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Abstract

We present a fuzzy version of description logics with concrete domains. Inter-
esting features are:(i) concept constructors are based on t-norm, t-conorm, nega-
tion and implication;(ii) concrete domains are fuzzy sets;(iii) fuzzy modifiers
are allowed; and(iv) the reasoning algorithm is based on a mixture of completion
rules and bounded mixed integer programming.
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1 INTRODUCTION

In the last decade a substantial amount of work has been carried out in the context of
Description Logics(DLs) [1]. Nowadays, DLs have gained even more popularity due
to their application in the context of theSemantic Web[6]. Ontologiesplay a key role
in the Semantic Web. An ontology consists of a hierarchical description of important
concepts in a particular domain, along with the description of the properties (of the
instances) of each concept. Web content is then annotated by relying on the concepts
defined in a specific domain ontology. DLs play a particular role in this context as they
are essentially the theoretical counterpart of theWeb Ontology Language OWL DL, a
state of the art language to specify ontologies.

However, OWL DL becomes less suitable in domains in which the concepts to be
represent have not a precise definition. As we have to deal with Web content, it is easily
verified that this scenario is, unfortunately, likely the rule rather than an exception. For
instance, just consider the case we would like to build an ontology about flowers. Then
we may encounter the problem of representing concepts like “Candia is a creamy white
rose with dark pink edges to the petals”, “Jacaranda is a hot pink rose”, “Calla is a very
large, long white flower on thick stalks”. As it becomes apparent such concepts hardly
can be encoded into OWL DL, as they involve so-calledfuzzyor vague concepts, like
“creamy”, “dark”, “hot”, “large” and “thick”, for which a clear and precise definition
is not possible.
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The problem to dealimprecisionhas been addressed several decades ago by Zadeh ([20]),
which gave bird in the meanwhile to the so-calledfuzzy set and fuzzy logic theory. Un-
fortunately, despite the popularity of fuzzy set theory, relative little work has been
carried out involving fuzzy DLs [5, 10, 13, 15, 16, 18, 19].

Towards the management of vague concepts, we present a fuzzy extension ofALC(D)
(the basic DLALC [14] extended with concrete domains [9]). Main features are:
(i) concept constructors are interpreted as t-norm, t-conorm, negation and implica-
tion. Current approaches consider conjunction asmin, disjunction asmax, negation
as1 − x only. Given the important role norm based connectives have in fuzzy logic,
a generalization towards this directions is, thus, desirable;(ii) concrete domains are
fuzzy sets. This has not been addressed yet in the literature and is a natural way to in-
corporate vague concepts with explicit membership functions into the language. This
requirement has already been pointed out by Yen in [19], but not yet taken into ac-
count formally;(iii) fuzzy modifiers are allowed, similarly to [18, 5]; and(iv) rea-
soning is based on a mixture of completion rules and bounded Mixed Integer Pro-
gramming (bMIP). The use of bMIP in our context is novel and allows for effective
implementations. FuzzyALC(D) enhances current approaches to fuzzy DLs and is in
line with [17], in which the need of a fuzzy extension of DLs in the context of the Se-
mantic Web has been highlighted. In it, a fuzzy version of OWL DL has been presented
without a calculus. Our work is a step forward in this direction, as it presents a calculus
for an important sub-language of OWL DL. We also show that the computation is more
complicated that the classical counterpart due to the generality of the connectives.

We proceed as follows. The following section presents fuzzyALC(D). Section 3
presents the reasoning procedure. Section 4 discusses related work, while Section 5
concludes and outlooks some topics for further research.

2 DESCRIPTION LOGICS WITH FUZZY DOMAINS

Fuzzy sets [20] allow to deal with vague concepts likelow pressure, high speed and
the like. A fuzzy setA with respect to a universeX is characterized by amembership
functionµA:X → [0, 1], or simplyA(x) ∈ [0, 1], assigning anA-membership degree,
A(x), to each elementx in X. A(x) gives us an estimation of the belonging ofx
to A. In fuzzy logics, the degree of membershipA(x) is regarded as thedegree of
truth of the statement“x is A” . Accordingly, in our fuzzy DL, a conceptC will be
interpreted as a fuzzy set and, thus, concepts becomeimprecise; and, consequently,
e.g. the statement “a is an instance of conceptC”, will have a truth-value in[0, 1] given
by the membership degreeC(a).

Syntax. Recall thatALC(D) is the basic DLALC [14] extended with concrete do-
mains [9] allowing to deal with data types such as strings and integers. In fuzzy
ALC(D), however, concrete domains are fuzzy sets. Afuzzy concrete domain(or sim-
ply fuzzy domain) is a pair〈∆D,ΦD〉, where∆D is an interpretation domain andΦD is
the set offuzzy domain predicatesd with a predefined arityn and an interpretation
dD:∆n

D → [0, 1], which is an-ary fuzzy relation over∆D. To the ease of presentation,
we assume the fuzzy predicates have arity one, the domain is a subset of the rational
numbersQ and the range is[0, 1] ∩ Q (in the following, whenever we write[0, 1], we
mean[0, 1] ∩ Q). For instance, we may define the predicate≤18 as an unary crisp
predicate over the natural numbers denoting the set of integers smaller or equal to18,
i.e.
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(a) (b) (c) (d)

Figure 1: (a) Trapezoidal function; (b) Triangular function; (c)L-function; (d) R-
function

≤18(x) =
{

1 if x ≤ 18
0 otherwise.

On the other hand,Young may be a fuzzy domain predicate denoting the degree of
youngness of a person’s age with definition

Young(x) =

 1 if x ≤ 10
(30− x)/20 if 10 ≤ x ≤ 30
0 if x ≥ 30 .

Concerning fuzzy domain predicates, we recall that in fuzzy set theory and practice
there are many membership functions for fuzzy sets membership specification. How-
ever, thetrapezoidal, the triangular, the L-function (left shoulder function) and the
R-function (right shoulder function) are simple, yet most frequently used to specify
membership degrees (see Figure 1). Thetrapezoidal function, trz(x, a, b, c, d), is de-
fined as follows: leta < b ≤ c < d be rational numbers then

trz(x; a, b, c, d) =


0 if x ≤ a
(x− a)/(b− a) if x ∈ (a, b]
1 if x ∈ (b, c]
(d− x)/(d− c) if x ∈ (c, d]
0 if x > d .

A triangular function, tri(x; a, b, c), is such that

tri(x; a, b, c) =


0 if x ≤ a
(x− a)/(b− a) if x ∈ (a, b]
(c− x)/(c− b) if x ∈ (b, c]
0 if x > c .

Note thattri(x; a, b, c) = trz(x; a, b, b, c). TheL-function is defined as

L(x; a, b) =

 1 if x ≤ a
(b− x)/(b− a) if x ∈ (a, b]
0 if x > b .

Therefore,Young(x) = L(x; 10, 30) holds. Finally, theR-function is defined as

R(x; a, b) =

 0 if x ≤ a
(x− a)/(b− a) if x ∈ (a, b]
1 if x > b .
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We also consider fuzzy modifiers in fuzzyALC(D). Fuzzy modifiers, likevery,
more or less andslightly, apply to fuzzy sets to change their membership func-
tion. Formally, amodifieris a functionfm: [0, 1] → [0, 1]. For instance, we may define
very(x) = x2, while defineslightly(x) =

√
x. Modifiers has been considered, for

instance, in [5, 18].
Now, letC, Ra, Rc, Ia, Ic andM be non-empty finite and pair-wise disjoint sets of

concepts names(denotedA), abstract roles names(denotedR), concrete roles names
(denotedT ), abstract individual names(denoteda), concrete individual names(de-
notedc) andmodifiers(denotedm). Ra contains a non-empty subsetFa of abstract
feature names(denotedr), whileRc contains a non-empty subsetFc of concrete feature
names(denotedt). Features are functional roles. The set of fuzzyALC(D) conceptsis
defined by the following syntactic rules (d is a unary fuzzy domain predicate):

C −→ > | ⊥ | A | C1 u C2 | C1 t C2 | ¬C | ∀R.C |
∃R.C | ∀T.D | ∃T.D | m(C)

D → d|¬d

A TBoxT consists of a finite set ofterminological axiomsof the formA v C (A is
sub-concept ofC) or A = C (A is defined as the conceptC), whereA is a concept
name andC is concept. We also assume that no conceptA appears more than once on
the left hand side of a terminological axiom and that no cyclic definitions are present in
T . 1. Note that in classical DLs, terminological axioms are of the formC v D, where
C andD are concepts. While from a semantics point of view it is easy to consider them
as well (see [17]), we have not yet found a calculus to deal with such axioms. Using
axioms we may define the concept of a minor as

Minor = Person u ∃age.≤18 (1)

while

YoungPerson = Person u ∃age.Young (2)

will denote a young person. Similarly, we may represent “Calla is a very large, long
white flower on thick stalks” asCalla = Flower u (∃hasSize.very(Large)) u
(∃hasPetalWidth.Long)u(∃hasColour.White)u(∃hasStalks.Thick), whereLarge,
Long andThick are fuzzy domain predicates andvery is a concept modifier.

We also allow to formulate statements about individuals. Aconcept-, role- asser-
tion axiomand anindividual (in)equality axiomhas the forma:C, (a, b):R, a ≈ b and
a 6≈ b, respectively, wherea, b are abstract individuals. Forn ∈ [0, 1], anABoxA con-
sists of a finite set offuzzy conceptandfuzzy role assertion axiomsof the form〈α, n〉,
whereα is a concept or role assertion. Informally,〈α, n〉 constrains the truth degree of
α to be greater or equal ton. Note that, like in [5, 15] one could add upper bounds to
concept assertions, i.e. allow expressions of the form〈a:C ≤ n〉. To overcome to this,
we may use〈a:¬C,¬n〉 instead. An ABoxA may also contain a finite set of indi-
vidual (in)equality axiomsa ≈ b anda 6≈ b, respectively. A fuzzyALC(D) knowledge
baseK = 〈T ,A〉 consists of a TBoxT and an ABoxA.

Table 1 below summarizes some popular fuzzy logics.

1See [11].
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Lukasiewicz Logic Gödel Logic Product Logic Zadeh logic
¬x 1− x if x = 0 then1 else0 if x = 0 then1 else0 1− x
x ∧ y max(x + y − 1, 0) min(x, y) x · y min(x, y)
x ∨ y min(x + y, 1) max(x, y) x + y − x · y max(x, y)
x → y if x ≤ y then1 else1− x + y if x ≤ y then1 elsey if x ≤ y then1 elsex/y max(1− x, y)

Table 1: Popular fuzzy logics.

Semantics. We generalize fuzzyALC [15]. Unlike current approaches to fuzzy DLs,
which deal with the interpretation of conjunction asmin, disjunction asmax, negation
as1−x, our semantics of concept constructors is based on so-calledt-norm, t-conorm,
negationandimplication[3]. So, let¬,∧,∨ and→ be a negation, a t-norm, a t-conorm
and an implication function. Examples of functions are the following (L stands for
Lukasiewicz,G stands for G̈odel andP for Product logic) . For negation:¬Lx = 1−x,
¬G0 = 1 and¬Gx = 0 if x > 0. For t-norms:x ∧L y = max(x + y − 1, 0),
x ∧G y = min(x, y), andx ∧P y = x · y. For t-conorms:x ∨L y = min(x + y, 1),
x ∨G y = max(x, y), andx ∨P y = x + y − x · y. Concerning implication, we
remind that it gives a truth-value to the formulax → y. Like for classical logic, we
may usex → y = ¬x ∨ y. For instance,x →KD y = max(1 − x, y) is the so-
called Kleene-Dienes implication. Another approach to fuzzy implication is based on
the so-calledresiduum. Its formulation isx → y = sup{z ∈ [0, 1]:x ∧ z ≤ y}.
Note that thenx → y = 1 if x ≤ y. If x > y then, according to the chosen t-norm,
we have thatx →L y = 1 − x + y, x →G y = y andx →P y = x/y. Note
also thatx →L y = ¬Lx ∨L y. The same holds using Kleene-Dienes implication,
Lukasiewicz negation and G̈odel t-conorm. On the other handx →P y 6= ¬Gx ∨P y.
We conclude the discussion on fuzzy implication by noting that we have the following
inferences: assumex ≥ n andx → y ≥ m. Then(i) under Kleene-Dienes implication
we infer that ifn > 1 − m theny ≥ m (this is used in [15]).(ii) under residuum
based implication w.r.t. a t-norm∧, we infer thaty ≥ n ∧ m, which we will use in
this paper. To simplify our presentation, especially when presenting a proof system for
fuzzyALC(D), we will assume that the chosen t-norm∧, t-conorm∨, negation¬ and
implication→ are such that alwaysx ∨ y ≡ ¬(¬x ∧ ¬y); x → y ≡ ¬x ∨ y; and
¬∀x.A(x) ≡ ∃x.¬A(x) hold for all fuzzy setsA, where∀ is interpreted asinf and∃
assup. These are true, e.g. for Lukasiewicz logic and Zadeh logic, but not for Gödel
logic.

The semantics of fuzzyALC(D) is as follows. Afuzzy interpretationI with respect
to a concrete domainD is a pairI = (∆I , ·I) consisting of a non empty set∆I (called
the domain), disjoint from∆D, and of afuzzy interpretation function·I that assigns
(i) to each abstract conceptC ∈ C a functionCI :∆I → [0, 1]; (ii) to each abstract
role R ∈ Ra a functionRI :∆I × ∆I → [0, 1]; (iii) to each abstract featurer ∈ Fa

a partial functionrI :∆I × ∆I → [0, 1] such that for allu ∈ ∆I there is an unique
w ∈ ∆I on whichrI(u, w) is defined;(iv) to each abstract individuala ∈ Ia an
element in∆I ; (v) to each concrete individualc ∈ Ic an element in∆D; (vi) to each
concrete roleT ∈ Rc a functionT I :∆I ×∆D → [0, 1]; (vii) to each concrete feature
t ∈ Fc a partial functiontI :∆I × ∆D → [0, 1] such that for allu ∈ ∆I there is
an uniqueo ∈ ∆D on which tI(u, o) is defined;(viii) to each modifierm ∈ M the
functionfm: [0, 1] → [0, 1]; (ix) to each unary concrete predicated the fuzzy relation
dD:∆D → [0, 1] and to¬d the negation ofdD. The mapping·I is extended to concepts
and roles as follows (whereu ∈ ∆I): >I(u) = 1,⊥I(u) = 0,
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(C1 u C2)
I(u) = C1

I(u) ∧ C2
I(u)

(C1 t C2)
I(u) = C1

I(u) ∨ C2
I(u)

(¬C)I(u) = ¬CI(u)
(m(C))I(u) = fm(CI(u))
(∀R.C)I(u) = infw∈∆I RI(u, w) → CI(w)
(∃R.C)I(u) = supw∈∆I RI(u, w) ∧ CI(w)
(∀T.D)I(u) = info∈∆D

T I(u, o) → DI(o)
(∃T.D)I(u) = supo∈∆D

T I(u, o) ∧DI(o) .

Note that due to the restrictions on the chosen fuzzy functions, we do have that(∀R.C)I =
(¬∃R.¬C)I . This will allow us to transform concept expressions into a semanti-
cally equivalentNegation Normal Form(NNF), which is obtained by pushing in the
usual manner negation on front of concept names, modifiers and concrete predicate
names only. With nnf(C) we denote the NNF of conceptC. The mapping·I is ex-
tended to assertion axioms as follows (wherea, b ∈ Ia): (a:C)I = CI(aI) and
((a, b):R)I = RI(aI , bI). The notion ofsatisfiabilityof a fuzzy axiomE by a fuzzy
interpretationI, denotedI |= E, is defined as follows:I |= A v C iff for all u ∈
∆I , AI(u) ≤ CI(u) (this definition is equivalent to[infu∈∆I AI(u) → CI(u)] = 1,
which is derived directly from its FOL translation∀x.A(x) → C(x)); I |= A = C iff
for all u ∈ ∆I , AI(u) = CI(u); I |= 〈α, n〉 iff αI ≥ n; I |= a ≈ b iff aI = bI ;
andI |= a 6≈ b iff aI 6= bI . The notion ofsatisfiability (is model) of a knowledge
baseK = 〈T ,A〉 andentailmentof an assertional axiom is straightforward. Concern-
ing terminological axioms, we also introduce degrees of subsumption. We say thatK
entailsA v B to degreen ∈ [0, 1], denotedK |= 〈A v B,n〉 iff for every modelI of
K, [infu∈∆I AI(u) → BI(u)] ≥ n.

Example 1 Consider the following simplified excerpt of a knowledge base about cars:

SportsCar = ∃speed.very(High),
〈mg mgb:∃speed.≤170, 1〉
〈ferrari enzo:∃speed.>350, 1〉,
〈audi tt:∃speed. =243, 1〉

speed is a concrete feature. The fuzzy domain predicateHigh has membership function
High(x) = R(x; 80, 250). It can be shown that

K |= 〈mg mgb:¬SportsCar, 0.72〉
K |= 〈ferrari enzo: SportsCar, 1〉
K |= 〈audi tt: SportsCar, 0.92〉 .

Note how the maximal speed limit of themg mgb car (≤ 170) induces an upper limit,
0.28 = 1− 0.72, on the membership degree of beingmg mgb a SportsCar.

Example 2 ConsiderK with terminological axioms(1) and (2). Then under Zadeh
logicK |= 〈Minor v YoungPerson, 0.5〉 holds.

Finally, givenK and an axiomα, it is of interest to compute its best lower degree
bound. Thegreatest lower boundof α w.r.t. K, denotedglb(K, α), is glb(K, α) =
sup{n:K |= 〈α, n〉}, wheresup ∅ = 0. Determining theglb is called theBest Degree
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Bound(BDB) problem. For instance, the entailments in Examples 1 and 2 are the best
possible degree bounds. Note that,K |= 〈α, n〉 iff glb(K, α) ≥ n. Therefore, the BDB
problem is the major problem we have to consider in fuzzyALC(D), which we address
in the next section.

3 REASONING IN FUZZY ALC(D)

ConsiderK = 〈T ,A〉. In order to solve the BDB problem, we combine appropriate
DL completion rules with methods developed in the context ofMany-Valued Logics
(MVLs) [4]. The basic idea is as follows. In order to determine e.g.glb(K, a:C), we
consider an expression of the form〈a:¬C,¬x〉 (informally, 〈a:C ≤ x〉), wherex is a
[0, 1]-valued variable. Then we construct a tableaux forK = 〈T ,A ∪ {〈a:¬C,¬x〉}〉
in which the application of satisfiability preserving rules generates new assertion ax-
ioms together withinequationsover [0, 1]-valued variables. These inequations have to
be hold in order to respect the semantics of the DL constructors. Finally, in order to
determine the greatest lower bound, weminimizethe original variablex such that all
constraints are satisfied2. In general, depending on the semantics of the DL construc-
tors and fuzzy domain predicates we may end up with a general, boundedNon Linear
Programmingoptimization problem. In this paper, however, we will limit the choice of
the semantics of concept constructors, modifiers and fuzzy domain predicates in such a
way that we end up with abounded Mixed Integer Program(bMIP) optimization prob-
lem [12]. Interestingly, as for the MVL case, the tableaux we are generating contains
onebranch only and, thus, justonebMIP problem has to be solved.
Mixed Integer Programming. A general MIP problem consists in minimizing a linear
function with respect to a set of constraints that are linear inequations in which rational
and integer variables can occur. In our case, the variables are bounded. More precisely,
let x = 〈x1, . . . , xk〉 andy = 〈y1, . . . , ym〉 be variables overQ, over the integers
and letA,B be integer matrices andh an integer vector. The variables iny are called
control variables. Let f(x,y) be ank + m-ary linear function. Then thegeneral MIP
problemis to findx̄ ∈ Qk, ȳ ∈ Zm such thatf(x̄, ȳ) = min{f(x,y):Ax+By ≥ h}.
The general case can be restricted to what concerns the paper as we can deal with
boundedMIP (bMIP). That is, the rational variables range over[0, 1], while the in-
teger variables ranges over{0, 1}. It is well known that the bMIP problem is NP-
complete (for the belonging to NP, guess they and solve in polynomial time the lin-
ear system, NP-hardness follows from NP-Hardness of 0-1 Integer Programming).
Furthermore, we say thatM ⊆ [0, 1]k is bMIP-representableiff there is a bMIP
(A,B, h) with k real andm 0-1 variables such thatM = {x:∃y ∈ {0, 1}m such
that Ax + By ≥ h}. In general, we require that a constructorf is bMIP repre-
sentable. In particular, the setsg(f) = {〈x1, . . . , xk, x〉: f(x1, . . . , xk) ≥ x} and
ḡ(f) = {〈x1, . . . , xk, x〉: f(x1, . . . , xk) ≤ x} should be bMIP-representable. Interest-
ingly, once a bMIB representation of a constructor is given, then sound, complete and
linear tableaux rules can be obtained from it. Also, using ideas fromdisjunctive pro-
gramming, the tableaux rules can be designed in such a way that a one-branch tree only
is generated. See [4] for more on this issue and on bMIP-representabilty conditions for
connectives. For instance, classical logic, Zadeh’s fuzzy logic, and Lukasiewicz con-
nectives, are bMIP-representable, while Gödel negation is not. In general, connectives

2Informally, suppose the minimal value is̄n. We will know then that for any interpretationI satisfying
the knowledge base such that(a: C)I < n̄, the starting set is unsatisfiable and, thus,(a: C)I ≥ n̄ has to
hold. Which means thatglb(K, (a: C)) = n̄
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whose graph can be represented as the union of a finite number of convex polyhedra
are bMIB-representable [7], however, discontinuous functions may not be bMIP repre-
sentable.
The BDB problem. We start with some pre-processing steps as for classical DLs [11].
First, each terminological axiomA v C ∈ T can be replaced withA = CuA∗, where
A∗ is a new concept name. LetK′ the obtained knowledge base. Second, the newly
obtainedK′ can beexpandedby substituting every concept nameA occurring inK,
which is defined inT , with its defining term inT . Although, the expanded knowledge
base may become of exponential size, the properties from a semantics point of view are
left unchanged. LetK′′ the obtained knowledge base. Finally, each concept occurring
in K′′ is then transformed into NNF. This last operations does not affect the semantics
due to the restrictions we made on the fuzzy constructors. Notice that negation may
appear on front of modifiers in the from¬m(C), whereC is a complex concept. Now,
let V be a new alphabet of variablesx ranging over[0, 1], W be a new alphabet of
0-1 variablesy. We extend fuzzy assertions to the form〈α, l〉, wherel is a linear
expression over variables inV, W and real values. Alinear constraintis of the form
l ≥ l′ or l ≤ l′, wherel, l′ are linear expressions over variables inV, W and rational
values. The satisfiability notion of linear constraints is immediate. Aconstraint set
S is a set of terminological axioms, fuzzy assertion axioms, (in)equality axioms and
linear constraints.I satisfiesS iff I satisfies all elements of it. WithS0 we denote the
constraint setS0 = T ∪ A. We will see later how to determine the satisfiability of a
constraint set.

In the following, we assume thatS0 is satisfiable, otherwiseglb(K, α) = 1. As
in [15], concerning fuzzy role assertions, we have thatK |= 〈(a, b):R,n〉 iff 〈(a, b):R,m〉 ∈
A with m ≥ n. Therefore,glb(K, (a, b):R)) = max{n: 〈R(a, b), n〉 ∈ A}. So
we do not consider this case further. Now, let us determineglb(K, a:C). As antici-
pated,glb(K, a:C) is determined by the minimal value ofx such that the constraint set
S = S0 ∪ {〈a:¬C,¬x〉} is satisfiable. Similarly, for a terminological axiomA v B,
we can computeglb(K, A v B) as the minimal value ofx such that the constraint
setS = S0 ∪ {〈a:A u ¬B,¬x〉}} is satisfiable, wherea is new abstract individual.
Therefore, the BDB problem can be reduced to minimal satisfiability problem.
The Satisfiability problem. We assume that the concept constructors, concept mod-
ifiers and fuzzy domains predicates are bMIB representable (as e.g., the membership
functions in Figure 1). To the ease of presentation, we present the proof system where
the DL connectives are interpreted according to Zadeh logic, while modifiers and fuzzy
domain predicates are specified as a combination of linear functions over[0, 1] andQ,
respectively,as specified in Appendix A. Rules for Luaksiewicz logic are presented in
Appendix B.

Our satisfiability checking calculus is based on a set of constraint propagation rules
transforming a setS of constraints into “simpler” satisfiability preserving constraint
setsSi until eitherSi contains aclashor no rule can be further be applied toSi. If
Si contains a clash thenSi and, thusS is immediately not satisfiable. Otherwise, we
apply a bMIP oracle to solve the set of linear constraints inSi to determine either
the satisfiability of the set or the minimal value for a given variablex, makingSi

satisfiable. We assume that a constraint setS is reflexive, symmetric and transitively
closed concerning the equality axioms.S contains aclashiff either 〈a:⊥, n〉 ∈ S with
n > 0, or {a ≈ b, a 6≈ b} ⊆ S. The rules follow easily from the bMIP representations.
Each rule instantiation is applied at most once. Before we can formulate the rules we
need a technical definition involving feature roles (see [9]). LetS be a constraint set,
r an abstract feature and both〈(a, b1): r, l1〉 and〈(a, b2): r, l2〉 occur inS. Then we
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call such a pair afork. As r is a function, such a fork means thatb1 andb2 have to be
interpreted as the same individual. A fork〈(a, b1): r, l1〉, 〈(a, b2): r, l2〉 can be deleted
by replacing all occurrences ofb2 in S by b1. A similar argument applies to concrete
feature roles. At the beginning, we remove the forks fromS0. We assume that forks
are eliminated as soon as they appear (as part of a rule application) with the proviso
that newly generated individuals are replaced by older ones and not vice-versa. With
xα we denote the variable associated to theatomic assertionα of the forma:A or
(a, b):R. xα will take the truth value associated toα, while with xc we denote the
variable associated to the concrete individualc. The rules are the following:

RA. If 〈α, l〉 ∈ Si andα is an atomic assertion of the forma:A or (a, b):R then
Si+1 = Si ∪ {xα ≥ l}.

RĀ. If 〈a:¬A, l〉 ∈ Si thenSi+1 = Si ∪ {xa:A ≤ 1− l}.

Ru. If 〈a:C uD, l〉 ∈ Si thenSi+1 = Si ∪ {〈a:C, l〉, 〈a:D, l〉}.

Rt. If 〈a:C tD, l〉 ∈ Si thenSi+1 = Si∪{〈a:C, x1〉, 〈a:D,x2〉, x1 +x2 = l, x1 ≤
y, x2 ≤ 1 − y, xi ∈ [0, 1], y ∈ {0, 1}}, wherexi is a new variable,y is a new
control variable.

R∃. If 〈a:∃R.C, l〉 ∈ Si thenSi+1 = Si ∪ {〈(a, b):R, l〉, 〈b:C, l〉}, whereb is a new
abstract individual. The case for concrete roles is similar.

R∀. If {〈a:∀R.C, l1〉, 〈(a, b):R, l2〉} ⊆ Si thenSi+1 = Si ∪ {〈a:C, x〉, x + y ≥
l1, x ≤ 1− y, l1 + l2 ≤ 2− y, x ∈ [0, 1], y ∈ {0, 1}}, wherex is a new variable
andy is anew control variable. The case for concrete roles is similar.

Rm. If 〈a:m(C), l〉 ∈ Si thenSi+1 = Si ∪ γ(a:C, l), where the setγ(a:C, l) is ob-
tained from the bMIP representation (see appendix) ofg(m) as follows: replace
in g(m) all occurrences ofx2 with l. Then resolve forx1 and replace all occur-
rences of the formx1 ≥ l′ with 〈a:C, l′〉, while replace all occurrences the form
x1 ≤ l′ with 〈a: nnf(¬C), 1− l′〉.

Rm̄. The case〈a:¬m(C), l〉 ∈ Si is similar to ruleRm, where we use the bMIP
representation of̄g(m) in place ofg(m).

Rd. If 〈c: d, l〉 ∈ Si thenSi+1 = Si ∪ γ(c: d, l), where the setγ(c: d, l) is obtained
from the bMIP representation ofg(d) by replacing all occurrences ofx2 with l
andx1 with xc.

Rd̄. The case〈c:¬d, l〉 ∈ Si is similar to ruleRd, where we use the bMIP representa-
tion of ḡ(d) in place ofg(d).

Note that an unique branch is generated in the tableaux ofS0. Furthermore, let us
comment theRt rule. By reasoning by case, fory = 0, we havex1 = 0, x2 ≤ 1, x2 =
l, while for y = 1, we havex2 = 0, x1 ≤ 1, x1 = l. Therefore, the control variable
y simulates the two branchings of the disjunction. A similar argument applies to the
other rules.

Also, note that the branch may be of exponential length. The exponential space is
due to a well known problem inherited from the crisp case. Indeed, a completion of
S = {〈x:C, 1〉} contains at least2n + 1 variables, whereC is the concept(∃R.d11)u
(∃R.d12)u∀R.((∃R.d21)u(∃R.d22)u∀R.((∃R.d31)u(∃R.d32) . . .u∀R.((∃R.dn1)u
(∃R.dn2)) . . .).
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We say that a constraint setS′ obtained from rule applications toS is acompletion
of S iff no more rule can be applied toS′. The following can be shown.

Proposition 1 Let S be a constraint set. The rules are satisfiability preserving and a
completion ofS is obtained after a finite number of rule applications.

Proposition 2 ConsiderK〈T ,A〉 and letα be a concept assertion axioma:C or a
terminological axiomA v B. Then in finite time we can determineglb(K, α) as the
minimal value ofx such that the completion ofS = T ∪A∪{〈α′, 1− x〉} is satisfiable,
where(i) α′ = a:¬C if α = a:C, (ii) α′ = a:A u ¬B if α = A v B.

Example 3 Let us consider a simplified version of Example 2, by showing thatK |=
〈Minor v YoungPerson, 0.6〉 holds, whereMinor = ≤18 andYoungPerson = Young,
and that this is the best degree bound.

We useM, Y andYP as a shorthand forMinor, YoungPerson andYoung, respec-
tively. For ease, a variablexα, whereα is an assertion is simply written asα. We have
to consider

S0 ∪ {〈b: M u ¬YP, 1− x〉} ,

whereb is a new abstract individual. That is, we have to minimizex such that

S1 = T ∪ {〈b:≤18 u ¬Y, 1− x〉, x ∈ [0, 1]}

is satisfiable. By application of theRu rule we get

S2 = S1 ∪ {〈b:≤18, 1− x〉, 〈b:¬Y, 1− x〉} .

By abuse of notation, we write〈b:¬Y, 1− x〉 asb: Y ≤ x.
Now, forx = 1, S2 is satisfiable, while forx = 0, from 〈b:≤18, 1〉, 0 ≤ xb ≤ 18

follows and fromb: Y ≤ 0, xb ≥ 30 is required and, thus,S2 is not satisfiable (for
x = 0). For 0 < x < 1, 0 ≤ xc ≤ 18 should hold. Furthermore, over[0, 30] it can be
shown that

ḡ(Y) = {〈x1, x2〉:x1 ≤ 10 + 20y, x2 ≥ (1− y), x1 ≥ 10y,
x1 ≤ 30, x1 + 20x2 ≥ 30y, xi ∈ [0, 1], y ∈ {0, 1}}

holds (see Equation 3 in the appendix).
This means that, fromS2, by applying theRd̄ rule to b: Y ≤ x, we get the setS3 =

S2 ∪ {xb ≤ 10 + 20y, x ≥ (1− y), xb ≥ 10y, xb ≤ 30, xb + 20x ≥ 30y, y ∈ {0, 1}}.
For y = 0, xb ≤ 10 andx = 1 have to hold andS3 is still satisfiable. On the other
hand, fory = 1, xb ≥ 10 and xb + 20x ≥ 30 hold. That is,x ≥ (30 − xb)/20.
As10 ≤ xb ≤ 18, the minimal value ofx satisfyingS3 under this condition is, thus,
x = 3/5. Therefore, the minimal solutionx satisfyingS3 is x = 3/5.

4 RELATED WORK

The first work on fuzzy DLs is due to Yen ([19]) who considered a sub-language
of ALC, FL− [2]. However, it already informally talks about the use of modifiers
and concrete domains. Though, the unique reasoning facility, the subsumption test, is
a crisp yes/no question. Tresp ([18]) considered fuzzyALC extended with a special
form of modifiers, which are a combination of two linear functions, as we described in
the appendix.min, max and1 − x membership functions has been considered and a
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sound and complete reasoning algorithm testing the subsumption relationship has been
presented. Similar to our approach, a linear programming oracle is needed. Assertional
reasoning has been considered by Straccia ([15]), where fuzzy assertion axioms have
been allowed in fuzzyALC (with min, max and1−x functions), concept modifiers are
not allowed however. He also introduced the BDB problem and provided a sound and
complete reasoning algorithm based on completion rules ([16] provides a translation
of fuzzyALC into classicalALC). For an application see [10]. In the same spirit [5]
extend Straccia’s fuzzyALC with concept modifiers of the formfm(x) = xβ , where
β > 0. A sound and complete reasoning algorithm for the graded subsumption prob-
lem, based on completion rules, is presented. Finally, [13] starts addressing the issue of
alternative semantics of quantifiers in fuzzyALC (without the assertional component).
No reasoning algorithm is given.

5 CONCLUSIONS AND OUTLOOK

We have presented fuzzyALC(D) showing that its representation and reasoning ca-
pabilities go clearly beyond current approaches to fuzzy DLs. We believe that the
fuzzy extension ofALC(D) allows to express naturally a wide range of concepts of
actual domains, for which a classical representation is unsatisfactory. FuzzyALC(D)
enhances current approaches as we allow arbitrary bMIP-representable concept con-
structors, modifiers and fuzzy domain predicates to appear in aALC(D) knowledge
base. The entailment and the subsumption relationship hold to a certain degree. We
also presented a solution to the BDB problem based on a minimization problem on
bMIP.

Future work involves the extension of fuzzyALC(D) to SHOIN (D), the theo-
retical counterpart of OWL DL. Another direction is in extending fuzzy DLs with
fuzzy quantifiers, where∀ and∃ are replaced with fuzzy quantifiers likemost, some,
usually and the like (see [13] for a preliminary work in this direction). This allows to
define concepts like

TopCustomer = Customer u (Usually)buys.ExpensiveItem
ExpensiveItem = Item u ∃price.High .

Here, the fuzzy quantifierUsually replaces the classical quantifier∀ andHigh is a
fuzzy concrete predicate. Fuzzy quantifiers can be applied to inclusion axioms as well,
allowing to express, e.g.

(Most)Bird v FlyingObject .

Here the fuzzy quantifierMost replaces the classical universal quantifier∀ assumed in
the inclusion axioms. The above axiom allows to state that most birds fly.

A ON MEMBERSHIP FUNCTIONS

As a building blocks for membership function specification, we consider linear func-
tions and the combination of two linear functions: let[k1, k2] be an interval inQ,
L: [k1, k2] → [0, 1] is defined as

L[k1,k2](x; f1, c, f2) =
{

f1(x) if k1 ≤ x ≤ c
f2(x) if c ≤ x ≤ k2

11



where c ∈ [k1, k2], f1 and f2 are linear functionsfi: [k1, k2] → [0, 1], fi(x) =
mix + qi, mi, qi ∈ Q, such thatf1(c) = f2(c) ≥ 0. Notice that for modifiers, we
require that the domain is[0, 1]. Furthermore, note that the modifiers in [18] are a
special case as additionallyf1(c) = f2(c), m1 > 0 andm2 < 0 should hold. As
an application of linear combination functions, we may define, e.g. the modifiervery
asL[0,1](x; 2

3x, 0.75, 2x − 1). While the modifierm(x) = x2 ([5]) cannot be bMIP-
represented, the previous definition may be seen as an approximation of it. Multiple
combinations of linear functions may be used to represent the membership function
depicted in Figure 1.

For the sake of concrete illustration, we first show how to represent the combination
of two linear functions as a bMIP. It will be then evident that any combination of more
than two linear functions can be obtained in a similar way and, thus, the trapezoidal
functions are just a special case. So, considerL[k1,k2](x; f1, c, f2). There are several
cases to consider according to the value ofmi (< 0, > 0 and0). In order to representL
as a bMIB, we have to define the graphg(L) = {〈x1, x2〉:L(x1) ≥ x2} as the solutions
of a bMIP. However, as we may have negation on front of modifiers and fuzzy domain
predicates,̄g(m) = {〈x1, x2〉:L(x1) ≤ x2} should be bMIP-representable as well. We
just consider the former case as the latter can be developed in a similar way. We have
thatf1(k1) ≥ 0 andf2(k2) ≥ 0. Under this condition,g(L) can be split intotwo sets
X1 andX2, g(L) = X1 ∪X2, whereX1 = {〈x1, x2〉: f1(x1) ≥ x2, k1 ≤ x1 ≤ c, 0 ≤
x2 ≤ 1}, while X2 = {〈x1, x2〉: f2(x1) ≥ x2, c ≤ x1 ≤ k2, 0 ≤ x2 ≤ 1}. From the
Xi, we can build matrixesAj

i and rational positive vectorsbj
i (i, j = 1, 2) such that

Xi can be written as the setXi = {x:A1
i x ≥ b1

i , A
2
i x ≤ b2

i }. Now we introduce a
0-1 valued control variabley in order to merge the two setsX1 andX2 into a bMIP.
Indeed, we define for vectorswj

i of rational valuesX12 = {x:A1
1x ≥ (1−y) ·b1

1 +y ·
w1

1, A
2
1x ≤ (1−y)·b2

1+y ·w2
1, A

1
2x ≥ y ·b1

2+(1−y)·w1
2, A

2
2x ≤ y ·b2

2+(1−y)·w2
4},

Then, it can be verified that there is a suitable choice ofwj
i such that fory = 0,

X12 = X1, while for y = 1 X12 = X2 and, thus,X12 = g(L) and fromX12 a
bMIP can easily be obtained. The graphḡ(L) can then be defined in a similar way. For
instance,Young, restricted to[0, 30], can be defined asL[0,30](x; 1, 10, (30 − x)/20)
and, thus, it can be shown thatḡ(L) is

X12 = {〈x1, x2〉:x1 ≤ 10(1− y) + 30y, x2 ≥ (1− y),
x1 ≥ 10y, x1 ≤ 30y + 30(1− y), x1 + 20x2 ≥ 30y} .

(3)

This completes the first part. Now, in order to extendYoung to range over, say,[0, 200]
and not just over[0, 30] (recall thatYoung(x) = 0 for x ≥ 30) we have to reapply the
above procedure again to the setsX12 andX3, whereX3 = {〈x1, x2〉:x1 ≥ 30, x2 =
0} (this will introduce another control variabley1), obtaining the setX123. Therefore,
Young is bMIB representable with two control variables. In general, it can be verified
that the above procedure can iteratively be applied to the union ofn ≥ 2 sets of the form
Xi, by means of the introduction ofn − 1 control variables. In particular, trapezoidal
functions can be represented as bMIP using at most four control variables (n = 5).

The attentive reader will notice that a difficulty arises in representing crisp sets,
such as e.g.≤18, as they present a discontinuity. To overcome partially to this situation,
we may rely on a linear combination of the formL[0,18+ε](x; 1, 18, (18+ ε−x)/ε) for
a sufficiently smallε > 0 and then extend it to range over, say[0, 150], by combining
the previous function withf(x) = 0, for 18 + ε ≤ x ≤ 150, in a similarly way as we
did for Young (so, two control variables are needed).

However, we still may be able to define propagation rules for a special, useful
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kind of crisp sets defined over intervalls onQ. Let [k1, k2] be an interval inQ and
let a, b, k1 ≤ a ≤ b ≤ k2 be two rationals. We define thecrsip function, denoted
C: [k1, k2] → {0, 1}, as

C[k1,k2](x; a, b) =
{

1 if a ≤ x ≤ b
0 otherwise

Then,g(C) can be defined as

g(C) = {(x1, x2):C(x1) ≥ x2, x1 ∈ [k1, k2], x2 ∈ [0, 1]}
= {(x1, 0):x1 ∈ [k1, k2]} ∪ (4)

{(x1, x2): a ≤ x1 ≤ b, x1 ∈ [k1, k2], x2 ∈ [0, 1]} (5)

= {(x1, x2):x2 ≤ y, k1 − (k1 − a)y ≤ x1 ≤ k2 − (k2 − b)y,

x1 ∈ [k1, k2], x2 ∈ [0, 1], y ∈ {0, 1}}

To verify the last equality note that: fory = 0, x2 = 0, k1 ≤ x1 ≤ k2, while fory = 1,
0 ≤ x2 ≤ 1, a ≤ x1 ≤ b, which corresponds to the sets (6) and (7) above, respectively.

For the sake of a concrete example, ifd has fuzzy domainC[k1,k2](x; a, b) then the
constraint propagation ruleRd for a fuzzy concept assertion〈a: d ≥ l〉 is:

Rd. If 〈c: d, l〉 ∈ Si and d has fuzzy domainC[k1,k2](x; a, b) then Si+1 = Si ∪
γ(c: d, l), where the setγ(c: d, l) is obtained from the bMIP representation of
g(C) by replacing all occurrences ofx2 with l andx1 with xc, that is

γ(c: d, l) = {l ≤ y, k1 − (k1 − a)y ≤ xc ≤ k2 − (k2 − b)y,

xc ∈ [k1, k2], l ∈ [0, 1], y ∈ {0, 1}}

Similarly, ḡ(C) can be defined as the union of three sets:

ḡ(C) = {(x1, x2):C(x1) ≤ x2, x1 ∈ [k1, k2], x2 ∈ [0, 1]}
= {(x1, 1):x1 ∈ [k1, k2]} ∪ (6)

{(x1, x2):x1 ≤ a, x1 ∈ [k1, k2], x2 ∈ [0, 1]} ∪ (7)

{(x1, x2): b ≤ x1, x1 ∈ [k1, k2], x2 ∈ [0, 1]} (8)

Now we have to distinguish the cases whetherki ≥ 0 or not. If 0 ≤ k1 then

ḡ(C) = {(x1, x2):x2 ≥ y1,

x1 ≤ k2 − (k2 − a)(1− y2) + (k2 − a)y1,

k1 − (k1 − b)y2 − 2(k1 + b)y1 ≤ x1,

x1 ∈ [k1, k2], x2 ∈ [0, 1], yi ∈ {0, 1}}

Note that for the combinations(y1, y2) ∈ {0, 1}2 we have:

1. for (0, 0), x2 ∈ [0, 1], k1 ≤ x1 ≤ a (set (7));

2. for (0, 1), x2 ∈ [0, 1], b ≤ x1 ≤ k2 (set (8));

3. for (1, 0), x2 = 1,−k1 − b ≤ k1 ≤ x1 ≤ k2 ≤ 2k2 − a (set (6));

4. for (1, 1), x2 = 1, k1 ≤ x1 ≤ k2 (set (6)).

The constraint propagation rule of typeRd̄ for a fuzzy domain with membership func-
tion C[k1,k2](x; a, b) can be similarly as forRd.

The other cases depending on whetherki ≥ 0 can be worked out similarly.
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B RULES FOR LUKASIEWICZ LOGIC

RA. If 〈α, l〉 ∈ Si andα is an atomic assertion of the forma:A or (a, b):R then
Si+1 = Si ∪ {xα ≥ l}.

RĀ. If 〈a:¬A, l〉 ∈ Si thenSi+1 = Si ∪ {xa:A ≤ 1− l}.

Ru. If 〈a:C uD, l〉 ∈ Si thenSi+1 = Si ∪ {〈a:C, x1〉, 〈a:D,x2〉, y ≤ 1 − l, xi ≤
1− y, x1 + x2 = l + 1− y, xi ∈ [0, 1], y ∈ {0, 1}}, wherexi is a new variable,
y is a new control variable.

Rt. If 〈a:C tD, l〉 ∈ Si thenSi+1 = Si ∪{〈a:C, x1〉, 〈a:D,x2〉, x1 +x2 = l, xi ∈
[0, 1]}, wherexi is a new variable.

R∃. If 〈a:∃R.C, l〉 ∈ Si thenSi+1 = Si ∪{〈(a, b):R, x1〉, 〈b:C, x2〉, y ≤ 1− l, xi ≤
1−y, x1 +x2 = l+1−y, xi ∈ [0, 1], y ∈ {0, 1}}, wherexi is a new variable,y
is a new control variable andb is a new abstract individual. The case for concrete
roles is similar.

R∀. If {〈a:∀R.C, l1〉, 〈(a, b):R, l2〉} ⊆ Si thenSi+1 = Si∪{〈a:C, x〉, x ≥ l1 + l2 +
1, x ≤ y, l1 + l2 − 1 ≤ y, l1 + l2 ≥ y, x ∈ [0, 1], y ∈ {0, 1}}, wherex is a new
variable andy is anew control variable. The case for concrete roles is similar.

Rm. If 〈a:m(C), l〉 ∈ Si thenSi+1 = Si ∪ γ(a:C, l), where the setγ(a:C, l) is ob-
tained from the bMIP representation (see appendix) ofg(m) as follows: replace
in g(m) all occurrences ofx2 with l. Then resolve forx1 and replace all occur-
rences of the formx1 ≥ l′ with 〈a:C, l′〉, while replace all occurrences the form
x1 ≤ l′ with 〈a: nnf(¬C), 1− l′〉.

Rm̄. The case〈a:¬m(C), l〉 ∈ Si is similar to ruleRm, where we use the bMIP
representation of̄g(m) in place ofg(m).

Rd. If 〈c: d, l〉 ∈ Si thenSi+1 = Si ∪ γ(c: d, l), where the setγ(c: d, l) is obtained
from the bMIP representation ofg(d) by replacing all occurrences ofx2 with l
andx1 with xc.

Rd̄. The case〈c:¬d, l〉 ∈ Si is similar to ruleRd, where we use the bMIP representa-
tion of ḡ(d) in place ofg(d).

Let us comment theRu rule. By reasoning by case, fory = 0, we havexi ≤ 1, x1 +
x2 = l + 1, while for y = 1, we havel = 0, xi = 0. These two cases correspond to
max(0, x1 + x2 − 1) ≥ l, which is true ifl = 0 (y = 1) or x1 + x2 − 1 ≥ l (y = 0)
with x1 + x2 − 1 ≥ 0. Therefore, the control variabley simulates the two alternatives
of themax operator in the definition of conjunction. A similar argument applies to the
other rules.
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