
The Stream System: a Data Collection and
Communication Abstraction for Sensor Networks

Giuseppe Amato∗, Paolo Baronti∗, Stefano Chessa∗† and Valentina Masi∗
∗Istituto di Scienza e Tecnologie dell’Informazione

Area della Ricerca, CNR di Pisa-S.Cataldo - 56124 Pisa, Italy
†Computer Science Department, University of Pisa

Largo B. Pontecorvo 3 - 56127 Pisa, Italy

Abstract— Sensor network software is still in its youth. Due
to sensor hardware limitations and the highly specific nature of
application domains, existing software is generally poorly struc-
tured. It mixes data collection activities with data management,
data storage/retrieval and intra/inter-sensor data communication
with the actual data processing required by the application.

We identify data collection, intra-sensor and inter-sensor com-
munication as recurring activities in sensor network applications
and propose a software module that abstracts these activities:
the Stream System.

Applications developed on top of if can be organized as a
set of computational entities that are provided with a uniform
view of such activities through the concept of streams. Streams
represent a flow of data records that either (i) originate from a
local transducer and can be read by a local entity, (ii) originate
from a local entity and can be read by another local entity or
(iii) originate from a local entity and can be read by a remote
entity i.e., one running on a different sensor.

Applications disregard the actual implementation details of
collecting transducer readings and passing such data to other
local or remote computational entities and rely on the Stream
System to provide a record oriented data service in this respect.

I. INTRODUCTION

Sensor Networks are a special kind of wireless ad hoc net-
work where nodes (sensors) are small devices with extremely
constrained resources. They are equipped with a small amount
of memory, a set of transducers, a low range, low bandwidth
radio transceiver and are powered by on board batteries.
Table I presents hardware characteristics for the Crossbow
mica2 mote: a low end sensor widely used in research fields
[1].

The distinguishing characteristic of sensor hardware is the
possibility of sampling light, temperature, magnetism, humid-
ity, acceleration, etc. from the surrounding environment and
sending this data to neighbors.

Trivial data gathering applications request sensors to period-
ically sample a certain phenomena and forward these readings
to a special sink node that is connected to a PC by special
hardware (e.g., a wire, a high power radio link, a satellite link).
The actual data processing happens on the PC. A problem
with this approach is that it requires a high level of message

Work funded in part by the European Commission in the framework of the
”SatNEx” NoE project (contract N. 507052), and by MIUR in the framework
of the Italian project ”IS-MANET”.

Microcontroller ATMel ATmega128L 7.37 MHz
Instruction memory 128 KB
Data memory 4 KB
Secondary storage 512 KB Flash memory
Radio Variable range 315/433/915 MHz
Bandwidth 50 Kbs gross data rate
Power 2 AA batteries
Typical transducers Light, temperature, magnetism,

audio, acceleration

TABLE I

CROSSBOW MICA2 HARDWARE CHARACTERISTICS.

generation/relay in the network. Since battery power is a scarce
resource and the radio interface is the most power-hungry
device on the sensor, it is extremely important to limit message
exchange as much as possible.

A way to do this is to move (at least a part of) the
computation into the sensor network. This solution saves
energy because (i) it reduces the number of messages sent
given that many of them can be replaced by one which carries
some computed value (e.g., an aggregate) and (ii) executing
instructions (i.e., carrying out computations) is less expensive
than sending bits over the radio. This approach, adopted in
systems like TinyDB [2], Cougar [3], directed diffusion [4],
requires that the PC operator inject complex tasks (known as
queries in database oriented applications) into the network,
assigning data collection, computation and communication
activities to the sensors.

To this aim, a careful design of software modules, to run on
sensor nodes, is really important to guarantee sensor network
reconfigurability and flexibility in developing and deploying
new applications.

However, as discussed in next section, existing applications
have often a monolithic architecture, which make it difficult
to adapt them to new environments, situations, and applicative
requirements, and to test new solutions for the various services
required for their functionalities.

In this paper we identify the basic activities needed for
data acquisition, manipulation, and delivery. This activities
are centralized in a single module, the Stream System, which
can be thought as the equivalent of the file system in tradi-
tional computer systems. The Stream System functionalities
reflect the high dynamic variability of data and distributed

access/processing observed in wireless sensor networks, and
it can be used as a building block for higher level applications,
such as sensed data management softwares, sensor databases,
etc.

The rest of the paper is organized as follows: Section II
gives motivations for the Stream System development and use.
Section III introduces the Stream System and describes the
interface it offers to an application module. We give imple-
mentation guidelines in Section IV and present some details
for a real implementation on sensor hardware in Section V.
We finally draw the conclusions in Section VI.

II. MOTIVATION

Existing sensor network applications are rather monolithic
in the sense that they do not structure and do not logically
divide data acquisition, data management, data processing
and data communication tasks. Due to resource (memory)
limitations and highly application specific uses of sensor
networks, existing code tends to freely mix the above tasks.

We believe that identifying common activities and defining
lightweight modules that carry them out in a general, applica-
tion independent, way is a step toward easier sensor software
development and reuse. We actually implemented this module
on the TinyOs/nesC platform as described in Section V.

The Stream System offers an unidirectional data collection
and data communication abstraction to higher layers. The basic
concept is that of a stream. It represents a generic unidirec-
tional data channel that is able to carry data. The Stream
System provides functionalities for creating and destroying
streams and for writing and retrieving records to/from existing
streams. Streams are also used to access data acquired by
transducers.

The context where we envision the use of streams is that
of operator-driven computations (or dataflow-like computa-
tions). Operators can be thought of as independent agents
that have one or more inputs, perform some operations on
those inputs and possibly produce an output. In our model,
operator inputs are data read from streams, and the operator
outputs are data they write to a stream. By defining different
operator types and interconnecting them with streams, we can
construct complex computation/data processing tasks. Figure 1
illustrates this concept with a simple graphical representation
of a computation based on streams and operators. Circles rep-
resent operators and lines connecting them represent streams.
The computation diagram is organized as a tree with leaf
nodes producing data records, interior nodes being full fledged
operators with inputs and output and the root corresponding
to the result of the computation.

One possible application based on operators and the use
of the Stream System is a distributed query processor for
sensor networks based on the relational model [5]. In [6]
we describe an early implementation of such a system where
relational operators like selection (σ), projection (π), join (on)
and spatial and temporal averages, were implemented relying
on the Stream System that we present here. Streams, in this
system, were used to implement dynamically varying versions

Op1

Op2 Op3

Op4P1 P2

P3

Fig. 1. Computation model with streams and operators. P nodes produce data
records and Op nodes are operators which take input records and produce an
output record.

of tables in the relational model. Operators act on stream
records as (similarly to) the corresponding relational algebra
operators act on table records. Combining these operators with
streams we have been able to process relational algebra queries
in a sensor network.

Figure 2 illustrates an example query, expressed in the rela-
tional algebra, involving two sensors and employing streams
and operators. On sensor S1 two sensor streams(S) (see

S1

S

S

L

L

R

S

S2

σ

TH

T

Fig. 2. Example relational algebra query with operators and streams. S =
sensor stream, L = local stream, R = remote stream, H = humidity transducer,
T = temperature transducer.

Section III for a description of the various stream types) are
used to pass humidity (H) and temperature (T) readings to a
join operator (on). A local stream (L) carries the output of the
latter operator to a selection operator (σ), to filter the records
on the basis of some predicate. The output crosses the network
on a remote stream (R) to sensor S2 where a join operator
combines such records with the result of local sampling of
temperature through a sensor stream.

III. THE STREAM SYSTEM

The Stream System offers three types of streams: sensor
streams, local streams and remote streams. Sensor streams are

the basic abstraction for collecting readings from transducers.
Sensor streams can only be read from operators since the
writing is carried out by the associated transducers (these can
be thought of as virtual operators writing to sensor streams).
Local streams represent a local data channel. Operations to
write records to and read records from the stream must occur
on the same sensor where the stream was created. In terms
of the operator concept from Section II, both the writing
and reading operators must reside on the local node. Remote
streams require cooperation between two nodes since they
intend to provide a data channel between two different nodes.
Write operations can be carried out on one of them (the stream
write-end) and read operations can take place on the other (the
read-end). Figure 3 illustrates these concepts.

W

Sensor BSensor A

R

T

R

Stream

Remote

Sensor
Stream

Stream
Local

WR

Fig. 3. Stream types. T = transducer, W = writing operator, R = reading
operator.

If we make a comparison to traditional computer systems,
sensor streams play the role of files, which applications
read data from. Local streams play the role of pipes, for
communication between local tasks. Remote streams play the
role of sockets, for communication between tasks executed on
different nodes.

The three stream types have peculiar characteristics which
relate to their different semantic roles. The Stream System
offers a set of homogeneous functionalities defined on all three
stream types, thus providing a common abstraction.

In the following we use a command/event-based notation
to define streams and their operation. A key concept in
command/event-based systems, that we use in our specifica-
tion, is that of split-phase operations. A split-phase operation
is executed in two phases. First, a request to start the operation
is made: the requests return immediately, without waiting for
the operation to be completed. Second, when the requested
operation is completed an event is fired to notify it. Split-
phase operations are typically used when operations execution
involves interacting with hardware devices or in case of long
running operations, to allow an asynchronous interaction.
Operations involving simple data structure manipulation can
immediately complete without requiring a later event notifica-
tion (i.e., they are not split-phase).

An application identifies a stream through its stream de-
scriptor, which is returned by a stream constructor invocation.
Stream constructors are specific to the various types of streams
and will be discussed later on. Various operations can be
applied to a stream by means of its descriptor. With command

command write(

stream desc,
buffer,
length

);

the user writes a record to a stream. A stream maintains data
in a finite size queue. The write operation appends a value to
the end of the queue. Whenever a write operation finds the
queue full, it simply discards the first queue element before
appending its own (which actually corresponds to evicting the
oldest data).

The stream descriptor is supplied through argument
stream desc while arguments buffer and length give
the starting address of the buffer containing the data and its
length in bytes, respectively. Data stored in a stream can be
accessed by means of the read operation

command read(
stream desc

);

where argument stream desc identifies the stream, as usual.
Read operation is split-phase: read request immediately re-
turns; if data are available in the stream queue, the Stream
System returns the oldest one to the user by signaling event
readDone(), elsewhere the event will be fired as soon as
new data are available. When the event is signaled, the read
element is removed from the queue. Event readDone() is
defined as

event readDone(
stream desc,
buffer,
length

);

Argument stream desc identifies the stream while buffer
and length pass the actual data pointer and its byte length.

Finally, when a stream is no longer needed, it must be
destroyed with command

command close(
stream desc

);

The following Subsections give additional information on
the operations permitted and defines the three types of streams:
sensor streams, local streams, and remote streams.

A. Sensor Streams

Sensor streams provide an abstraction for collecting read-
ings from local transducers. It is not possible for an application
to write to a sensor stream since its write-end is automatically
associated with a transducer. It is the Stream System that
writes data to the stream on the basis of readings collected
from the transducer. Sensor streams come in two flavors:
periodic and on-demand.

Periodic sensor streams unconditionally collect readings
from the associated transducer with a fixed rate. The sam-
pling activity is driven by a timer that the Stream System
automatically restarts when it fires. Upon timer expiration, the
Stream System commands a reading from the transducer and

writes a record of 3 elements to the stream: (nid, ts, val).
nid is the (network unique) node id, ts is a timestamp of the
reading and val is the actual reading. The user can later retrieve
these records using command read() and receiving event
readDone().

On-demand sensor streams only perform a reading from
the transducer when explicitly requested to do so i.e., when
the user requests to read a record from the stream. When the
transducer supplies its reading, the Stream System writes a
record (the content is the same as for periodic sensor streams)
to the stream and immediately returns it to the user signaling
event readDone().

The sensor stream constructor is

command stream desc openS(
transducer,
queue size,
sampling type,
sampling rate

);

Argument transducer encodes one of the transducers
available on the node (e.g., light, temperature, humidity,
acceleration, magnetism, etc.). queue size gives the size
of the queue data structure used to store data records. The
stream type (i.e., either periodic or on demand) is specified
through argument sampling type. If the user requests a
periodic sensor stream, it must also supply the sampling rate in
sampling rate. The call immediately returns the assigned
stream descriptor.

B. Local Streams

The read-end and write-end of a local streams are on the
same node. An application can both write to and read from
a local stream. Of course, different tasks of the applications
are expected to distinctively read and write records to such
streams.

Creation of a local stream is achieved through command

command stream desc openL(
queue size

);

that immediately returns the assigned stream descriptor. As for
sensor streams, argument queue size gives the size of the
queue.

C. Remote Streams

Remote streams are by far more complicated. They inter-
connect two distinct sensors so writing can only happen on
one of them (the write-end) and reading can only happen on
the other (the read-end). The complications in the interface
commands/events used for opening a remote stream stem from
the fact that both endpoint sensors must be aware of it.

To request the opening of a remote stream from sensor A to
sensor B, the application modules on both sensors must create
their own stream end with command

command openR(
destination,

queue size,
symbolic id

);

The Stream System takes care of interacting with a lower level
Network module and setting up the remote stream. Section IV
gives more details on what happens undercover.

In the call happening on sensor A, argument
destination gives the identity of remote sensor B.
Various approaches could be used to identify nodes. Among
them, node ids, coordinates (either physical or virtual),
geographic areas, roles.

On sensor B, destination simply identifies the local
node. From an implementation point of view, the Stream
System module on sensor A (the stream write-end) turns to the
Network module asking it to set up a communication channel
to sensor B. On the other hand the Stream System module on
sensor B (the read-end) plays a passive role (see Section IV-
B for more details) and just keeps track of the open request
received. Argument destination allows the Stream System
module to decide whether it is the write-end or the read-end.

Argument symbolic id is the same on both stream
endpoints and is used to identify the same stream in the two
nodes. Finally, argument queue size gives the size of the
queue as explained for sensor and local streams above.

Constructor for remote streams, differently than constructors
for local and sensor streams, is split-phase to cope with
possible network latencies. In fact, in case of a remote stream,
the open requests immediately returns and, when the stream
has been set up, the Stream System modules on the two ends
independently notify this by signaling event

event openRDone(
stream desc,
symbolic id

);

Argument stream desc contains the assigned stream de-
scriptor and symbolic id is needed by the application
module to associate the event with the previous openR()
command.

IV. IMPLEMENTATION GUIDELINES

This Section discusses some issues related to the implemen-
tation of streams and the procedure for setting up and operating
a remote stream.

A. The Network Module

In order to implement remote streams, the Stream System
module needs assistance from a Network module offering a
connection oriented service. Here we present a hypothetical
interface for this module. When opening a remote stream,
the Stream System asks the Network module to establish
a unidirectional communication channel (a connection) to a
remote sensor with the following command

command channel id connect(
destination

);

As discussed in Section III-C, there are several options to
identify sensors. Argument destination serves to identify
the remote end. The command returns a locally allocated,
network unique, channel id (channel id).

Since the operation outcome depends on the availability
of the necessary resources on each node of the path to the
destination, it cannot be determined at the time the command
call returns but will be signaled later with an event.

The connection establishment procedure can be imple-
mented with a connect message going through the network
toward the destination and reserving the necessary resources
along the way. A connect-ack message could then travels back
to the originating sensor confirming that the connection has
been accepted by the destination Network module. When such
a message arrives at the source Network module, the con-
nection establishment procedure terminates, and the Network
module signals event

event connectDone(
channel id

);

to informs the user. Argument channel id is used by the
Stream System to retrieve data associated with the pending
connection request.

The user can now send packets on the established connec-
tion invoking command

command send(
channel id,
buffer,
length

);

It passes the id of the channel to identify the connection
(channel id) as well as a pointer to the data buffer and
the corresponding length. The Network module packs this
byte array into the MAC message payload (after the network
header) and sends the message.

The service offered by the Network module is not neces-
sarily reliable: reliability could be provided by MAC level or
application level acknowledgments or be completely missing.
Also, sending a packet is not contemplated as a split-phase
operation in the network interface. In other words, a successful
return from send() reports that the Network module has
filled one of its message buffers and that it will attempt to
send the message on the requested connection. No event is
signaled to the user when the message is actually sent.

Upon receiving a message from a remote sensor over an
established connection, the Network module must pass the
payload up. It achieves this by signaling event

event receive(
channel id,
buffer,
length

);

where buffer is a pointer to the message payload
and length is the payload size, in bytes. Argument
channel id identifies the channel for the received message.

Finally command
command disconnect(

channel id
);

can be used on the source sensor (write-end) to ask the
Network module to shut down (i.e., terminate) an existing
connection. Servicing this request implies deallocating channel
resources on all nodes of the data path and may be performed
by sending a special disconnect message along the path or
by simply letting a connection activity timer expire on all
such sensors. There is no event signaling upon operation
completion.

B. Streams

Internally, a stream is implemented as a finite size queue.
The number of elements in the queue is specified when the
stream is opened, by means of argument queue size to
commands openS(), openL() and openR(). In case of
local streams and sensor streams the queue data structure
is clearly allocated on the same node that put values in it
(the write() operation for local streams, the transducers for
sensor streams).

For remote streams the queue data structure resides on the
read-end Stream System module. Thus, writing a record to a
remote stream means passing it to the Network module that
will transport it to the destination node, which will finally store
it in the queue.

In case that an acknowledgement mechanisms is required to
advise the writer that data arrived to destination, this should
be obtained with an acknowledge event fired by the Stream
System module at the destination node and received by the
application running in the source node. For brevity we did not
model this event in this paper.

The procedure for setting up a remote stream is rather com-
plex since it involves several interactions between the Stream
System module and the underlying Network module. Figure 4
depicts the temporal sequence of commands (full arrows) and
events (dashed arrows) when a remote stream must be opened
from sensor A to sensor B. To avoid excessive cluttering only
significant arguments to command/event calls are indicated.
Dotted lines indicate message generation in the MAC modules,
the actual sending, propagation and network traversal, recep-
tion in the destination MAC module and passing up to the
Network module. Rectangles report on local data structures as
they appear after the immediately preceding command or event
completes. In response to an openR() command, A’s Stream
System module invokes command connect(), asking the
Network module to establish a data channel to B’s Network
module. connect() returns a channel id (c id in the Figure)
and instructs the Network module to send a connect message.
At this point openR() stores the channel id together with the
stream symbolic id (s id) and returns control to the application
module.

Upon receiving the connect message B’s Network mod-
ule replies with a connect-ack message (see Section IV-A)
which fires the connectDone() events on A. In turn, the

App AppSSSS Net Net

Sensor A

openR(s_id)

connect()

tim
e

Sensor B

connectDone(c_id)

send(c_id)

(SS_OPEN, s_id)

receive(c_id)

send(c_id)

(SS_OPEN_ACK, s_id)

receive(c_id)

openR(s_id)

openRDone(

descA, s_id)

openRDone(
descB, s_id)

c_id(−, c_id, s_id)

c_id

(−, c_id, s_id)

(descA, c_id, s_id)

(descB, c_id, s_id)

descB
descA

Fig. 4. Command and event sequence when opening a remote stream from sensor A to sensor B (App = Application, SS = Stream System, Net = Network).

connectDone() retrieves the data structures for the remote
stream by means of the channel id, prepares an SS OPEN
message that includes the stream symbolic id and hands it to
the Network module for sending on the established channel.

Upon receiving the message, B’s Network module signals
event receive() to B’s Stream System module. Assuming
B’s application module did not request to open the stream yet,
the Stream System module records the arrival of the message
associating the stream symbolic id with the channel id. It then
replies with a SS OPEN ACK message.

Finally, when A’s Network module receives such message
it passes it up to the Stream System module which retrieves
the stream data structures and signals event openRDone()
to the application, passing the stream symbolic id and a newly
allocated stream descriptor.

When B’s application module invokes command openR(),
the Stream System module discovers that it already received
the SS OPEN message from the other side and signals event
openRDone() with the stream symbolic id and a locally
allocated stream descriptor as arguments.

Note that when B’s application module invokes openR()
before the Stream System module has received message
SS OPEN from its peer in A, it cannot associate any channel id
with it, yet. For this reason it keeps track of the symbolic id (as
specified in the openR() locally invoked) and, upon arrival
of the SS OPEN message from A’s Stream System module,
B’s Stream System signals event openRDone() and fills its
data structures with the channel id.

Writing a record to a remote stream means sending the
record over the network to a remote sensor. The Stream
System modules on both stream endpoints interact with the
local Network modules in order to implement this operation.
Figure 5 illustrates the sequence of calls and events that take
place for a remote stream connecting sensor A to sensor
B. A’s application module writes a record to the remote
stream invoking command write() and passing the stream
descriptor as well as the actual data record. The Stream
System looks up its data structures and retrieves the channel id
associated with the user supplied stream descriptor. It prepends
a header (SS WRITE) indicating the message type and asks

App AppSSSS Net Net

Sensor A Sensor B

send(c_id)

(SS_WRITE, data)

receive(c_id)

read(descB)

write(descA)

readDone(descB)

tim
e

(descA, c_id)descA

(descB, c_id)
descB

Fig. 5. Command/event sequence when data is written to a remote stream (App = Application, SS = Stream System, Net = Network).

the Network module to send the message over the channel
(send()).

Upon receiving this message, B’s Network module signals
event receive() passing the channel id as an argument. B’s
Stream System module retrieves the stream descriptor that is
associated to the channel id and writes the record into the
stream data structures. If B’s application module previously
commanded a read from the stream, the Stream System
module can now signal event readDone(), passing the
stream descriptor and the data record as arguments (Figure 5
illustrates this case). Otherwise, the Stream System module
simply stores the record in the stream data structure and
passes it to the application module when requested with a
later read() command.

V. THE STREAM SYSTEM IMPLEMENTATION

A. The Platform

We implemented the Stream System module and the un-
derlying Network module on the TinyOs/nesC platform (the
implementation is available in [7]). nesC [8] is a language that
shares its basic constructs with C but defines an event driven
programming model. A program is composed of modules that
interact with each other through interfaces. Modules consist of
data structure and function definitions. An interface is a means
to characterize the possible interactions between modules. Its
listing specifies commands and events as function prototypes.

A module may provide or use a certain interface. In the first
case the module definition must include the implementation of
(provide code for) all the commands defined in the interface.
Within the functions it defines, it may signal (e.g., call) events
from the interface. On the other hand, a module that uses
an interface is free to call, within its functions, any of the
commands defined in the interface and must implement all
the events defined in the interface.

TinyOs [9], [10] is a simple operating system developed at
UC Berkeley and written in nesC. Originally conceived for
the mica sensor hardware, it now works on several sensor
architectures including the Crossbow mica2, mica2dot and
micaz series [1] as well as the Moteiv telos and tmote sky

series [11]. It consists of a set of nesC modules that provide
basic functionalities abstracting the underlying hardware.

A TinyOs/nesC application builds up from a set of modules,
some from TinyOs and some from the application program-
mer, that fit together interacting according to the associated
interfaces.

TinyOs does not support true multiprogramming. It only
allows a single application but permits several user tasks to be
scheduled for execution. Tasks cannot preempt each other: the
currently running task can schedule another task for execution
(a FIFO discipline is used) but scheduled tasks cannot run until
the current task terminates. Hardware interrupts can preempt
a running task. Anything beyond basic interrupt processing is
done by posting user tasks.

The Stream System is nothing but a nesC module that
offers (implements) some functionalities according to a well
defined interface and signals events to notify of conditions. It
relies on the existence of a Network module implementing a
network (lower level) interface and providing interconnections
between any two sensors in a multihop network. It also
interacts with a Transducer Abstraction Module that abstracts
the transducer devices on the sensor, providing commands
to read any specific transducer and signaling events when
readings are available. Figure 6 illustrates how the Stream
System module fits into the system and how it interacts with
the other modules.

Light

Module
. Magnetism

Module

Transducer
Abstraction

Module

MAC Module

Application Module

Stream System Module

Network Module

Tiny Os

Fig. 6. Stream System Module interaction diagram. Full arrow lines indicate
commands while dashed arrow lines indicate events.

B. Network Module Implementation

This Section gives details concerning our implementation
of the Network module. Among the possible routing strategies
available for wireless ad hoc networks and sensor networks in
particular, geographic (greedy) routing [12], [13] is probably
the best candidate for sensor networks since it is simple, easy
to implement and behaves reasonably well in relatively dense
networks. The implementation of our Network module relies
on greedy routing for the connection establishment procedure
and uses the algorithm described in [14] to assign three-
dimensional virtual coordinates to the sensors.

Energy resources are a limiting factor in sensor networks
so it is essential to reduce radio operation intervals as much
as possible. Several approaches [15], [16] exploit MAC and/or
network layer information to reduce energy consumption by
scheduling radio activities. We have also designed [17] a novel
algorithm that attempts to turn off the radios on the basis of
application-provided information. When an application needs
to periodically send fixed size/rate packets to another node
trough a given path (multi-hop communication), the algo-
rithm exploits communication timing information, transmis-
sion times, and average medium access delays, to optimally
schedule radio activities in the path.

In order to implement greedy routing we let the application
module supply the virtual coordinates of the destination node
as argument destination to command openR(). The
Stream System passes it unchanged to the Network mod-
ule in command connect(). To achieve energy efficient
communication the application module provides additional
arguments to command open(), indicating when it will start
sending packets on the remote stream, the interval between
consecutive packets and the size of each packet. Again, the
Stream System simply passes these values to the Network
module as additional arguments to connect().

The Network module uses greedy routing to send the
connect message to the destination when it needs to establish
a new connection. All sensors along the path allocate an entry
in their connection forwarding table to associate the channel
id with a neighbor (the one they forward the message to). The
sensors also configure their radio activity intervals as required
by the energy saving algorithm.

When the destination sensor receives the connect message,
it also replies with a connect-ack message that returns (along
the reverse path) to the originator of the connect message and
confirms connection establishment.

After a connection has been established the sensors in the
path only turn on their radios when the next message is
expected and for up to some maximum amount of time. Any
message they receive contains the channel id (the coordinates
of the destination are no longer needed) which they use to look
up their connection forwarding table and correctly forward the
message to the next hop in the path.

VI. CONCLUSIONS

The Stream System is a data collection and data com-
munication abstraction model suitable for sensor networks.

An application built on top of a real implementation can be
structured as a set of operators distributed among the nodes of
the sensor network. Operators read inputs, do some processing
and produce some output. The output of an operator becomes
input of another by means of a stream interconnection. A
special type of stream serves as a transducer data source.
The application totally disregards issues concerning transducer
operation as well as moving data from one node to another.
We also introduced a real implementation of our model on the
TinyOs/nesC platform.

We have implemented a wireless sensor network database
relying on this Stream System: operators of the query algebra
take as inputs and returns as outputs values respectively from
and to streams.

REFERENCES

[1] Crossbow Technology Inc., http://www.xbow.com.
[2] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “The design

of an acquisitional query processor for sensor networks.” in SIGMOD
Conference, 2003, pp. 491–502.

[3] Y. Yao and J. Gehrke, “The cougar approach to in-network query
processing in sensor networks.” SIGMOD Record, vol. 31, no. 3, pp.
9–18, 2002.

[4] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a
scalable and robust communication paradigm for sensor networks.” in
MOBICOM, 2000, pp. 56–67.

[5] E. Codd, “A relational model for large shared data banks,” Communi-
cations of the ACM, vol. 13, no. 6, pp. 377–387, 1970.

[6] G. Amato, P. Baronti, and S. Chessa, “MaD-WiSe: Programming and
Accessing Data in a Wireless Sensor Network,” in Proceedings of the
International Conference on ”Computer as a tool” EUROCON 2005,
Belgrade, Serbia & Montenegro, November 2005.

[7] MaD-WiSe, http://mad-wise.isti.cnr.it.
[8] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,

“The nesC Language: A Holistic Approach to Networked Embedded
Systems,” in Proceedings of the 2003 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2003), San
Diego, CA, USA, June 2003, pp. 1–11.

[9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J.
Pister, “System Architecture Directions for Networked Sensors,” in
Proceedings of the 9th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS-IX),
Cambridge, MA, USA, November 2000, pp. 93–104.

[10] TinyOs Community Forum, http://www.tinyos.net.
[11] Moteiv Corporation, http://www.moteiv.com.
[12] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with

Guaranteed Delivery in Ad Hoc Wireless Networks,” ACM Wireless
Networks Journal, vol. 7, no. 6, pp. 609–616, November 2001.

[13] B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing for
Wireless Networks,” in Proceedings of the 6th International Conference
on Mobile Computing and Networking (MobiCom 2000), Boston, MA,
USA, August 2000, pp. 243–254.

[14] A. Caruso, S. Chessa, S. De, and A. Urpi, “GPS Free Coordinate
Assignment and Routing in Wireless Sensor Networks,” in Proceedings
of the 24th Annual Joint Conference of the IEEE Computer and
Communications Societies (Infocom 2005), Miami, FL, USA, March
2005, pp. 150–160.

[15] W. Ye, J. Heidemann, and D. Estrin, “Medium Access Control With Co-
ordinated Adaptive Sleeping for Wireless Sensor Networks,” IEEE/ACM
Transactions on Networking, vol. 12, no. 3, pp. 493–506, June 2004.

[16] G. Lu, N. Sadagopan, B. Krishnamachari, and A. Goel, “Delay Efficient
Sleep Scheduling in Wireless Sensor Networks,” in Proceedings of the
24th Annual Joint Conference of the IEEE Computer and Communi-
cations Societies (Infocom 2005), Miami, FL, USA, March 2005, pp.
2470–2481.

[17] G. Amato, P. Baronti, and S. Chessa, “Connection-Oriented Commu-
nication Protocol in Wireless Sensor Networks,” Istituto di Scienza e
Tecnologie dell’Informazione - CNR, Tech. Rep. 2005-TR-10, 2005.

