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Abstract
This report deals with an application of the Landweber iteration to solve a one-dimensional
inverse problem of interest in nondestructive evaluation. This algorithm is based on a
nonlinear data model, and is particularized on a specific discretization of the equation of
electromagnetic scalar scattering from lossless dielectric materials.

1. Introduction
Inverse scattering is an important issue in imaging and nondestructive evaluation, since
diffracting wavefields are sensitive to physical quantities that cannot be probed by other
exploring radiations. In particular, sonic, seismic, and electromagnetic waves already proved
to be good candidates for a number of relevant applications.
I am not going to review all the matter here. I only mention that the two main strategies
used to invert scattering data have been to linearize the intrinsically nonlinear scattering
equations, or to invert numerically the nonlinear equations or some of their higher-order
approximations. In other words, we could classify the inversion strategies on the basis of
the data model and the inversion algorithm: the two approaches mentioned result in
adopting a linear data model and a linear algorithm, or a nonlinear data model and a nonlinear
algorithm. I also proposed to adopt a linear model and a nonlinear inversion algorithm,
based on analytical properties of the solution. The "linear" Landweber approach that
resulted is a mixture of linear reconstruction and superresolution, which draws better results
from a linear Born model without being as expensive as most fully nonlinear approaches
[1,2]. Indeed, the projected Landweber method I used is a nonlinear algorithm that can be
applied to linear space-varying data models.
The fully nonlinear approaches to inverse scattering are normally very expensive
computationally, since they rely on optimizing complicated functionals, normally by
iterative numerical algorithms. The objective functionals, in turn, contain a data fit
contribution and, implicitly or explicitly, a regularization term that takes prior information
into account. Normally, a certain degree of local smoothness is assumed to regularize the
objective functional. The information I use in my Landweber approach, compact support
and positivity, is normally available in small-scale microwave nondestructive diagnosis, and
entails substantial analytical properties of the solution. The problem is now to be able to
exploit the same information in a technique based on a nonlinear data model. The theoretical
aspects of this approach, that is, the possible analytical implications of compact support
and positivity on a solution to the nonlinear scattering problem, should be studied
thoroughly. Experimentally, however, it is possible to assess an existing strategy that
exploits prior information: the Landweber method for nonlinear inverse problems [3].
To test this technique against scattering data, we must first make it explicit for a specific
problem. In the linear case, I derived explicitly the Landweber iteration from the linear data
model and then implemented numerically the iterative relations, making use of the discrete
Fourier transform. In the nonlinear case, an analytic derivation of the algorithm from the
integral formulation of the scattering problem is difficult. For this reason, I first discretized
the scalar scattering equations and then derived the iterative procedure to be implemented.
To start with, I took into account the one-dimensional range profile inversion problem.
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Though relatively simple, this problem is interesting for some diagnostic applications, as
evidenced by recent literature [4,5]. On the other hand, once the features of a Landweber
iteration have been evaluated in this reduced setting, it will be possible to extend it to
multidimensional problems. Another reason to consider the one-dimensional problem is that
it is closer to practical applications, since a measurement system for single-view monostatic
data can be easily realized, as opposed to the multiview, multistatic systems normally
needed for multidimensional problems. However, it is to be stressed that the details of the
algorithm described here derive from a particular discretization of the problem; different
problems or discretizations would thus result in different algorithms.
In what follows, I present the direct scattering problem in the configuration of interest
(Section 2). In Section 3, I formulate the inverse scattering problem in operatorial form, and
present its solution by the nonlinear Landweber method. In Section 4, the problem is
discretized by a method of moments and, in Sections 5 and 6, the Landweber iteration is
particularized for this problem. An evaluation of the computational complexity per
iteration is given in Section 7.
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Figure 1: Illumination - measurement geometry of monostatic single-view scattering.

2. The one-dimensional direct scattering problem
Let us assume that a frequency-swept microwave source illuminates normally a lossless
dielectric wall immersed in free space (see Figure 1).
The source produces a uniform scalar plane-wave incident field, Ei (k, z), whose phasorial
value is known as a function of the free-space wavenumber k=2πf/c and the range
coordinate z. Let us assume that the wall can be described by a dielectric contrast, χ(z),
that is only a function of z and vanishes for z ∉ [0, L]. Note that, since the material is
lossless, χ(z) is real and does not depend on the wavenumber, that is, on the working
frequency. The microwave source also acts as the sensor, and receives the backscattered
field Es (k) , which is measured for a discrete set of frequencies in magnitude and phase,
taking Ei (k, z )  as the reference signal.
Assuming that χ(z) and Ei (k, z) are known, the scattered field at z  is the solution to the
so-called external direct problem : for each value of k, we have

Es (k) = − j
k

2
e jk z e− jkz'χ(z' )E(k, z' )dz'

0

L

∫ (1)
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where j = −1 , E(k, z)  is the total field inside the object, for wavenumber k and depth
z ∈ [0,L]. In its turn, E(k, z)  is determined by the incident field and the contrast function,
and is the solution to the so-called internal direct problem: for each k and for each z ∈ [0,L],
we have

E(k, z) = Ei (k, z) − j
k

2
e− jk |z− z' |χ(z' )E(k, z' )dz'

0

L

∫ (2)

Equation (2) implicitly defines an operator through which function χ(z) determines the
values of the total field. Let us rewrite it as follows:

Ei (k, z) = E(k, z) + j
k

2
e− jk |z− z' |χ(z' )E(k, z' )dz'

0

L

∫ (3)

Let us assume that χ(z) belongs to the Hilbert space L2 (0,L) . In operatorial notation, we
can write

Ei (k, z) = F1
−1[χ(z),E(k, z)] (4)

where the incident field Ei and the contrast function χ  are known, and operator F1
−1 is

defined by Equation (3). Inverting (4), we obtain again Equation (2) in operatorial notation:

E(k, z) = F1[k,χ(z)] (5)

This is an explicit relationship only formally, since, as already said, operator F1 is defined
implicitly by either Equation (2) or (3). In any case, Equation (5) formally denotes the
solution to the internal direct scattering problem. Substituting (5) in (1), we obtain

Es (k) = − j
k

2
e jk z e− jkz'χ(z' )F1(k,χ(z' ))

0

L

∫ dz' ≡ F[k,χ(z)] (6)

Thus, operator F relates the contrast function to the scattered field at the sensor location,
the incident field being known, and represents the solution to the external direct scattering
problem.

3. The nonlinear 1D inverse scattering problem and its Landweber solution
Let us suppose now that the incident field is known and the scattered field for a number Nf
of working frequencies is measured with a certain error. What is relevant to diagnostic
applications is to derive an estimate of χ(z). In other words, from knowledge of Es (k)  for
Nf values of k, we should estimate χ(z) by inverting operator F defined in (6). Apparently,
F is a nonlinear operator in χ, and is implicitly defined through operator F1.
Although this formulation is approximated by neglecting the polarimetric nature of the
fields involved, the inverse scattering problem is still difficult to solve. Nothing similar to
the simple Fourier relationships that solve the problem with a linearized version of
Equation (6) can be derived in this case [1].
Note that the formulation (6) is continuous-continuous, that is, the unknown is a
continuous function of z and the data are a continuous function of k. In practice, as said,
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function Es (k)  is only known for a discrete and finite set of values for k, that is, the
problem is continuous-discrete. The most common approach to solve it has been to
minimize the norm of Es − F[k,χ(z)] in χ , for all values of k (see [6] for a review).
Normally, this is done numerically, that is, by discretizing the integrals in (3) and (6). The
problem is thus solved in a discrete-discrete setting. The inverse problem, however, is
severely ill posed, and a regularization strategy must be employed to stabilize the solution.
This is implemented by augmenting the objective functional to be optimized with a term
related to prior information available, mostly enforcing some degree of smoothness in the
solution. There is a class of analytical optimization algorithms that regularize the solution
by stopping the iteration when the noise amplification prevents the solution from being
further improved. The Landweber method is one of them, and the convergence features of
its linear version have been  studied very well [7]. Besides smoothness, any prior
information can be enforced in the solution if it can be formalized as a condition of inclusion
in a convex set [8,9]. This is the case with positivity, which has already been exploited in a
successful application of the linear Landweber method to inverse scattering [1]. This report
is aimed at exploring the possibility of applying the nonlinear version of the Landweber
method (i.e., the method applicable to nonlinear data models) to our particular inverse
scattering problem.
The nonlinear Landweber method  to invert Equation (6) is an iterative procedure defined
by an initial contrast estimate χ(ο)(z) and by the following update relationship [3,10]:

χ (l+1) (z) = χ (l ) (z) − F ' * [k,χ (l ) (z)][F(k,χ (l ) ) − Es (k)] (7)

where the update function is evaluated for all k, F'(k,χ) is the Fréchet derivative of operator
F, and the asterisk denotes the adjoint operator. In this continuous-discrete setting,
operator F maps L2(0,L) onto the set of the complex Nf-tuples defined, for each χ, by the
Nf  measured values of Es(k). The adjoint operator of the Fréchet derivative should thus
map the set of the complex Nf-tuples onto L2(0,L).

4. Problem discretization
A way to develop Equation (7) is to discretize the continuous operator F defined in (5)-(6)
and evaluate its Fréchet derivative, thus formulating the problem in a discrete-discrete
setting. Let us divide the domain [0,L] into N identical layers, with centers in zi, i = 1, ... N
and thickness ∆z (the maximum acceptable value for ∆z should be about one fifth of the
wavelength in the material). If the total field does not vary significantly within the single
layer, a moment method [11,12] can be used to discretize the integrals in (2) and (1).
Before going on with our derivation, let us define the discrete equivalents of our original
quantities: the elements of the (known) complex N-vectors

en = [Ei (kn , z1),...,Ei (kn , zN )]
T n = 1,...Nf (8)

are the phasorial values of the incident field at the centers of the N layers for the Nf
different wavenumbers.
The complex N-vectors

tn = [E(kn , z1),...,E(kn , zN )]
T n = 1,...,Nf (9)

are derived from the discretization of the total field in the domain [0,L], as made in (8) for
the incident field, and are obviously functions of the contrast χ.
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Finally, the real N-vector

χ = [χ(z1),...,χ(zN )] (10)

contains the contrast values at the centers of the layers. In the following, the m-th element
of a generic vector x will be denoted by xm. Similarly the (l,m)-th entry  of a matrix X will
be denoted by xlm.
From positions (8)-(10), problem (3) can be discretized as

enm = tnm + j
kn∆z
2

e− jkn |zm − zl |χltnl
l=1

N

∑ n = 1,...Nf , m = 1,...N
(11)

Let us define Nf matrices An(χ) with generic element [11]

anml (χ) = δml + j
kn∆z
2

e− jkn |zm − zl |χl n = 1,...Nf ; m,l = 1,...N (12)

where δml is the Kronecker delta. Equation (11) can be written as

en = An (χ)tn n = 1,...Nf (13)

from which we can explicitly state a discrete version of operator F1 defined by (4) and (5):

tn = An
−1(χ)en n = 1,...Nf (14)

thus obtaining a discrete solution of the internal scattering problem, that is, we can build
matrices An from χ, and then find the values of the total internal field by inverting them.
Let us now discretize the external problem (1):

Es (kn ) = − j
kn∆z
2

e jknz e− jkn zmχmtnm n = 1,...Nf
m=1

N

∑ (15)

If we define the following diagonal matrices

Λn = diag{e− jkn zm} n = 1,...Nf , m = 1,...N (16)

and put Equation (15) in vector form, we get

Es (kn ) = − j
kn∆z
2

e jknz [Λnχ]
T tn = − j

kn∆z
2

e jknzχ TΛntn (17)

Finally, by exploiting (14) for tn, Equation (17) becomes

Es (kn ) = − j
kn∆z
2

e jknzχ TΛnAn
−1(χ)en (18)

which is a solution to the direct scattering problem, providing the scattered field as a
function of the known quantities χ and E. A discrete version of operator F defined in (6) is
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thus made explicit. In other words, for each wavenumber k (namely, for each index n) we
have an explicit discrete operator that relates χ to the scattered field.
Let us now define a modified data vector s, whose generic element sn is given by

sn = j
2

kn∆z
exp{− jknz}Es (kn ) = χ TΛnAn

−1(χ)en n = 1,...Nf (19)

where use has been made of Equation (18). In this new formulation, once all the elements of
s have been evaluated, the inverse scattering problem becomes the inversion of a vector
operator F that maps the set of real N-tuples onto the set of complex Nf-tuples.

  s = F(χ) s ∈C N f , χ ∈R N (20)

To implement iteration (7) in this discrete setting, we need the Fréchet derivative of
operator F, that is, its Jacobian matrix. The adjoint of the Fréchet derivative will be the
conjugate transpose of the Jacobian matrix. Each component of operator F is given by (19)
for some n. The Jacobian matrix J is a complex Nf×N matrix whose nm-th entry is

Jnm (χ) =
∂Fn (χ)
∂χm

n = 1,...Nf , m = 1,...N (21)

The development of the numerical method is continued in Sections 5 and 6, where matrix  J
is evaluated and a discrete version of iteration (7) is derived, respectively.

5. Calculating the Jacobian of the direct operator
From (19), we get

sn = χ T [An (χ)Λn
−1]−1en = χ TBn

−1(χ)en n = 1,...Nf (22)

where any element of matrix Bn can be derived from (12) and (16):

bnil (χ) = anil (χ)λnll

−1 = δ il exp{jknzl}+ j
kn∆z
2
exp{− jkn[|zi − zl |−zl ]}χl (23)

The Jacobian matrix elements in (21) are obtained by differentiating (22) with respect to the
elements of χ. Let us explicitate the scalar operations in Equation (22):

sn =
i=1

N

∑ χibnil
[−1](χ)enl

l=1

N

∑ (24)

where bnil
[−1](χ) is the il-th element of Bn

−1(χ). From (21) and (24), the generic element of the

Jacobian matrix is

Jnm (χ) =
∂sn (χ)
∂χm

=
i=1

N

∑
∂χi

∂χm

bnil
[−1](χ) + χi

∂bnil
[−1](χ)

∂χm









enl

l=1

N

∑ (25)



7

The derivative 
∂χi

∂χm

 is obviously δim. The derivative 
∂bnil

[−1](χ)

∂χm

 of the il-th element of  Bn
−1

with respect to χm is still to be evaluated (see [13], p. 62):

∂bnil
[−1](χ)

∂χm

=
∂

∂χm

Bn
−1(χ)










il

(26)

By the chain rule, we have:

∂
∂χm

Bn
−1(χ) =

r=1

N

∑
∂Bn

−1(χ)
∂bnrss=1

N

∑
∂bnrs (χ)

∂χm

=
r=1

N

∑ −
s=1

N

∑ Bn
−1(χ)ErsBn

−1(χ)
∂bnrs (χ)

∂χm

(27)

where Ers is a matrix with all null entries, except for the rs-th entry, which is equal to 1 (see
[13], p. 64, for the derivative of a matrix with respect to the elements of its inverse). All the
quantities needed to evaluate matrix J  can now be calculated. By exploiting (23) in (27), we
have:

∂
∂χm

Bn
−1(χ) =

r=1

N

∑ −
s=1

N

∑ Bn
−1(χ)ErsBn

−1(χ)[δ sm j
kn∆z
2
exp{− jkn[|zr − zs |−zs ]}] =

= j
kn∆z
2

−
r=1

N

∑ Bn
−1(χ)ErmBn

−1(χ)exp{− jkn[|zr − zm |−zm ]}

(28)

Finally, from (25), (26) and (28), the nm-th entry of matrix J will be:

Jnm (χ) =
i=1

N

∑ δ imbnil
[−1](χ) + χi j

kn∆z
2

−Bn
−1(χ)ErmBn

−1(χ)exp{− jkn[|zr − zm |−zm ]}
r=1

N

∑









il









enl

l=1

N

∑

= bnml
[−1](χ)

l=1

N

∑ enl + j
kn∆z
2 i=1

N

∑ χi −Bn
−1(χ)ErmBn

−1(χ)exp{− jkn[|zr − zm |−zm ]}
r=1

N

∑









il

enl
l=1

N

∑
(29)

To express this relationship in vector form, let bnm
[−1]T  be the m-th row of matrix Bn

−1, and
Cnm  the bracketed matrix in (29). We have

Jnm (χ) = bnm
[−1]T (χ)en + j

kn∆z
2

χ TCnmen = bnm
[−1]T (χ) + j

kn∆z
2

χ TCnm





en (30)

6. Explicit Landweber iteration
The iterative scheme in (7) now becomes

χ (l+1) = χ (l ) − J*(χ (l ) ) χ (l )TBn
−1(χ (l ) )en[ ]n=1,...N f

− s{ } (31)
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where J* is the transpose conjugate of the Jacobian matrix (30), the vector in brackets
comes from (22), and s is the modified data vector defined in (19). It should be verified
whether the adjoint Jacobian matrix maps the vector in braces in the set of real N-vectors.
This is not immediate, since the current χ estimate could well be complex, but this would
not extend our data model. Indeed, we assumed a real, frequency-independent contrast
function χ. Modeling lossy materials by complex permittivities produces frequency-
dependent, complex contrast functions, and this greatly increases the number of unknowns
of the inverse problem. To find a reasonable solution, we should thus assume lossless
materials, characterized by real contrast functions. If the background medium is the free
space, then the contrast function is also nonnegative. Reality and nonnegativity are pieces
of information that could be exploited to speed-up the convergence of iteration (31). Indeed,
the sets of real and nonnegative functions are closed and convex, and to project an L2

complex function onto these spaces amounts to retain its real part where positive and
setting the function to zero elsewhere [9,14]. Since the map in (31) normally produces
complex N-vectors, the projection operations mentioned above can be used to implement a
projected Landweber iteration (see [7] for the linear version). In practice, each estimated
contrast can be projected onto the constraint sets before continuing the iteration. This can
be made at each iteration or, as shown in [1,2], periodically after some fixed number of
iterations. It has been shown that the iterative projections can sensibly improve the
convergence (semi-convergence, strictly [7]). Another possibility to speed-up convergence
is to use a suitable relaxation coefficient in (31) (see [1]).
Strictly speaking, we should check the existence of a solution to our problem by verifying
that the map (31) is nonexpansive. In other words, for any other vector ψ belonging to the
same space as χ, the following relationship should be verified

||χ − J*(χ) χ TBn
−1(χ)en[ ]n=1,...N f

− s{ } − ψ + J*(ψ ) ψ TBn
−1(ψ )en[ ]n=1,...N f

− s{ }||≤||χ − ψ ||

(32)

||χ − ψ − J*(χ) χ TBn
−1(χ)en[ ]n=1,...N f

− s{ } − J*(ψ ) ψ TBn
−1(ψ )en[ ]n=1,...N f

− s{ }






||≤||χ − ψ ||

The existence of a domain where relationship (32) is verified should be checked case by
case, since it cannot be assured in general. In [3], it is argued that this check is virtually
impossible in most practical cases. A local convergence condition is then proposed for a ball
of specified radius containing the initial guess.
The Landweber iteration converges if the Fréchet derivative of the direct operator has norm
smaller than 1 in a ball containing the solution, with center χ (o)  and radius ρ. In our case, it

must exist a real ρ such that, for any χ with ||χ − χ (o) ||≤ ρ , it is ||J(χ)||≤1 for some norm. If
the Euclidean norm is used, the square root of the largest eigenvalue of matrix J*J must be
not larger than 1 in some neighborhood of χ (o)  containing the solution.
The Landweber method, however, is not scale invariant. This means that scaling the data
Es (k)  and operator F in the original problem (6) by a positive factor C, the convergence
properties of iteration (7) may result significantly altered. In [10], it is proved that a
suitably scaled version of the Landweber iteration is equivalent to a relaxed iteration, whose
convergence is analyzed in an increasingly fine discrete setting. A Landweber iteration with
a suitable relaxation coefficient is equivalent to a scaled problem whose convergence is
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assured. If   Bρ (χ
(0) ) is a ball with center in χ (o)  and radius ρ, this relaxed iteration can be

written as:

χ (l+1) = χ (l ) − ωJ*(χ (l ) ) χ (l )TBn
−1(χ (l ) )en[ ]n=1,...N f

− s{ } (33)

with

ω ∈ 0,
1
C2







(34)

and

  C:= sup ||J(χ)||:χ ∈Bρ (χ
(0) ){ } (35)

where ρ is such that a solution χ* to Equation (6) is contained in the ball   Bρ / 2 (χ
(0) ).

A numerical experimentation could be devoted to find a suitable ω to make the iteration
convergent, and then to assess the effect of the projection onto the spaces of real and
nonnegative functions. Different kinds of simulated data could precede an experimental
phase with real backscattering measurements.

7. Computational issues
With noisy data, the projected Landweber method for 2D linear inverse scattering [1,2] has
proved to require a few tens of iterations to converge. An extended experimentation would
be needed to see whether this is also the case with one-dimensional nonlinear inverse
scattering. What we are able to do now is to check the computational complexity of a single
iteration. Let us start, then, by examining iteration (33). The complex Nf-vector s is derived
from the measurements. The real N-vector χ(l) is the current contrast estimate and is
calculated in the previous iteration. The Nf complex vectors en, of size N, contain the values
of the incident field, assumed known. The Nf complex matrices Bn, of size N×N, must be
built and inverted at each iteration. The generic element of one of these matrices is
calculated by Equation (23), which requires one complex multiplication at each update. At
each iteration, then, building matrices Bn requires NfN2 operations. Inverting these matrices
with a direct method entails NfN3 complex operations. Building the bracketed vector in (33)
requires NfN(N+1) operations. Finally, building the vector in braces will require a number of
operations of the order of NfN3. Now we still need to evaluate the elements of the Jacobian
matrix, as in (30). What we need is essentially to evaluate one matrix of the type Cnm for
each entry of the Jacobian matrix. Let us rewrite the definition for Cnm:

Cnm = −Bn
−1ErmBn

−1 exp{− jkn[|zr − zm |−zm ]}
r=1

N

∑








 (36)

where the inverse matrices Bn
−1 have already been calculated, and the complex exponential

term can be evaluated once for all, and stored in Nf matrices, each depending on the
geometry of the problem alone. As already said, the entries of matrix Erm are all zero,
except the rm-th, which is unity. This means that all the rows of matrix Bn

−1ErmBn
−1 are equal

to the m-th row of matrix Bn
−1multiplied by the corresponding elements of its r-th column.
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To build one of the matrices Bn
−1ErmBn

−1, thus, N2 complex multiplications will be needed.
Each matrix should then be multiplied by the exponential term, and all this step will be
repeated N times. Each element of Cnm thus needs 2N3 operations, to be repeated for all the
NfN elements of the Jacobian matrix. To evaluate all the matrices Cnm, 2NfN4 complex
operations will be needed. This is also the order of magnitude of the number of operations
needed per iteration. As an example, for Nf = 11 and N = 50, hundreds of millions of
complex multiplications are needed. For average processors, this would entail seconds of
elapsed times per iteration, provided that all the fixed quantities can be stored in the
computer's RAM. At each iteration, Nf complex matrices of size N×N should be stored. In
the example mentioned, this entails 220 kB RAM, assuming all single-precision quantities.
To avoid calculating the complex exponentials, we will need an additional 3D array of size
Nf×N×N, which means an additional 220 kB. If we also want to store matrices Cnm, we
need room for NfN complex matrices of size N×N, that is, in the same example, some
11 MB. This should not be a problem with the hardware available at present. What we do
not know yet is how many iterations will be needed to have convergence. That the linear
version in [1] typically needs just a few tens of iterations to reach the minimum
reconstruction error does not mean that we can expect a comparable number of iterations in
this case. This can encourage us to test this procedure, however.
Another issue to be considered is the possibility of simplifying some of the processing, by
analyzing carefully the structure of the operations needed.

8. Conclusion
The Landweber iterative scheme for nonlinear data models has been made explicit for a
discrete version of the 1D scalar inverse scattering problem. This algorithm could be very
useful in several applications of nondestructive evaluation with diffracting probing
wavefields. At present, we have no theoretical basis to assume that this algorithm can
actually be useful. On one hand, its local convergence would be assured if we were able to
evaluate the norm of the Jacobian matrix, and if the initial guess were assured to lie in a
suitable neighborhood of the solution. This could be difficult to be verified theoretically. On
the other hand, the semi-convergence conditions can be enforced empirically, by tuning the
relaxation factor in (33) and by finding a strategy to choose an initial guess. Of course, these
needs are obstacles to practical applicability.
The next step should be to actually implement the algorithm and experiment it against
suitable measurement databases, possibly both simulated and real.
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