degradation propagates to later frames in a cumu-
lative manner. When more frames are dropped,
this degradation cannot be entirely avoided, even if
error-compensation strategies are applied.

About frame skipping policies, there are in liter-
ature several results. A strategy based on motion
activity has been presented [7]. The motion ac-

tivity gives a measure of the motion in a frame.
The motion activity of a frame t, M A(t), is defined
as the sum of the motion activities M A(t),, of all
macroblocks of the frame ¢, where M A(t),, is the
sum of the horizontal and vertical components of
the motion vector of macroblock m:
MA()m = 2] + [yil- (1)
If the motion activity is larger than a given thresh-
old, the frame is not skipped, since it has consid-
erable motion, and so transcoding this frame im-
proves the smoothness of the video sequence.

Another strategy [5] has been developed for fac-
ing the problem of the re-encoding errors, when the
prediction errors are computed in the alternative
way described before. The goal of this strategy is
to minimize the re-encoding errors as well as to pre-
serve the motion smoothness. It is based on a met-
ric which is the motion activity of the current frame
divided by the sum of the re-encoding errors. If this
is greater than a given threshold, the frame should
not be skipped because it has considerable motion.
On the contrary, if this metric is smaller than the
threshold, the frame can be skipped since it con-
tains many re-encoding errors. The threshold can
be dynamically set according to the target frame
rate of the transcoder.

A control scheme considering the motion change
and trying to reduce the jerky effect caused by
frame skipping has been proposed [11]. At each
frame, the motion change is given by the difference,
in terms of motion vectors, between the sequence
where that frame is transcoded and the sequence
where that frame is skipped, and replaced by the
previous one during the decoding phase. An high
value of motion change of a frame causes an evident
jerky effect if that frame is skipped. In addition,
frames are skipped also according to buffer occu-
pancy, in order to achieve a constant output bit
rate. Another policy is proposed in [2]; it consists
in a rate control mechanism based on a buffer level
prediction algorithm, in order to reduce the num-
ber of consecutive skipped frames which generates
the jerky effect.

3 Our temporal transcoder

In current communication systems, many advanced
multimedia applications have real time features.
In order to meet the needs of such real time ap-
plications, our main goal was to study temporal
transcoding techniques guaranteeing a fixed com-
munication delay. In order to perform this, a
transcoder output buffer is introduced. Before de-
scribing our transcoder architecture, we give some

definitions . The words “input” and “output” are
always related to the transcoder.

We call IR the input bit rate, and R the out-
put bit rate; p indicates the frame rate of the input
video sequence. S and L are the size and the occu-
pancy of the transcoder buffer, respectively. With
I(f), we denote the size of the transcoded frame
f. Disregarding the transmission time, the delay
7 introduced into the communication system is de-
termined by L/R: in this way, the maximum de-
lay incurred by a data bit of the transcoded video
sequence is S/R. We choose a maximum delay of
7 = 500ms, that is considered the maximum admit-
ted delay of a real time communication. In order to
meet 7, we set the buffer size S to half the output
bit rate R.

We developed a temporal transcoder architecture
able to reduce the input bit rate IR of the incom-
ing video sequence, by eliminating some frames, in
such a way the output bit rate R turns out to be
constant. Notice that the frame rate of the output
video sequence is not constant, and we assumed
that the skipped frames are replaced by the previ-
ous ones (“freezing”) at the displaying time in the
final decoder. In addition, our temporal transcoder
guarantees real time, by limiting to 7 the maximum
delay incurred by data.

In our transcoder, the motion vectors are com-
puted by one of the four MVC algorithms!, de-
scribed in Section 2, and RS procedure. The pre-
diction errors are computed in the standard way
described above. We need to reconstruct the mo-
tion vectors and the prediction errors for each frame
of the input video sequence, before applying the
skipping policies, since, as we shall see in the fol-
lowing, they need to know some features of the
reconstructed frame (for instance, its size). Re-
constructed frames are then skipped or placed in
the buffer for being transmitted. Notice that the
transcoding of each frame is needed in case of
both transmission and dropping, since the succes-
sive frame has to be transcoded in terms of the
previous one in both cases. This is needed also for
avoiding to store all skipped frames between the
current frame and the last transmitted one, which
implies large memory resources.

4 Frame skipping policies

The main concern of this paper is the frame skip-
ping problem, and we present new policies which
aim to meet the real time constraint, as well as to
achieve a good video quality. In order to achieve

'n our experiments we observed that the results obtained
by these four algorithms are equivalent.

the first objective, a basic policy, based on buffer
occupancy, is developed. The other ones, are asso-
ciated to the previous, and consider other measures
such as the motion activity, the number of consec-
utive skipped frames, and a random choice. In the
following, we describe all policies in detail.

4.1 Buffer Occupancy

In order to guarantee a fixed communication delay,
considering the buffer occupancy in frame skipping
is needed. We present a buffer-based frame skip-
ping policy where two buffer thresholds, Bjyyer and
Bypper, are established in order to avoid buffer un-
derflow and overflow. Underflow occurs when the
buffer occupancy is zero and so the final decoder
receives data of the video frame after it is sched-
uled to be displayed, causing the stop of the video
sequence (besides the non-utilization of the commu-
nication bandwidth). Buffer overflow occurs when
the buffer occupancy exceeds the buffer size, and it
increases the assumed delay 7. This is equivalent
to a frame loss at the decoder, since at display-
ing time some bits of the corresponding frame are
still in the transcoder output buffer waiting to be
transmitted. Bjower and Bypper are set dynami-
cally according to the ratio IR/R. We observed
experimentally that the best values for Bj,yerand
Buypper are respectively 20% and 80% of the buffer
size when IR/R = 2. If IR/R > 2 it is needed
to decrease B, pper so that the free buffer space is
always (in average) sufficient to accommodate at
least one frame; for instance, when IR/R = 4, a
good value for Bypper is 60%. A frame is skipped
if the buffer occupancy is greater than By,perS,
and it is always transcoded if the buffer occupancy
is lower than BjyyerS. Independently from the
value of the threshold, in our buffer-based policy,
we avoid the buffer overflow by testing that the
size of the transcoded frame does not exceed the
free buffer space. The first frame, that is an in-
tra frame, is always transcoded. If the size of the
first frame exceeds the buffer size, we have an ad-
ditional delay equal to 7y for those bits which do
not fit in the buffer, and after an initial delay of
T+ 19, this frame skipping policy guarantees a con-
stant delay 7 for the whole transmission. If the
output bit rate is equal to R, and a constant frame
rate p is used, we assume that the buffer occupancy
decreases at a constant rate of R/p bits every 1/p
seconds. The whole procedure is described by the
following pseudo-code.

Basic Policy(frame f):
if (f = first frame) transcode f
else

if ((L < Blower(S))&(L + l(f) < S)) transcode f
else
i (L > Bupper(S)) skip f
else
if(L+1(f) > S) skip f
else transcode f or apply another policy

In the next sections, we describe three policies
that can be applied at the last step of the previous
procedure.

4.2 Motion-based frame skipping

In Section 2, we reported some motion-based frame
skipping policies proposed in literature. We present
here a new motion based frame skipping policy that
is applied when the buffer constraints are met. The
goal of this policy is to transcode the frames with
high motion. To perform this, a new motion activ-
ity measure is introduced. We slightly modified the
definition given in equation 1 in the following way:

(2)

where k is a properly tuned constant. In this way,
the motion activity measure assumes large values
both in case of frame with many but small mo-
tion vectors and in case of frames with few but
large motion vectors. These two cases correspond
to different kind of motion: the first one occurs
when there are little movements of many objects;
the second occurs when there are few objects with
great motion. Moreover, since an intra macroblock
is produced when there are a lot of prediction errors
(namely, the macroblock is largely different from
the reference area in the previous frame), we as-
sign to intra macroblocks, the maximum motion
activity value equal to the maximum size of the
motion vectors, which corresponds to the search
range used by the Motion Estimation procedure.
In this way, we take into account of intra mac-
roblocks also in the motion activity computation.
If a frame has a small value of motion activity, it
can be skipped since it is well replaced by the pre-
vious frame. Otherwise, it has considerable mo-
tion, and it should be transcoded. In our motion-
based frame skipping policy, the motion activity of
a frame is compared with a threshold T'hr. The
threshold Thr(f) is dynamically set to take into
account (with equal weight) the motion activity of
the previous transcoded frame M A(f — 1), and the
motion activity of all earlier frames Thr(f — 1).

The motion-based frame skipping policy is shown
in the following pseudo-code.

MA,, = k=il 4 glvil

Motion-based Policy(frame f):
if(f=first frame) Thr(f) = 0;

else Thr(f) = (Thr(f — 1)+ MA(f —1))/2;
if (MA(f) < Thr(f)) skip f
else transcode f

As we shall see, this policy can lead to an high
number of skipped frames, since it skips many con-
secutive frames having a low value of motion activ-

ity.

4.3 Consecutive frames skipping

When the bandwidth of a coded video sequence
needs to be drastically reduced, namely there is
high variation between the input bit rate and the
output bit rate (from 128 Kbit/s to 32 Kbit/s, for
instance) we have hard transcoding conditions. In
these cases, the skipping of consecutive frames is
often unavoidable at the transcoder. However, if
many consecutive frames are dropped, the typical
jerky effect in the transcoded video sequence is ob-
served by the final user. In addition, in a real time
setting, where we try to avoid buffer underflow and
overflow, a critical situation, leading to the block-
ing of the transcoding process, can occur, if it is
not faced in a proper way. After skipping many
consecutive frames, motion vectors and prediction
errors can be very large, and so the frame size can
exceed the free buffer space. Thus, if this frame
is transcoded, buffer overflow occurs, but if it is
skipped, the size of the next transcoded frame will
be larger. Even if, in the meanwhile, the free buffer
space increases, it could not be sufficient to accom-
modate the transcoded frame. So, it is possible
to reach an irreversible situation, in which if the
frame is transcoded buffer overflow occurs, but if
it is skipped, buffer underflow occurs. We propose
a solution for this problem, by trying to minimize
the number of consecutive skipped frames. This is
done by forcing the transcoder to drop an earlier
frame (even it is not needed), in order to prevent a
future frame dropping.

We define I' = IR/R representing the ideal ra-
tio between the number of incoming frames and
the number of outgoing frames, if the frames would
keep the original size of input bitstreams. So, the
transcoder skips frames until the number of consec-
utive skipped frames is equal to I' — 1. Considering
the total number of frames in the sequence, at least
1 —1/T of them will be skipped. Then, our strat-
egy forces the transcoder to skip I' — 1 consecutive
frames (irrespective of any other feature) in order
to prevent a number of consecutive skipped frames
larger than I" — 1.

We show below the pseudo-code of the whole
strategy.

MaxConsecutiveSkipping Policy(frame f):
if (numConsecutiveSkippedFrames < T')
skip f;
numConsecutiveSkippedFrames++;
else
transcode f;
numConsecutiveSkippedFrames=0;

However, this policy does not guarantee that the
above critical situation never happens, but it is very
unlikely that it occurs.

4.4 Random frame skipping

Randomization is used for studying the behavior of
a system when input data do not follow any known
law. In our setting, the sizes of incoming frames are
variable and it is not possible to assume a certain
distribution. This motivated us to try of managing
the frame skipping in a randomized way.

As we saw in Section 4.1, in real time setting,
the temporal transcoder choices firstly depend on
the buffer occupancy. We design a simple ran-
dom strategy based on the buffer occupancy, in or-
der to decide what frames are to be skipped. We
uniformly generate a random number in the range
[0..S]. If this number is larger than the buffer oc-
cupancy L, the current frame is transcoded, other-
wise it is skipped. We observe that the greater is
the buffer occupancy, the smaller is the probability
that the random number is larger than occupancy,
so the smaller is the probability of transcoding the
frame. In this way, we try to transcode more frames
when the free buffer level is high, and to skip more
frames when the buffer occupancy is high. We show
below the pseudo-code of this strategy.

Random Policy(frame f):
randomNumber = random() % S;

if (randomNumber > L) transcode f
else skip f.

In the next section, we show the results of our
frame skipping policies.

5 Simulation results

We implemented an MPEG4-based transcoder and
evaluated the performance of our frame skipping
strategies by considering two metrics: the num-
ber of transcoded frames (indicating the video se-
quence smoothness), and the PSNR (indicating
the quality of transcoded sequence). We compute
the PSNR between the transcoded video sequence

mobile foreman coastguard
Frames | PSNR | PSNR2 | Frames | PSNR | PSNR2 | Frames | PSNR | PSNR2
Buffer 155 27.09 29.21 144 30.08 34.01 105 28.72 34.36
MA-based 145 25.73 28.34 127 28.08 33.73 106 27.66 33.70
Consecutive 149 26.58 28.52 134 29.81 33.97 96 28.47 34.01
Random 148 25.95 28.72 132 28.43 33.13 106 28.13 34.13

Table 1: Number of transcoded frames, PSNR with freezing, PSNR without freezing (PSNR2) for dif-

ferent video sequences (IR = 128, R = 64 kbps).

mobile foreman coastguard
Frames | PSNR | PSNR2 | Frames | PSNR | PSNR2 | Frames | PSNR | PSNR2
Buffer 59 22.84 28.02 45 24.21 35.00 35 24.06 35.32
MA-based 60 21.38 27.77 50 23.57 33.71 32 23.95 34.25
Consecutive 57 22.80 28.02 47 24.21 33.92 34 23.95 33.97
Random 59 22.52 27.95 50 24.36 33.84 34 24.11 34.26

Table 2: Number of transcoded frames, PSNR with freezing, PSNR without freezing (PSNR2) for dif-

ferent video sequences (IR = 128, R = 32 kbps).

and the video sequence decoded after the front en-
coder. Two kinds of PSNR measures are consid-
ered: in the first one, the PSNR takes into ac-
count of transcoded and skipped frames, by replac-
ing these last with their previous ones (freezing). In
the second one, PSNR considers transcoded frames
only. Given that our transcoder is a purely tem-
poral (and not a quality) one, quality degradation
is due to frame dropping only. So, the first way
to compute PSNR allows us to measure the actual
visual quality perceived by the final user. The sec-
ond way indicates the quality of single transcoded
frames, without capturing the degradation intro-
duced by frame dropping.

We report in Tables 1 and 2 the average PSNR
obtained by considering both measures explained
above.

We consider several video sequences in QCIF for-
mat and frame rate of 30 fps. We show only the
most significant experimental results about differ-
ent benchmark video sequences of 300 frames: “mo-
bile”, which is a video sequence with a lot of motion,
“foreman”, which is a video sequence with scene
changes, and “coastguard” where there are moving
objects.

In Tables 1 and 2, we show the results of the
frame skipping strategies considered in this paper,
for “standard” and “hard” transcoding conditions?.
For the first case, we consider IR = 128 kbps and
R = 64 kbps; for the second one, IR = 128 kbps
and R = 32 kbps.

From our experimental results we deduce that,

2With “standard” transcoding conditions we mean a typ-
ical situation in which the transcoder output channel has a
bandwidth equal to an half of the input bandwidth.

in order to have a real-time communication, buffer
occupancy is the dominant factor, that is why it
is considered in all the frame skipping strategies.
Consequently, there are not large differences on the
PSNR achieved by different frame skipping strate-
gies (see Figures 1, 2 and 3).

By looking at Table 1 we observe that all strate-
gies reduce to about one half the number of frames,
so achieving the same ratio between R and IR for
“mobile” sequence, while for other sequences the
number of transcoded frames is lower.

In Table 2 we report the results for hard
transcoding: we note that “consecutive” skipping
policy behaves similarly to the “buffer-based” pol-
icy, in terms of average PSNR, but by looking at
Figures 2 and 3, we observe that, in hard transcod-
ing conditions, with the “consecutive” policy, the
lowest PSNR values are greater than the lowest val-
ues of other policies. This happens since the frames
are dropped more uniformly.

6 Conclusions

We implemented four frame skipping strategies in
order to improve the quality of the temporal video
transcoding in a real-time environment. Disregard-
ing the transmission time, we obtained a real time
communication with a maximum admitted delay of
500 ms. In the “buffer occupancy” strategy, we
achieved this by considering only the buffer occu-
pancy to skip frames, and avoiding buffer under-
flow and overflow. In the others, we considered
other metrics in order to improve the visual qual-
ity. There are not large differences on the PSNR
achieved by the proposed frame skipping strategies,

45

41
__ 37
33
29
25
21
17
13

—>¢— Buffer —— Motion-based —e— Consecutive —8— Random

PSNR (dB

T T T
1 Frame Number 50

Figure 1: PSNR of the proposed frame skipping policies of “mobile” video sequence (IR = 128, R = 64
kbps).

—<— Buffer —a— Motion-based —e— Consecutive —s— Random

PSNR (dB)

12 T |
Frame Number 50

Figure 2: PSNR of the proposed frame skipping policies of “mobile” video sequence (IR = 128, R = 32
kbps).

—x— Buffer —a— Motion-based
28 —o— Consecutive —— Random
34 |\

22 i “t} Q‘“&L:"S ié: .A ‘l’l‘l

il
v‘.'

I
SRS

PSNR (dB)

18
14
10 ‘

Frame Number

Figure 3: PSNR of the proposed frame skipping policies of “coastguard” video sequence (IR = 128,
R = 32 kbps).

but the “consecutive” policy achieves a better vi-
sual quality in hard transcoding conditions, since
skipping of an high number of consecutive frames
is avoided.

Several problems are still open. An interesting
one is an analytical study of the buffer, in order to
reduce the maximum admitted delay 7. Besides, we
intend to refine the parameters of “motion-based”
and “random” strategies, by means of an exten-
sive simulation phase. Another interesting issue is
to test the behavior of our policies on H.263-based
transcoder, and the emerging H.264-based one.

Acknowledgment

The authors would like to thank Ericsson Lab Italy
team working on video transcoding, in particular
Giovanni Iacovoni and Salvatore Morsa for intro-
ducing us in this research area, and for the helpful
discussions.

References

[1] M.-J. Chen, M.-C. Chu, and C.-W. Pan. Effi-
cient motion-estimation algorithm for reduced
frame-rate video transcoder. IEEE Transac-

tions on Circuits and Systems for Video Tech-
nology, 12(4):269-275, April 2002.

[2] P.D. F. Correia, V. Silva, and P. A. Assuncio.
A method for improving the quality of mobile
video under hard transcoding conditions. In
Proceedings of IEEE International Conference
on Communications (ICC03), volume 2, pages

928-932, Anchorage, Alaska, USA, May 2003.

S. Dogan, S. Eminsoy, A. H. Sadka, and
A. M. Kondoz. Video content adaptation us-
ing transcoding for enabling UMA over UMTS.
In Proceedings of the 5th International Work-
shop on Image Analysis for Multimedia Inter-
active Services (WIAMIS’2004), Lisbon, Por-
tugal, April 2004.

S. Dogan, A. H. Sadka, and A. M. Kondoz.
Efficient MPEG-4/H.263 video transcoder for
interoperability of heterogeneous multimedia
networks. Elettronics Letters, 35(11):863-864,
May 1999.

K.-T. Fung, Y.-L. Chan, and W.-C. Siu.
New architecture for dynamic frame-skipping
transcoder. IEEFE Transactions on Image Pro-
cessing, 11(8):886-900, August 2002.

[6] K.-T. Fung, Y.-L. Chan, and W.-C. Siu. Low-

complexity and high quality frame-skipping

[10]

[13]

transcoder for continuous presence multipoint
video conferencing. IFEEE Transactions on
Multimedia, 6(1):31-46, February 2004.

J.-N. Hwang, T.-D. Wu, and C.-W. Lin. Dy-
namic frame-skipping in video transcoding.
In Proceedings of IEEE Second Workshop on
Multimedia Signal Processing, pages 616—621,
Redondo Beach, CA, USA, December 1998.

B. S. Sethi and I. K. Vasudev. Adap-
tive motion-vector resampling for compressed
video downscaling. IEEE Transactions on
Circuits and Systems for Video Technology,
9(6):929-936, September 1999.

T. Shanableh and M. Ghanbari. Hetero-
geneous video transcoding to lower spatio-
temporal resolutions and different encoding

formats. IEEE Transactions on Multimedia,
2(2):101-109, June 2000.

G. Shen, B. Zeng, Y.-Q. Zhang, and M. L.
Liou. Transcoder with arbitrarily resizing ca-
pability. In Proceedings of IEEE International
Symposium on Circuits and Systems (ISCAS
2001), volume 5, pages 25-28, Sydney, Aus-
tralia, May 2001.

H. Shu and L.-P. Chau. Frame-skipping
transcoding with motion change consideration.
In Proceedings of IEEE International Sympo-
sium on Clircuits and Systems (ISCAS2004),
volume 3, pages 773-776, Vancouver, Canada,
May 2004.

J. Xin, M.-T. Sun, K. Chun, and B. S.
Choi. Motion re-estimation for HDTV to
SDTV transcoding. In Proceedings of IEEE
International Symposium on Circuits and Sys-
tems (ISCAS 2002), volume 4, pages 715-718,
Scottsdale, Arizona, USA, May 2002.

J. Youn, M.-T. Sun, and C.-W. Lin. Mo-
tion vector refinement for high-performance

transcoding. IFEE Transactions on Multime-
dia, 1(1):30-40, March 1999.

