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Abstract

We present a fuzzy version of description logics with concrete domains. Inter-
esting features aréi) concept constructors are based on t-norm, t-conorm, nega-
tion and implication;(ii) concrete domains are fuzzy setsii) fuzzy modifiers
are allowed; andiv) the reasoning algorithm is based on a mixture of completion
rules and bounded mixed integer programming.
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1 INTRODUCTION

In the last decade a substantial amount of work has been carried out in the context of
Description LogicgDLs) [1]. Nowadays, DLs have gained even more popularity due

to their application in the context of tigemantic Wef6]. Ontologiesplay a key role

in the Semantic Web. An ontology consists of a hierarchical description of important
concepts in a particular domain, along with the description of the properties (of the
instances) of each concept. Web content is then annotated by relying on the concepts
defined in a specific domain ontology. DLs play a particular role in this context as they
are essentially the theoretical counterpart of Wb Ontology Language OWL Da

state of the art language to specify ontologies.

However, OWL DL becomes less suitable in domains in which the concepts to be
represent have not a precise definition. As we have to deal with Web content, it is easily
verified that this scenario is, unfortunately, likely the rule rather than an exception. For
instance, just consider the case we would like to build an ontology about flowers. Then
we may encounter the problem of representing concepts like “Candia is a creamy white
rose with dark pink edges to the petals”, “Jacaranda is a hot pink rose”, “Calla is a very
large, long white flower on thick stalks”. As it becomes apparent such concepts hardly
can be encoded into OWL DL, as they involve so-cafierizyor vague concepidike
“creamy”, “dark”, “hot”, “large” and “thick”, for which a clear and precise definition
is not possible.



The problem to deainprecisiorhas been addressed several decades ago by Zadeh ([20]),
which gave bird in the meanwhile to the so-calfadzy set and fuzzy logic theokyn-
fortunately, despite the popularity of fuzzy set theory, relative little work has been
carried out involving fuzzy DLs [5, 10, 13, 15, 16, 18, 19].

Towards the management of vague concepts, we present a fuzzy extendiof(@f)

(the basic DLALC [14] extended with concrete domains [9]). Main features are:
(i) concept constructors are interpreted as t-norm, t-conorm, negation and implica-
tion. Current approaches consider conjunctionnas, disjunction asnax, negation

as1 — z only. Given the important role norm based connectives have in fuzzy logic,
a generalization towards this directions is, thus, desirgllg;concrete domains are
fuzzy sets. This has not been addressed yet in the literature and is a natural way to in-
corporate vague concepts with explicit membership functions into the language. This
requirement has already been pointed out by Yen in [19], but not yet taken into ac-
count formally; (i7i) fuzzy modifiers are allowed, similarly to [18, 5]; aritb) rea-
soning is based on a mixture of completion rules and bounded Mixed Integer Pro-
gramming (bMIP). The use of bMIP in our context is novel and allows for effective
implementations. Fuzzyl£C(D) enhances current approaches to fuzzy DLs and is in
line with [17], in which the need of a fuzzy extension of DLs in the context of the Se-
mantic Web has been highlighted. In it, a fuzzy version of OWL DL has been presented
without a calculus. Our work is a step forward in this direction, as it presents a calculus
for an important sub-language of OWL DL. We also show that the computation is more
complicated that the classical counterpart due to the generality of the connectives.

We proceed as follows. The following section presents fudz3C (D). Section 3
presents the reasoning procedure. Section 4 discusses related work, while Section 5
concludes and outlooks some topics for further research.

2 DESCRIPTION LOGICS WITH FUZZY DOMAINS

Fuzzy sets [20] allow to deal with vague concepts like pressure, high speed and
the like. Afuzzy setd with respect to a univers¥ is characterized by membership
functionp4: X — [0, 1], or simply A(z) € [0, 1], assigning am-membership degree,
A(x), to each element in X. A(x) gives us an estimation of the belonging wof
to A. In fuzzy logics, the degree of membershifx) is regarded as thdegree of
truth of the statementx is A”. Accordingly, in our fuzzy DL, a concegf will be
interpreted as a fuzzy set and, thus, concepts bedopeecise and, consequently,
e.g. the statement'is an instance of concept’, will have a truth-value iff0, 1] given
by the membership degré&a).

Syntax. Recall thatALC (D) is the basic DLALC [14] extended with concrete do-
mains [9] allowing to deal with data types such as strings and integers. In fuzzy
ALC(D), however, concrete domains are fuzzy setsuzey concrete domaifr sim-

ply fuzzy domaipis a pair(Ap, ®p), whereA; is an interpretation domain anb}, is

the set offuzzy domain predicate$ with a predefined arity» and an interpretation

d®: A — [0, 1], which is an-ary fuzzy relation over\,. To the ease of presentation,
we assume the fuzzy predicates have arity one, the domain is a subset of the rational
numbersQ and the range i), 1] N Q (in the following, whenever we writ, 1], we
mean[0,1] N Q). For instance, we may define the predicatg as an unary crisp
predicate over the natural numbers denoting the set of integers smaller or eg8al to
ie.
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Figure 1. (a) Trapezoidal function; (b) Triangular function; {c¥unction; (d) R-
function

1 ifz<18
<18() —{ 0 otherwise.

On the other handyoung may be a fuzzy domain predicate denoting the degree of
youngness of a person’s age with definition

1 if x <10
Young(z) = ¢ (30 —x)/20 if 10 <z <30
0 if z>30.

Concerning fuzzy domain predicates, we recall that in fuzzy set theory and practice
there are many membership functions for fuzzy sets membership specification. How-
ever, thetrapezoida) the triangular, the L-function (left shoulder function) and the
R-function (right shoulder function) are simple, yet most frequently used to specify
membership degrees (see Figure 1). Tapezoidal functiontrz(z, a, b, ¢, d), is de-

fined as follows: leti < b < ¢ < d be rational numbers then

0 if z <a
(x—a)/(b—a) ifze(a,lb]
trz(z;a,b,c,d) =< 1 if x € (b, (]
(d==z)/(d—c) ifzeed
0 if x>d.
A triangular function ¢ri(x; a, b, ¢), is such that
ifzx<a

—a)/(b—a) ifze (a,b]
—x)/(c=0b) ifxze (b
if x>c.

tri(x;a,b,c) =

Note thattri(z;a, b, ¢) = trz(x;a, b, b, ¢). The L-function is defined as

1 if x <a
L(z;a,b) :{ (b—2z)/(b—a) ifze(a,b
0 ifz>0.

Therefore Young(z) = L(x; 10, 30

~

holds. Finally, theR-function is defined as

0 ifz<a
R(z;a,b) { (x—a)/(b—a) ifze(a,b]
1 ifx>0.



We also consider fuzzy modifiers in fuzz¢£C(D). Fuzzy modifiers, likevery,
more_or_less andslightly, apply to fuzzy sets to change their membership func-
tion. Formally, amodifieris a functionf,,,: [0, 1] — [0, 1]. For instance, we may define
very(z) = z2, while defineslightly(x) = \/z. Modifiers has been considered, for
instance, in [5, 18].

Now, letC, Ry, R, I,, I. andM be non-empty finite and pair-wise disjoint sets of
concepts nameglenotedA), abstract roles name@lenotedR), concrete roles names
(denotedT’), abstract individual namegdenoteda), concrete individual namegle-
notedc) and modifiers(denotedm). R, contains a non-empty subset of abstract
feature nameédenoted-), while R, contains a non-empty subsgtof concrete feature
namegdenoted). Features are functional roles. The set of fuzZz§C (D) conceptss
defined by the following syntactic ruleg {s a unary fuzzy domain predicate):

C — T‘J_|A‘C1HCQ‘C1HCQ‘—\C|VRC‘
3R.C |VT.D | 3T.D | m(C)
D — d-d

A TBox7 consists of a finite set deérminological axiom®f the formA C C (A is
sub-concept o) or A = C (A is defined as the concept), where A is a concept
name and”' is concept. We also assume that no concépppears more than once on
the left hand side of a terminological axiom and that no cyclic definitions are presentin
7.1 Note that in classical DLs, terminological axioms are of the féirix. D, where

C andD are concepts. While from a semantics point of view it is easy to consider them
as well (see [17]), we have not yet found a calculus to deal with such axioms. Using
axioms we may define the concept of a minor as

Minor = Person[1Jdage.<jg Q)

while

YoungPerson = Person 1 Jage.Young (2)

will denote a young person. Similarly, we may represent “Calla is a very large, long
white flower on thick stalks” a€alla = Flower I (JhasSize.very(Large)) I
(JhasPetalWidth.Long)M(JhasColour.White)r(JhasStalks.Thick), whereLarge,
Long andThick are fuzzy domain predicates anelry is a concept modifier.

We also allow to formulate statements about individualscoficept; role- asser-
tion axiomand anindividual (in)equality axionhas the formu: C, (a,b): R, a =~ b and
a # b, respectively, where, b are abstract individuals. Faere [0, 1], anABox.A con-
sists of a finite set duzzy concepandfuzzy role assertion axiontd the form{a, n),
whereq is a concept or role assertion. Informal{y, n) constrains the truth degree of
« to be greater or equal te. Note that, like in [5, 15] one could add upper bounds to
concept assertions, i.e. allow expressions of the farmi’ < n). To overcome to this,
we may use€(a: ~C, —n) instead. An ABoxA may also contain a finite set of indi-
vidual (in)equality axioms =~ b anda # b, respectively. A fuzzyALC (D) knowledge
basel = (7, .A) consists of a TBo¥ and an ABOXxA.

Table 1 below summarizes some popular fuzzy logics.

1see[11].



Lukasiewicz Logic Godel Logic Product Logic Zadeh logic

T 1—z if x = 0thenl else0 if x = 0thenl else0 11—z
T Ay max(z +y — 1,0) min(z, y) Ty min(z, y)
zVy min(z + y, 1) max(z, y) T+y—z-y max(z, y)

z—y | fe <ythenlelsel —z+y | ifz < ythenlelsey | if z < ythenlelsex/y | max(l — z,y)

Table 1: Popular fuzzy logics.

Semantics. We generalize fuzzyl £C [15]. Unlike current approaches to fuzzy DLs,
which deal with the interpretation of conjunctionas, disjunction asnax, negation

asl — z, our semantics of concept constructors is based on so-daliean, t-conorm
negationandimplication[3]. So, let—, A, V and— be a negation, a t-norm, a t-conorm
and an implication function. Examples of functions are the followihgstands for
Lukasiewicz G stands for @del andP for Product logic) . For negationipx = 1—u,

-¢0 = land—-gz = 0if > 0. Fort-norms:z Ay y = max(z + y — 1,0),

x Ag y = min(z,y), andx Ap y = x - y. For t-conormszx Vy, y = min(z + y, 1),

z Vg y = max(z,y), andz Vpy = = +y — = - y. Concerning implication, we
remind that it gives a truth-value to the formuta— y. Like for classical logic, we
may usex — y = —x V y. Forinstancegy —xp y = max(l — z,y) is the so-
called Kleene-Dienes implication. Another approach to fuzzy implication is based on
the so-calledesiduum Its formulation isx — y = sup{z € [0,1]:z A z < y}.
Note that therr — y = 1if x < y. If z > y then, according to the chosen t-norm,
we have that —;, y = 1 -z +y, 2z —¢ y = yandz —p y = z/y. Note
also thatr —; y = —px Vp y. The same holds using Kleene-Dienes implication,
Lukasiewicz negation and@&lel t-conorm. On the other hand—p y # —gx Vp ¥.

We conclude the discussion on fuzzy implication by noting that we have the following
inferences: assume> n andxz — y > m. Then(i) under Kleene-Dienes implication
we infer that ifn > 1 — m theny > m (this is used in [15]).(é¢) under residuum
based implication w.r.t. a t-norm, we infer thaty > n A m, which we will use in

this paper. To simplify our presentation, especially when presenting a proof system for
fuzzy ALC(D), we will assume that the chosen t-normt-conormv, negation- and
implication — are such that always vy = =(—z A —y);  — y = -2 V y; and
—Vx.A(z) = Jz.—A(x) hold for all fuzzy setsA, whereV is interpreted agf and3
assup. These are true, e.g. for Lukasiewicz logic and Zadeh logic, but not foieG
logic.

The semantics of fuzzALC (D) is as follows. Afuzzy interpretatioT with respect
to a concrete domaibis a pairZ = (A%, -7) consisting of a non empty sét” (called
the domair), disjoint from Ap, and of afuzzy interpretation functior? that assigns
(i) to each abstract conceft € C a functionC%: AT — [0,1]; (i) to each abstract
role R € R, a functionR: AT x AT — [0,1]; (ii7) to each abstract featurec F,

a partial function?: AT x AT — [0, 1] such that for alu € AZ there is an unique
w € AT on whichrZ(u,w) is defined;(iv) to each abstract individual € I, an
element inAZ; (v) to each concrete individual € I. an element in\y; (vi) to each
concrete rolél” € R, a function7?: AT x Ap — [0, 1]; (vii) to each concrete feature
t € F. a partial functiont?: AT x Ay, — [0,1] such that for allu € A7 there is
an uniqueo € A, on whicht?(u,0) is defined;(viii) to each modifiern € M the
function f,,,: [0, 1] — [0, 1]; (¢z) to each unary concrete predicatéhe fuzzy relation
d: Ap — [0, 1] and to—d the negation ofi’. The mapping? is extended to concepts
and roles as follows (whene € AT): TZ(u) =1, L5 (u) =0,



CF (u) A CoF (u)
C’lz(u) \Y OQI(U)

)" (w)
(01UC2)I(U) =
(=C) (u) = —C*(u)

(m(C) (u) = fm(CF(u))

(VR.C)'(u) = infyeaz RE(u,w) — CT(w)
(BR.CY (u) = supyeazr RE(u,w) A CT(w)
(VI.DY (u) = infoen, TZ(u,0) — DZ(o
(3T.D)* (u) supyea, T (u,0) A D*(0) .

Note that due to the restrictions on the chosen fuzzy functions, we do hayeihat)” =
(-3R.~C)*. This will allow us to transform concept expressions into a semanti-
cally equivalentNegation Normal Form{NNF), which is obtained by pushing in the
usual manner negation on front of concept names, modifiers and concrete predicate
names only With nnf(C') we denote the NNF of concept. The mapping? is ex-
tended to assertion axioms as follows (wheré € I,): (a:C)* = CZ(a%) and
((a,b): R)" = RZ(aZ,bT). The notion ofsatisfiabilityof a fuzzy axiomE by a fuzzy
interpretationZ, denoted! = F, is defined as followsI = A C Ciffforall u €
AT, AT (u) < CZ(u) (this definition is equivalent tfinf,caz A% (u) — CT(u)] =1,

which is derived directly from its FOL translatiof. A(z) — C(z)); I E A = C iff

forall u € AT, AT(u) = C%(u); I = (a,n) iff o > n; T | a=biff af = b

andZ |= a # b iff a* # bT. The notion ofsatisfiability (is mode) of a knowledge
baseX = (7, .A) andentailmentof an assertional axiom is straightforward. Concern-
ing terminological axioms, we also introduce degrees of subsumption. We sdy that
entailsA C B to degree: € [0, 1], denotedC |= (A C B, n) iff for every modelZ of

K, [inf,car AT (u) — BE(u)] > n.

Example 1 Consider the following simplified excerpt of a knowledge base about cars:

SportsCar = Jspeed.very(High),
(mg_mgb: Ispeed. <70, 1)
(ferrari_enzo: dspeed.>3s0, 1),
(audi_tt: dspeed. =243, 1)

speed is a concrete feature. The fuzzy domain predidiatgh has membership function
High(z) = R(x;80,250). It can be shown that

K = (mg-mgb: =SportsCar, 0.72)
K |= (ferrari_enzo: SportsCar, 1)
K | (audi_tt: SportsCar, 0.92) .

Note how the maximal speed limit of thg mgb car (< 170) induces an upper limit,
0.28 = 1 — 0.72, on the membership degree of beiiggmgb a SportsCar.

Example 2 ConsiderC with terminological axiomg1) and (2). Then under Zadeh
logic £ = (Minor C YoungPerson, 0.5) holds.

Finally, givenC and an axionn, it is of interest to compute its best lower degree
bound. Thegreatest lower boundf « w.r.t. K, denotedglb(C, o), is glb(K, o) =
sup{n: £ = (a,n)}, wheresup ) = 0. Determining thglb is called theBest Degree



Bound(BDB) problem. For instance, the entailments in Examples 1 and 2 are the best
possible degree bounds. Note thét («, n) iff glb(K, o) > n. Therefore, the BDB
problem is the major problem we have to consider in fuaz3C (D), which we address

in the next section.

3 REASONING IN FUZZY ALC(D)

ConsiderC = (7,.A). In order to solve the BDB problem, we combine appropriate
DL completion rules with methods developed in the contexMahy-Valued Logics
(MVLs) [4]. The basic idea is as follows. In order to determine el§(XC, a: C), we
consider an expression of the foa —C, —x) (informally, (a: C < z)), wherez is a

[0, 1]-valued variable. Then we construct a tableauxioe (7, AU {(a: -C, —z)})

in which the application of satisfiability preserving rules generates new assertion ax-
ioms together withnequationsover [0, 1]-valued variables. These inequations have to

be hold in order to respect the semantics of the DL constructors. Finally, in order to
determine the greatest lower bound, maimizethe original variabler such that all
constraints are satisfied In general, depending on the semantics of the DL construc-
tors and fuzzy domain predicates we may end up with a general, bonatetinear
Programmingoptimization problem. In this paper, however, we will limit the choice of
the semantics of concept constructors, modifiers and fuzzy domain predicates in such a
way that we end up with hounded Mixed Integer ProgratbhMIP) optimization prob-

lem [12]. Interestingly, as for the MVL case, the tableaux we are generating contains
onebranch only and, thus, jushebMIP problem has to be solved.

Mixed Integer Programming. A general MIP problem consists in minimizing a linear
function with respect to a set of constraints that are linear inequations in which rational
and integer variables can occur. In our case, the variables are bounded. More precisely,
letx = (x1,...,z,) andy = (y1,...,ym) be variables ovef), over the integers

and letA, B be integer matrices andan integer vector. The variablesynare called
control variables Let f(x,y) be ank 4+ m-ary linear function. Then thgeneral MIP
problemis to findx € Q*,y € Z™ such thatf (x,y) = min{ f(x,y): Ax+ By > h}.

The general case can be restricted to what concerns the paper as we can deal with
boundedMIP (bMIP). That is, the rational variables range oVy@r1], while the in-

teger variables ranges ovéd, 1}. It is well known that the bMIP problem is NP-
complete (for the belonging to NP, guess thand solve in polynomial time the lin-

ear system, NP-hardness follows from NP-Hardness of 0-1 Integer Programming).
Furthermore, we say tha C [0,1]* is bMIP-representabléff there is a bMIP
(A, B, h) with k real andm 0-1 variables such that/ = {x:3Jy € {0,1}™ such

that Ax + By > h}. In general, we require that a construcbis bMIP repre-
sentable. In particular, the sej$f) = {(x1,..., 2k, x): f(21,...,2,) > «} and

g(f) = {{z1,...,xp,x): f(21,...,2,) < x} should be bMIP-representable. Interest-
ingly, once a bMIB representation of a constructor is given, then sound, complete and
linear tableaux rules can be obtained from it. Also, using ideas flisjunctive pro-
gramming the tableaux rules can be designed in such a way that a one-branch tree only
is generated. See [4] for more on this issue and on bMIP-representabilty conditions for
connectives. For instance, classical logic, Zadeh'’s fuzzy logic, and Lukasiewicz con-
nectives, are bMIP-representable, whilédel negation is not. In general, connectives

2|nformally, suppose the minimal valueis We will know then that for any interpretatidfi satisfying
the knowledge base such that C)% < , the starting set is unsatisfiable and, this,C')* > 7 has to
hold. Which means thatlb(KC, (a: C)) =7



whose graph can be represented as the union of a finite number of convex polyhedra
are bMIB-representable [7], however, discontinuous functions may not be bMIP repre-
sentable.

The BDB problem. We start with some pre-processing steps as for classical DLs [11].
First, each terminological axiomd T C' € 7 can be replaced with = C'1 A*, where

A* is a new concept name. L&Y the obtained knowledge base. Second, the newly
obtainedK’ can beexpandedoy substituting every concept nandeoccurring inkC,

which is defined ir7, with its defining term irZ". Although, the expanded knowledge
base may become of exponential size, the properties from a semantics point of view are
left unchanged. LeX’” the obtained knowledge base. Finally, each concept occurring
in £ is then transformed into NNF. This last operations does not affect the semantics
due to the restrictions we made on the fuzzy constructors. Notice that negation may
appear on front of modifiers in the fromm (C'), whereC' is a complex concept. Now,

let v be a new alphabet of variablesranging over[0, 1], W be a new alphabet of

0-1 variablesy. We extend fuzzy assertions to the fofm, (), wherel is a linear
expression over variables ih W and real values. Ainear constraintis of the form

I >1orl <, wherel,l” are linear expressions over variablesiiw and rational
values. The satisfiability notion of linear constraints is immediatecoAstraint set

S is a set of terminological axioms, fuzzy assertion axioms, (in)equality axioms and
linear constraintsZ satisfiesS iff 7 satisfies all elements of it. WitH; we denote the
constraint se5, = 7 U .A. We will see later how to determine the satisfiability of a
constraint set.

In the following, we assume thd, is satisfiable, otherwisglb(IC, ) = 1. As
in [15], concerning fuzzy role assertions, we have that ((a,b): R, n) iff ((a,b): R,m) €
A with m > n. Therefore,glb(K, (a,b): R)) = max{n: (R(a,b),n) € A}. So
we do not consider this case further. Now, let us determihéC, a: C'). As antici-
patedglb(K, a: C') is determined by the minimal value ofsuch that the constraint set
S = So U {{a: =C,—x)} is satisfiable. Similarly, for a terminological axiohC B,
we can computglb(lC, A T B) as the minimal value of such that the constraint
setS = So U {{a: A1 —-B,—x)}} is satisfiable, where is new abstract individual.
Therefore, the BDB problem can be reduced to minimal satisfiability problem.

The Satisfiability problem. We assume that the concept constructors, concept mod-
ifiers and fuzzy domains predicates are bMIB representable (as e.g., the membership
functions in Figure 1). To the ease of presentation, we present the proof system where
the DL connectives are interpreted according to Zadeh logic, while modifiers and fuzzy
domain predicates are specified as a combination of linear functiongiovgandQ,
respectivelyas specified in Appendix ARules for Luaksiewicz logic are presented in
Appendix B.

Our satisfiability checking calculus is based on a set of constraint propagation rules
transforming a sef of constraints into “simpler” satisfiability preserving constraint
setsS; until eitherS; contains aclashor no rule can be further be applied . If
S; contains a clash thefi; and, thusS is immediately not satisfiable. Otherwise, we
apply a bMIP oracle to solve the set of linear constraint$jrto determine either
the satisfiability of the set or the minimal value for a given variablenaking S;
satisfiable. We assume that a constraint$ét reflexive, symmetric and transitively
closed concerning the equality axionfscontains alashiff either (a: L, n) € S with
n>0,0r{a=b,a% b} CS. The rules follow easily from the bMIP representations.
Each rule instantiation is applied at most ondgefore we can formulate the rules we
need a technical definition involving feature roles (see [9]). $.&k a constraint set,

r an abstract feature and botfu, b;): r,l;) and{(a, b2): r,l2) occur inS. Then we



call such a pair #ork. Asr is a function, such a fork means thatandb, have to be
interpreted as the same individual. A fofta, by):r,11), {(a,bs2): r,l2) can be deleted

by replacing all occurrences 6§ in S by b;. A similar argument applies to concrete
feature roles. At the beginning, we remove the forks frggn We assume that forks

are eliminated as soon as they appear (as part of a rule application) with the proviso
that newly generated individuals are replaced by older ones and not vice-versa. With
zo, We denote the variable associated to #étemic assertiorv of the forma: A or

(a,b): R. xq will take the truth value associated g while with . we denote the
variable associated to the concrete individuarhe rules are the following:

RA. If (a,l) € S; anda is an atomic assertion of the form A or (a,b): R then
Si+1 =S, U {ma > l}

RA. If <a: —|A,l> € S; thenSiH =5;U {ZCLIA <1- l}
RM. If <(LZC 1 D,l> €S, thenSi+1 =5;U {(a:C,l>, (a: D,l>}

RU. If <CL:C U D,l> e S; thenSiH = SiU{<a:C,x1>, <CLZD,.Z'2>,$1 +xo =111 <
y,xe < 1 —y,z; € [0,1],y € {0,1}}, wherez; is a new variabley is a new
control variable.

R3. If (a:3R.C,1) € S; thenS; 11 = S; U {{(a,b): R,1), (b: C,1)}, whereb is a new
abstract individual. The case for concrete roles is similar.

RV. If {{a:VR.C,l1),{(a,b):R,l2)} C S;thenS;y; = S; U {{a:C,a),x +y >
e <l—yli+Iy<2—y,ze€[0,1],y € {0,1}}, wherezx is a new variable
andy is anew control variable. The case for concrete roles is similar.

Rm. If {(a:m(C),l) € S; thenS;;1 = S; U~(a: C,1), where the set(a: C,1) is ob-
tained from the bMIP representation (see appendix) of) as follows: replace
in g(m) all occurrences of, with . Then resolve for:; and replace all occur-
rences of the form:; > I’ with (a: C, 1"}, while replace all occurrences the form
x1 <!’ with (a:nnf(=C),1 - 1').

Rm. The case{a: -m(C),l) € S; is similar to ruleRm, where we use the bMIP
representation af(m) in place ofg(m).

Rd. If (¢:d,l) € S; thenS;11 = S; U~(c:d, 1), where the set(c: d, 1) is obtained
from the bMIP representation @fd) by replacing all occurrences af, with !
andzx; with z..

Rd. The casédc: —d,[) € S; is similar to ruleRd, where we use the bMIP representa-
tion of g(d) in place ofg(d).

Note that an unique branch is generated in the tableaus ofFurthermore, let us
comment théRU rule. By reasoning by case, for= 0, we haver; = 0,z < 1,25 =

I, while fory = 1, we havery = 0,21 < 1,27 = [. Therefore, the control variable

y simulates the two branchings of the disjunction. A similar argument applies to the
other rules.

Also, note that the branch may be of exponential length. The exponential space is
due to a well known problem inherited from the crisp case. Indeed, a completion of
S = {{z: C, 1)} contains at least™ + 1 variables, wher€' is the concep{3R.d;;) N
(3R.d12)"IVR.((FR.d21)MN(IR.da2)MVR.((FR.d31)M(3R.d32) . . .IVR.((FR.dp1)M
(3R.dn2)) . ..).



We say that a constraint s&t obtained from rule applications ®is acompletion
of S iff no more rule can be applied t&'. The following can be shown.

Proposition 1 Let S be a constraint set. The rules are satisfiability preserving and a
completion ofS is obtained after a finite number of rule applications.

Proposition 2 Considerk(7,.A) and leta be a concept assertion axiomC or a
terminological axiomA C B. Then in finite time we can determip# (K, «) as the
minimal value ofr such that the completion 6f= TUAU{(¢/, 1 — )} is satisfiable,
where(i) o/ = a:-Cifa=a:C, (i) o/ =a: AN-Bifa=ALC B.

Example 3 Let us consider a simplified version of Example 2, by showing/thkt
(Minor C YoungPerson, 0.6) holds, wherélinor = <;g andYoungPerson = Young,
and that this is the best degree bound.

We usé1, Y and YP as a shorthand foMinor, YoungPerson and Young, respec-
tively. For ease, a variable.,, wherex is an assertion is simply written as We have
to consider

SoU{(b: MM —YP,1 —2z)},

whereb is a new abstract individual. That is, we have to minimizich that
S1=TU{(b:<4gM Y, 1 —2z),2 €[0,1]}

is satisfiable. By application of tHer rule we get
Sy =S1 U{(b: <45,1 — ), (b: Y, 1 —2x)}.

By abuse of notation, we writg: -Y,1 — z) asb: Y < z.

Now, forz = 1, Ss is satisfiable, while for: = 0, from (b: <45,1), 0 < x;, < 18
follows and fromb: Y < 0, z;, > 30 is required and, thusS, is not satisfiable (for
x=0). For0 <z < 1,0 <z, < 18 should hold. Furthermore, ové®, 30] it can be
shown that

g(Y) = {{z1,22):21 <10+ 20y,22 > (1 —y), 21 > 10y,
x1 < 30,71 + 20xe > 30y, x; € [0,1],y € {0,1}}

holds (see Equation 3 in the appendix).

This means that, frorfi;, by applying theRd rule tob: Y < z, we get the sef; =
SoU{xy <10+ 20y, > (1 —y),xp > 10y, 2 < 30,25 + 20z > 30y,y € {0,1}}.
Fory = 0, z;, < 10 andx = 1 have to hold andd; is still satisfiable. On the other
hand, fory = 1, 2, > 10 andz, + 20z > 30 hold. Thatis,z > (30 — x)/20.
As10 < x, < 18, the minimal value of satisfyingSs; under this condition is, thus,
x = 3/5. Therefore, the minimal solutiansatisfyingSs is z = 3/5.

4 RELATED WORK

The first work on fuzzy DLs is due to Yen ([19]) who considered a sub-language
of ALC, FL™ [2]. However, it already informally talks about the use of modifiers
and concrete domains. Though, the unique reasoning facility, the subsumption test, is
a crisp yes/no question. Tresp ([18]) considered fudz3C extended with a special

form of modifiers, which are a combination of two linear functions, as we described in
the appendixmin, max and1 — 2 membership functions has been considered and a
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sound and complete reasoning algorithm testing the subsumption relationship has been
presented. Similar to our approach, a linear programming oracle is needed. Assertional
reasoning has been considered by Straccia ([15]), where fuzzy assertion axioms have
been allowed in fuzzyl £LC (with min, max and1 —z functions), concept modifiers are

not allowed however. He also introduced the BDB problem and provided a sound and
complete reasoning algorithm based on completion rules ([16] provides a translation
of fuzzy ALC into classicaldLC). For an application see [10]. In the same spirit [5]
extend Straccia’s fuzzyl£C with concept modifiers of the forri,, (x) = =7, where

8 > 0. A sound and complete reasoning algorithm for the graded subsumption prob-
lem, based on completion rules, is presented. Finally, [13] starts addressing the issue of
alternative semantics of quantifiers in fuzay>C (without the assertional component).

No reasoning algorithm is given.

5 CONCLUSIONS AND OUTLOOK

We have presented fuzz4£C(D) showing that its representation and reasoning ca-
pabilities go clearly beyond current approaches to fuzzy DLs. We believe that the
fuzzy extension ofALC(D) allows to express naturally a wide range of concepts of
actual domains, for which a classical representation is unsatisfactory. FUZZ{D)
enhances current approaches as we allow arbitrary bMIP-representable concept con-
structors, modifiers and fuzzy domain predicates to appearAL&(D) knowledge
base. The entailment and the subsumption relationship hold to a certain degree. We
also presented a solution to the BDB problem based on a minimization problem on
bMIP.

Future work involves the extension of fuzz/£C (D) to SHOZN (D), the theo-
retical counterpart of OWL DL. Another direction is in extending fuzzy DLs with
fuzzy quantifierswhereV and3 are replaced with fuzzy quantifiers likest, some,
usually and the like (see [13] for a preliminary work in this direction). This allows to
define concepts like

TopCustomer = Customer M (Usually)buys.ExpensiveItem
ExpensiveIltem = Item [l dprice.High .

Here, the fuzzy quantifie¥sually replaces the classical quantifierandHigh is a
fuzzy concrete predicate. Fuzzy quantifiers can be applied to inclusion axioms as well,
allowing to express, e.qg.

(Most)Bird C FlyingObject .

Here the fuzzy quantifiéfost replaces the classical universal quantifiexssumed in
the inclusion axioms. The above axiom allows to state that most birds fly.

A ON MEMBERSHIP FUNCTIONS

As a building blocks for membership function specification, we consider linear func-
tions and the combination of two linear functions: |&t, k2] be an interval inQ,
L:[k1, ko] — [0, 1] is defined as

filx) if kB <z<ec
L[kl,kg](fﬂ§f176;f2){ fégﬂ«”g if clgazgkz

11



wherec € [k, ko], f1 and f, are linear functionsf;: [k1, k2] — [0,1], fi(z) =

m;x + g, my,q; € Q, such thatfi(¢) = fa(c) > 0. Notice that for modifiers, we
require that the domain i), 1]. Furthermore, note that the modifiers in [18] are a
special case as additionallf{(c) = fa(c), mi > 0 andmy < 0 should hold. As

an application of linear combination functions, we may define, e.g. the modifigr

as Lo (7; %x,0.75,2m — 1). While the modifierm(z) = 2 ([5]) cannot be bMIP-
represented, the previous definition may be seen as an approximation of it. Multiple
combinations of linear functions may be used to represent the membership function
depicted in Figure 1.

For the sake of concrete illustration, we first show how to represent the combination
of two linear functions as a bMIP. It will be then evident that any combination of more
than two linear functions can be obtained in a similar way and, thus, the trapezoidal
functions are just a special case. So, considgr . (z; f1,c, f2). There are several
cases to consider according to the valuef(< 0, > 0 and0). In order to represent
as a bMIB, we have to define the gragll) = {(x1,x2): L(x1) > z2} as the solutions
of a bMIP. However, as we may have negation on front of modifiers and fuzzy domain
predicatesg(m) = {(x1,x2): L(z1) < z2} should be bMIP-representable as well. We
just consider the former case as the latter can be developed in a similar way. We have
that f1 (k1) > 0 and f2(k2) > 0. Under this conditiong(L) can be split intdwo sets
X, and X5, g(L) = X; UXs, whereX; = {<3}1,$2>2f1(.131) >xo,k <21 <¢,0<
x9 < 1}, while Xy = {<I1,$2>2f2($1) > x9,c < x1 < kQ,O_ < x9 < 1} From the
X;, we can build matrixes!] and rational positive vectots! (i, j = 1,2) such that
X; can be written as the séf; = {x: Alx > b}, A?x < b?}. Now we introduce a
0-1 valued control variablg in order to merge the two sefs; and X into a bMIP.
Indeed, we define for vectors! of rational values\> = {x: Ajx > (1—y)-bi +y-
wi, Afx < (1-y)-bi+y-wi, Ajx > y-by+(1—y) w3, A3x < y-b3+(1-y) wi},

Then, it can be verified that there is a suitable choicavgfsuch that fory = 0,
X12 = X1, while fory = 1 X735 = X5 and, thus,X12 = ¢(L) and fromX;, a
bMIP can easily be obtained. The graflti) can then be defined in a similar way. For
instance Young, restricted to0, 30], can be defined abo 3 (; 1, 10, (30 — 2)/20)
and, thus, it can be shown thgtL) is

X12:{<$17I’2>21’1 S 10(17y)+30y,x22 (17]/)7 (3)
1 > 10y, 21 < 30y + 30(1 — y), z1 + 2029 > 30y} .

This completes the first part. Now, in order to ext&ndng to range over, sayp, 200]

and not just ovefo, 30] (recall thatYoung(z) = 0 for = > 30) we have to reapply the
above procedure again to the sats, and X3, whereX; = {(z1,x2): 21 > 30,29 =

0} (this will introduce another control variablg), obtaining the seX.5. Therefore,
Young is bMIB representable with two control variables. In general, it can be verified
that the above procedure can iteratively be applied to the uniorrof sets of the form

X;, by means of the introduction af — 1 control variables. In particular, trapezoidal
functions can be represented as bMIP using at most four control variable$).

The attentive reader will notice that a difficulty arises in representing crisp sets,
such as e.g< g, as they present a discontinuity. To overcome partially to this situation,
we may rely on a linear combination of the fog 15 (x; 1,18, (18 +¢ —x) /¢) for
a sufficiently smalk > 0 and then extend it to range over, g8y150], by combining
the previous function withf (z) = 0, for 18 + ¢ < z < 150, in a similarly way as we
did for Young (so, two control variables are needed).

However, we still may be able to define propagation rules for a special, useful

12



kind of crisp sets defined over intervalls @ Let [k, k2] be an interval inQ and
leta,b, k1 < a < b < ko be two rationals. We define thasip function, denoted
C: [k‘l, ]432] — {0, 1}, as

1 if a<z<b
Cliy ko) (75 0, 0) = { 0 otherwise

Then,g(C') can be defined as

9(C) = A(@1,22): C(21) 2 @2, 21 € [k1, ko], 22 € [0,1]}
= {(l‘l,O)ZJUl S [kl,k‘Q]}U (4)
{(xl,:ng):a <z <bz € [k‘l,k’g],xQ € [0, 1}} (5)

= {(w1,22):m2 <y, by — (k1 —a)y < a1 < ko — (k2 — by,
w1 € [k1, ko], 22 € [0,1],y € {0,1}}
To verify the last equality note that: fgr= 0, 25 = 0, k; < 7 < ko, While fory =1,
0 <zy <1,a <z < b, which corresponds to the sets (6) and (7) above, respectively.

For the sake of a concrete example] fias fuzzy domaii’}y,, 1, (x; a, b) then the
constraint propagation rulRd for a fuzzy concept assertidn: d > 1) is:

Rd. If {c:d,l) € S; andd has fuzzy domairCy;, 1, (z;a,b) thenS;;; = S; U
v(e: d,1), where the set/(c:d,!) is obtained from the bMIP representation of
g(C) by replacing all occurrences of with [ andz; with x., that is

Y(edl) = {l<yki— (k1 —a)y <z.<ks— (k2 =)y,
T € [klakQLZ € [Oa 1]7y S {071}}

Similarly, g(C) can be defined as the union of three sets:

g(C) = {(z1,22):C(x1) < w2, 71 € [k1, k2], x2 € [0,1]}
= {(z1,1):21 € [k1, ko] } U (6)
{(z1,22): 21 < a,zq € [k, k2], 22 € [0,1]} U @)
{(z1,22):0 < 21,21 € [k1, k2], 22 € [0,1]} (8)

Now we have to distinguish the cases whether 0 or not. If 0 < k; then
9(C) = {(x1,22): 2 > 1,
x1 < kg — (k2 —a)(1 —y2) + (k2 — a)y1,
k1 — (k1 —b)y2 —2(k1 + b)yn < a4,
w1 € [k1, ko], w2 € [0,1],y; € {0,1}}
Note that for the combination(g, v2) € {0, 1}* we have:
1. for (0,0), x5 € [0,1], k1 < 21 < a (set(7));
2. for(0,1), z2 € [0,1],b < a1 < ko (s€t(8));
3. for (1,0), To=1,—ki —b< ki <x1 <ky<2ky—a (Set (6)),
4. for (1, 1), o =1,k <xz1 <ky (Set (6))

The constraint propagation rule of tyjel for a fuzzy domain with membership func-
tion Cix, k) (; @, b) can be similarly as foRd.
The other cases depending on whethelr 0 can be worked out similarly.
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B RULES FOR LUKASIEWICZ LOGIC

RA. If (a,l) € S; anda is an atomic assertion of the form A or (a,b): R then
Si+1 = Si U {l‘a Z l}

RA. If (a: —\A, l> e S; thenSiH =S, U {J)a: A <1- l}

RM. If (a:C M1 D,I) € S;thenS; 11 = S; U{{a:C,z1),{a: D,z2),y <1—1,2; <
l-—y,z1+z2=1+1—-y,z, €[0,1],y € {0,1}}, wherez; is a new variable,
y is a new control variable.

RU. If (a:CUD,I) € S;thenS; 11 = S; U{{a: C,x1), (a: D, z2), 21 + a0 =1, x; €
[0, 1]}, wherex; is a new variable.

R3. If <(12 E'RC, l> € Sl thenSH_l = Sl U {<(a, b) R, CC1>, <b C, 1'2>7 Yy S 1-— l, Z; S
l—y,xz14+z2=1+1-y,x; €[0,1],y € {0,1}}, wherez; is a new variabley
is a new control variable arids a new abstract individual. The case for concrete
roles is similar.

RvV. If {(aVRC’, l1>, <(CL, b) R, l2>} cS; thenSiH =S;uU {<CL2 C, .’13>, x> +1l+
Lae<yli+l—-1<yli+ls>y,xe€|0,1],y € {0,1}}, wherez is a new
variable andy is anew control variable. The case for concrete roles is similar.

Rm. If (a:m(C),l) € S; thenS;11 = S; U~(a:C,1), where the sey(a: C,1) is ob-
tained from the bMIP representation (see appendix) of) as follows: replace
in g(m) all occurrences aof, with {. Then resolve for:; and replace all occur-
rences of the form; > I’ with (a: C,1"), while replace all occurrences the form
x1 < 1" with (a:nnf (=C),1 - 1").

Rm. The case(a: -m(C),l) € S; is similar to ruleRm, where we use the bMIP
representation gj(m) in place ofg(m).

Rd. If (c:d,l) € S; thenS;11 = S; U~(c:d,1), where the set(c: d, 1) is obtained
from the bMIP representation gfd) by replacing all occurrences af, with !
andz; with z..

Rd. The casdc: —d,[) € S; is similar to ruleRd, where we use the bMIP representa-
tion of g(d) in place ofg(d).

Let us comment th&™ rule. By reasoning by case, fgr= 0, we haver; < 1,21 +

xo = [+ 1, while fory = 1, we havel = 0,2; = 0. These two cases correspond to
max(0,x1 +x2 — 1) > [, whichistrueifl =0(y =1)orz; + 22 —1 > 1 (y = 0)
with 21 + x5 — 1 > 0. Therefore, the control variablesimulates the two alternatives
of themax operator in the definition of conjunction. A similar argument applies to the
other rules.
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