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Abstract

We consider a general shuffling operation for finite and infinite words
which is not necessarily fair. This means that it may be the case that in a
shuffle of two words, from some point onwards, one of these words prevails
ad infinitum even though the other word still has letters to contribute.
Prefixes and limits of shuffles are investigated, leading to a characterization
of general shuffles in terms of shuffles of finite words, a result which does not
hold for fair shuffles. Associativity of shuffling is an immediate corollary.

1 Introduction

Shuffling two words is usually defined as arbitrarily interleaving subwords in such
a way that the resulting word contains all letters of both words, like shuffling two
decks of cards. Shuffling is a well-known operation—sometimes referred to as
interleaving, weaving, or merging—that, in many variants, has been extensively
studied. Its popularity comes from purely mathematical interest [5, 7, 8, 10–13,
15–17] and from its significance as a semantics for concurrent systems consisting
of several components [2, 4, 6, 14,18–20,22,23].

When systems may be iteratively composed, the modularity of the chosen
semantics becomes important. In particular, when a form of shuffling is used to
combine behaviours, this operation should be commutative and associative. In
addition, systems—in particular reactive systems—may exhibit ongoing, infinite
behaviours, represented by infinite words. While it is in general not difficult to
prove the commutativity and associativity of shuffling operations in case only
finite words are involved [2, 4, 7, 10, 13, 17, 20, 22, 23], this changes when infinite
words are allowed or certain variants of shuffling are considered. Mostly it is
still easy to prove commutativity, but it may be quite challenging to prove asso-
ciativity [2, 4, 19]. There even exist variants of shuffling for which associativity
does not hold [5, 8, 15–17] contrary to the intuition.

In this paper we consider shuffles of possibly infinite words which are not
necessarily fair in the sense that one of the two words may be delayed indefi-
nitely, while for each position in the shuffle an occurrence of a letter from the
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other word is chosen. Note that with this definition, a shuffle of two finite words
is always a standard—fair—shuffle. The motivation for this particular shuffle
operation stems from our attempts to describe the behaviour of a certain type
of team automaton as a language composed of the languages of its constituting
component automata [2–4]. These languages are prefix-closed and may con-
tain infinite words. The composed behaviour as exhibited by the team is not
necessarily fair in the sense that any individual component is allowed to exe-
cute its behaviour ad infinitum, without giving other components a fair turn
to continue. This leads to a language consisting of potentially unfair shuffles of
words representing behaviours of the various components. Since team automata
consist in general of two or more components and may also be defined in an
iterative fashion, an associativity result for this generalized form of shuffling is
needed to establish the compositionality of the semantics. As demonstrated in
the Ph.D. thesis [2] of the first author, this associativity result can also be used
for proving the associativity of other more involved—synchronized—shuffle op-
erations, relevant when describing the behaviour of team automata cooperating
under different synchronization strategies.

Unfortunately we were unable to find in the literature explicit results con-
cerning the associativity of the shuffle operation as considered here, although
there exist many references to the associativity of related shuffle operations [7,
10,13,17,20,22,23]. We could thus try and adapt existing results to the general
case when the words that are shuffled may be finite or infinite and the shuffle
does not have to be fair. However, rather than focussing on the single property
of associativity, we propose to investigate here the more general issue of the
relationship between shuffles of (finite or infinite) words and the shuffles of their
finite prefixes. This should shed more light on the relationships between the
finite and the infinite behaviours of the composed system, and contribute to the
general knowledge of shuffling in the context of infinite words. The associativity
of shuffling follows as a corollary. Hence it is our aim to give a self-contained
exposition, elaborating the limit behaviour of shuffles with infinite words and
leading to a characterization of shuffles in terms of their prefixes.

The organization of the paper is as follows. In Section 2 we introduce the
necessary notations and definitions and establish some basic properties. Also
proved here is the important result that the prefixes of the shuffles of two words
are exactly the shuffles of the prefixes of these words. Next, in Section 3, we
separately consider fair shuffles. Using an established technique, it is proved
directly that fair shuffling is associative, also when the words involved may be
infinite. Consequently, in the main Section 4, we consider general shuffles. As
a main result we demonstrate that a word must be a shuffle of two given words
whenever all its prefixes are shuffles of the prefixes of these two words. This
result does not hold if only fair shuffles are allowed. Together with the earlier
result from Section 2 this leads to a characterization of shuffles, and associativity
follows.
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2 Basic Definitions and Observations

Let ∆ be an alphabet, i.e. a (possibly empty, possibly infinite) set of symbols
or letters. A word over ∆ is a sequence a1a2 · · · with each ai ∈ ∆. A word may
be finite or infinite. The empty word is denoted by λ. For a finite word w, we
use the notation |w| to denote its length. Hence |λ| = 0 and if w = a1a2 · · · an,
with n ≥ 1 and ai ∈ ∆, for all 1 ≤ i ≤ n, then |w| = n. For a word w and an
integer j ≥ 1 such that j ≤ |w| if w is finite, we use w(j) to denote the symbol
occurring at the jth position in w.

The set of all finite words over ∆ (including λ) is denoted by ∆∗. The set
∆+ = ∆∗ \ {λ} consists of all nonempty finite words. By convention ∆ ⊆ ∆+.
The set of all infinite words over ∆ is denoted by ∆ω. By ∆∞ we denote the
set of all words over ∆. Hence ∆∞ = ∆∗ ∪∆ω. A language (over ∆) is a set of
words (over ∆). A language consisting solely of finite words is called finitary. If
L ⊆ ∆ω, i.e. all words of L are infinite, then L is called an infinitary language.
When dealing with singleton languages, we often omit brackets and write w
rather than {w}.

Given two words u, v ∈ ∆∞, their concatenation u · v is defined as follows.
If u, v ∈ ∆∗, then u · v(i) = u(i) for 1 ≤ i ≤ |u| and u · v(|u| + i) = v(i) for
1 ≤ i ≤ |v|. If u ∈ ∆∗ and v ∈ ∆ω, then u · v(i) = u(i) for 1 ≤ i ≤ |u| and
u · v(|u| + i) = v(i) for i ≥ 1. If u ∈ ∆ω and v ∈ ∆∞, then u · v(i) = u(i) for
all i ≥ 1. Note that u · λ = λ · u = u, for all u ∈ ∆∞. The concatenation of
two languages K and L is the language K · L = {u · v : u ∈ K, v ∈ L}. We will
mostly write uv and KL rather than u · v and K · L, respectively.

A word u ∈ ∆∗ is a (finite) prefix of a word w ∈ ∆∞ if there exists a v ∈ ∆∞

such that w = uv. In that case we write u ≤ w. If u ≤ w and u 6= w, then
we may use the notation u < w. Moreover, if |u| = n, for some n ≥ 0, then u
is the prefix of length n of w, denoted by w[n]. Note that w[0] = λ. The set
of all prefixes of a word w is pref (w) = {u ∈ ∆∗ : u ≤ w}. For a language K,
pref (K) =

⋃
{pref (w) : w ∈ K}.

Both finite and infinite words can be defined as the limit of their prefixes.
Let v1, v2, · · · ∈ ∆∗ be an infinite sequence of words such that vi ≤ vi+1, for all
i ≥ 1. Then lim

n→∞
vn is the unique word w ∈ ∆∞ defined by w(i) = vj(i), for all

i, j ∈ N such that i ≤ |vj |. Hence vi ≤ w for all i ≥ 1 and w = vk whenever
there exists a k ≥ 1 such that vn = vn+1 for all n ≥ k. For an infinite sequence
of finite words u1, u2, . . . ∈ ∆∗ we use the notation u1u2 · · · to denote the word
lim

n→∞
u1u2 · · ·un.

We now move to shuffles. We define a shuffle of two words as an interleaving
of consecutive finite subwords of these words which stops (is finite) only if both
words have been used completely. This implies that one (infinite) word may
prevail when the other word, from some point onwards, contributes nothing
anymore but the trivial subword λ.
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Definition 2.1 Let u, v ∈ ∆∞. Then

(1) w ∈ ∆∞ is a fair shuffle of u and v if w = u1v1u2v2 · · · , where ui, vi ∈ ∆∗,
for all i ≥ 1, are such that u = u1u2 · · · and v = v1v2 · · · , and

(2) w ∈ ∆∞ is a shuffle of u and v if either

(a) w is a fair shuffle of u and v, or

(b) w = u1v1u2v2 · · · , where ui, vi ∈ ∆∗, for all i ≥ 1, and either
u1u2 · · · ∈ pref (u) and v = v1v2 · · · ∈ ∆ω, or u = u1u2 · · · ∈ ∆ω

and v1v2 · · · ∈ pref (v).

For u, v ∈ ∆∞, the set of all fair shuffles of u and v is denoted by u ||| v and
the set of all shuffles of u and v is denoted by u || v. Thus, u ||| v = {w ∈ ∆∞ :
w is a fair shuffle of u and v} and u || v = {w ∈ ∆∞ : w is a shuffle of u and v}.
Note that, as defined by the fair shuffle operator ||| and the shuffle operator
||, both fair shuffling and shuffling yield languages.

Shuffling two languages is defined element-wise: The fair shuffle of two
languages L1 and L2 is denoted by L1 ||| L2 and is defined as the set of all
words which are a fair shuffle of a word from L1 and a word from L2. Hence
L1 ||| L2 = {w ∈ u ||| v : u ∈ L1, v ∈ L2}. Similarly, the shuffle of L1 and L2 is
denoted by L1 || L2 and is defined as L1 || L2 = {w ∈ u || v : u ∈ L1, v ∈ L2}.

Note that by definition a shuffle of two finite words is always fair: u || v =
u ||| v whenever u and v are finite words. On the other hand, if at least one
among u and v is infinite, then u ||| v ⊆ u || v and this inclusion may be strict,
as can be concluded from the following example.

Example 2.2 The word ab is a shuffle of a and b and a || b = {ab, ba}, a2 || b =
{a2b, aba, ba2}; in general an || b = {aibaj : i, j ≥ 0, i+ j = n}. Note that every
shuffle in an || b is fair. Also aω ||| b = {aibaω : i ≥ 0} consists of fair shuffles
only, but aω || b = (aω ||| b) ∪ aω. Note that also for infinite words it may be
the case that all shuffles are fair shuffles: aω ||| a = aω || a = aω.

It follows immediately from Definition 2.1 that both fair shuffling and shuffling
are commutative operations.

Theorem 2.3 Let u, v ∈ ∆∞. Then u ||| v = v ||| u and u || v = v || u.

Also the next observation is easily proved. It describes the structure of (fair)
shuffles and it can be used as a recursive definition for the shuffles of finite words
(see, e.g., [5, 17,21]).

Lemma 2.4 Let u, v ∈ ∆∞ and a, b ∈ ∆. Then

(1) u || λ = u ||| λ = u = λ ||| u = λ || u and

(2) au ||| bv = a(u ||| bv) ∪ b(au ||| v) and au || bv = a(u || bv) ∪ b(au || v).
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As an intermediate result we obtain that any concatenation of (fair) shuffles is
a (fair) shuffle of a concatenation. In particular, any shuffle of prefixes of two
words is a prefix of the (fair) shuffle of these words.

Lemma 2.5 Let u, v ∈ ∆∞ and z, u′, v′ ∈ ∆∗. Then

(1) z(u ||| v) ⊆ zu ||| v and z(u || v) ⊆ zu || v, and

(2) (u′ || v′)(u ||| v) ⊆ u′u ||| v′v and (u′ || v′)(u || v) ⊆ u′u || v′v.

Proof (1) We only prove the first inclusion. The other proof is analogous. Let
w ∈ z(u ||| v). Then w = zw′ for some w′ ∈ u ||| v. By Definition 2.1(1),
w′ = u1v1u2v2 · · · , with ui, vi ∈ ∆∗ for all i ≥ 1, u = u1u2 · · · , and v = v1v2 · · · .
Thus w = zw′ = zu1v1u2v2 · · · with zu1u2 · · · = zu. Hence w ∈ zu ||| v.

(2) We only prove the first inclusion. The other proof is analogous. First
assume u′ = λ. Then u′ || v′ = v′ by Lemma 2.4(1). From Theorem 2.3 and (1)
we have v′(u ||| v) ⊆ u ||| v′v. The case that v′ = λ is symmetric. We proceed by
induction on |u′|+ |v′|. The cases that |u| = 0 or |v| = 0 have already been dealt
with. We thus assume that u′ = au1 and v′ = bv1 with a, b ∈ ∆ and u1, v1 ∈ ∆∗.
Then, by Lemma 2.4(2), u′ || v′ = au1 || bv1 = a(u1 || bv1) ∪ b(au1 || v1). This
yields

(u′ || v′)(u ||| v) = a(u1 || bv1)(u ||| v) ∪ b(au1 || v1)(u ||| v)
⊆ a(u1u ||| bv1v) ∪ b(au1u ||| v1v)
⊆ (au1u ||| bv1v) ∪ (au1u ||| bv1v)

= (u′u ||| v′v)

by applying the induction hypothesis and Lemma 2.4(2) twice. �

In addition, as we prove next, every prefix of a shuffle of two words is a fair
shuffle of prefixes of these words. Consequently, the shuffles and the fair shuffles
of two words determine the same set of prefixes.

Theorem 2.6 Let u, v ∈ ∆∞. Then

pref (u) || pref (v) = pref (u ||| v) = pref (u || v) = pref (u) ||| pref (v) .

Proof From Lemma 2.5(2) we know that pref (u) || pref (v) ⊆ pref (u ||| v).
Since u ||| v ⊆ u || v by Definition 2.1, it follows that pref (u ||| v) ⊆ pref (u || v)
and pref (u) ||| pref (v) ⊆ pref (u) || pref (v). Hence the proof is complete once
we have shown that pref (u || v) ⊆ pref (u) ||| pref (v). Let z ∈ pref (u || v). This
implies that there exist an n ≥ 1 and u1, u2, . . . , un, v1, v2, . . . , vn ∈ ∆∗ such that
z = u1v1u2v2 · · ·un−1vn−1x with x ∈ pref (unvn), u1u2 · · ·un ∈ pref (u), and
v1v2 · · · vn ∈ pref (v). It is now immediately clear that z ∈ pref (u) ||| pref (v).

�



134 Words 2005

Example 2.7 Although aω ||| b 6= aω || b, we have

pref (aω ||| b) = pref (aω || b) = {aibaω : i ≥ 0} ∪ a∗ .

3 Associativity of Fair Shuffling

In this section the associativity of fair shuffling is proved: u ||| (v ||| w) =
(u ||| v) ||| w for all words u, v, and w. Extending a technique known from,
e.g., [13,17,21], to infinite words makes it possibly to prove rather directly that
fair shuffling is associative. This technique is based on renaming and inserting:
with each word we associate its own (indexed) alphabet and rename its letters
accordingly. Next arbitrary (finite) subwords over the other indexed alphabet
are inserted to simulate shuffles with arbitrary words over the other indexed
alphabet. Then we intersect the resulting sets: all words in the intersection are
(fair) shuffles of the renamed words. Hence to obtain all (fair) shuffles, it is
sufficient to ultimately simply go back to the original alphabets.

To formalize all this, we use homomorphisms and their extension to infinite
words. Let h : Σ → Γ∗ be a function assigning to each letter of alphabet Σ a
finite word over Γ. The homomorphic extension of h to Σ∗, also denoted by h,
is defined in the usual way by h(λ) = λ and h(xy) = h(x)h(y) for all x, y ∈ Σ∗.
We extend h to Σ∞ by setting h( lim

n→∞
vn) = lim

n→∞
h(vn), for all v1, v2, . . . ∈ Σ∗

such that for all i ≥ 1, vi ≤ vi+1. Note that this is well-defined, since vi ≤ vi+1

implies h(vi) ≤ h(vi+1).
Let ∆ be an alphabet. For each integer i ∈ N and each a ∈ ∆ we let

[a, i] be a distinct symbol. Let [∆, i] = {[a, i] : a ∈ ∆}. Thus for all i, j ∈ N
such that i 6= j, [∆, i] and [∆, j] are disjoint. We moreover assume that ∆
and [∆, i] are disjoint for all i. The homomorphisms βi : ∆∗ → [∆, i]∗ and
βi : [∆, i]∗ → ∆∗ are defined by βi(a) = [a, i] and βi([a, i]) = a, respectively.
Note that βi and βi are renamings (bijections): βi uniquely labels every letter
in a word with i and βi can be used to remove this label again. Now let i ∈ N
and J ⊆ N be such that i /∈ J . We define ϕi,J : (

⋃
{[∆, j] : j ∈ {i} ∪ J})∗ → ∆∗

by ϕi,J([a, i]) = a and ϕi,J([a, j]) = λ, for all j ∈ J . Furthermore, we have
ψJ : (

⋃
{[∆, j] : j ∈ J})∗ → ∆∗ defined by ψJ([a, j]) = a, for all j ∈ J . Note

that ϕi,∅ = βi and ψ{j} = βj . Intuitively, ϕi,J is used to remove the label i
from every letter in a word that is labelled by i and to erase every other symbol
from that word, whereas ψJ simply removes all labels in J from every letter in
a word that is labelled by such a label from J .

We begin with the result announced above, which provides an alternative
definition for the fair shuffle.

Theorem 3.1 Let u, v ∈ ∆∞. Then, for all i, j ∈ N such that i 6= j, u ||| v =
ψ{i,j}(ϕ

−1
i,{j}(u) ∩ ϕ−1

j,{i}(v)).
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Proof Without loss of generality we assume that i = 1 and j = 2.
(⊆) Let w ∈ u ||| v. Then w = u1v1u2v2 · · · with u1, u2, . . . , v1, v2, . . . ∈ ∆∗

such that u = u1u2 · · · and v = v1v2 · · · . Now consider

w = β1(u1)β2(v1)β1(u2)β2(v2) · · · .

It follows immediately that ϕ1,{2}(w) = u. Likewise, ϕ2,{1}(w) = v. Hence
w ∈ ϕ−1

1,{2}(u) ∩ ϕ−1
2,{1}(v). Since ψ{1,2}(w) = w, we are done.

(⊇) We only prove the case that u, v ∈∆ω. The proofs of the other cases
are similar. Let w ∈ ψ{1,2}(ϕ

−1
1,{2}(u) ∩ ϕ−1

2,{1}(v)) and w ∈ ϕ−1
1,{2}(u) ∩ ϕ−1

2,{1}(v)
be such that ψ{1,2}(w) = w. As ϕ1,{2}(w) = u there exist x1, x2, . . . ∈ ∆∗ and
u1, u2, . . . ∈ ∆+ such that w = β2(x1)β1(u1)β2(x2)β1(u2) · · · and u = u1u2 · · · .
Similarly, ϕ2,{1}(w) = v implies that there exist y1, y2, . . . ∈ ∆∗ and v1, v2, . . . ∈
∆+ such that w = β1(y1)β2(v1)β1(y2)β2(v2) · · · and v = v1v2 · · · . Hence

β2(x1)β1(u1)β2(x2)β1(u2) · · · = β1(y1)β2(v1)β1(y2)β2(v2) · · · .

Since [∆, 1]∩ [∆, 2] = ∅ it must be the case that either β2(x1) = λ or β1(y1) = λ.
First assume that β2(x1)=λ, i.e. x1 = λ. Hence

β1(u1)β2(x2)β1(u2)β2(x3) · · · = β1(y1)β2(v1)β1(y2)β2(v2) · · · .

Again by [∆, 1] ∩ [∆, 2] = ∅ and from the fact that ui, vi ∈ ∆+ for all i ≥ 1,
we know that β1(ui) = β1(yi) and β2(vi) = β2(xi+1) for all i ≥ 1. Thus w =
ψ{1,2}(w) = u1v1u2v2 · · · ∈ u ||| v.

The case that β1(y1) = λ is treated analogously. �

This alternative definition makes it possible to derive a symmetric description
for the case that a word u is fairly shuffled with the fair shuffles v ||| w of words
v and w.

Lemma 3.2 Let u, v, w ∈ ∆∞. Let i1, i2, i3 ∈ N be three different integers and
let j ∈ N be such that j 6= i1. Then

ψ{i1,j}(ϕ
−1
i1,{j}(u) ∩ ϕ−1

j,{i1}(ψ{i2,i3}(ϕ
−1
i2,{i3}(v) ∩ ϕ−1

i3,{i2}(w))))

= ψ{i1,i2,i3}(ϕ
−1
i1,{i2,i3}(u) ∩ ϕ−1

i2,{i1,i3}(v) ∩ ϕ−1
i3,{i1,i2}(w)) .

Proof Without loss of generality we assume that ik = k, for 1 ≤ k ≤ 3, and
j 6= 1.

(⊆) Let z ∈ ψ{1,j}(ϕ
−1
1,{j}(u) ∩ ϕ−1

j,{1}(ψ{2,3}(ϕ
−1
2,{3}(v) ∩ ϕ−1

3,{2}(w)))) and z ∈
ϕ−1

1,{j}(u) ∩ ϕ−1
j,{1}(ψ{2,3}(ϕ

−1
2,{3}(v) ∩ ϕ−1

3,{2}(w))) be such that ψ{1,j}(z) = z. Let

x ∈ ψ{2,3}(ϕ
−1
2,{3}(v) ∩ ϕ−1

3,{2}(w)) be such that z ∈ ϕ−1
1,{j}(u) ∩ ϕ−1

j,{1}(x). Let

x ∈ ϕ−1
2,{3}(v) ∩ ϕ−1

3,{2}(w) be such that ψ{2,3}(x) = x. Hence x is of the form
x = b1c1b2c2 · · · such that for all i ≥ 1, bi ∈ [∆, 2] ∪ {λ} and ci ∈ [∆, 3] ∪
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{λ}, β2(b1b2 · · · ) = v, and β3(c1c2 · · · ) = w. Furthermore z is of the form
z = a1b1c1a2b2c2 · · · such that for all i ≥ 1, ai ∈ [∆, 1] ∪ {λ} and bi, ci ∈
[∆, j] ∪ {λ}, β1(a1a2 · · · ) = u, and βj(b1c1b2c2 · · · ) = ψ{2,3}(b1c1b2c2 · · · ) is
such that βj(b1b2 · · · ) = β2(b1b2 · · · ) = v and βj(c1c2 · · · ) = β3(c1c2 · · · ) =
w. Now consider that z = a1β2(βj(b1))β3(βj(c1))a2β2(βj(b2))β3(βj(c2)) · · · .
Since β1(a1a2 · · · ) = u, β2(β2(βj(b1))β2(βj(b2)) · · · ) = βj(b1b2 · · · ) = v, and
β3(β3(βj(c1))β3(βj(c2)) · · · ) = βj(c1c2 · · · ) = w, we know that ϕ1,{2,3}(z) =
u, ϕ2,{1,3}(z) = v, and ϕ3,{1,2}(z) = w. Hence z ∈ ϕ−1

1,{2,3}(u) ∩ ϕ−1
2,{1,3}(v) ∩

ϕ−1
3,{1,2}(w) and ψ{1,2,3}(z) = ψ{1,j}(z) = z.

(⊇) Let z ∈ ψ{1,2,3}(ϕ
−1
1,{2,3}(u)∩ϕ−1

2,{1,3}(v)∩ϕ−1
3,{1,2}(w)) and z ∈ ϕ−1

1,{2,3}(u)∩
ϕ−1

2,{1,3}(v) ∩ ϕ−1
3,{1,2}(w) be such that ψ{1,2,3}(z) = z. Hence z is of the form

z = a1b1c1a2b2c2 · · · such that for all i ≥ 1, ai ∈ [∆, 1] ∪ {λ}, bi ∈ [∆, 2] ∪ {λ},
and ci ∈ [∆, 3] ∪ {λ}, β1(a1a2 · · · ) = u, β2(b1b2 · · · ) = v, and β3(c1c2 · · · ) = w.
Let u = a1α1a2α2 · · · , with αi ∈ ([∆, j] ∪ {λ})∗, be such that for all i ≥ 1,
βj(αi) = ψ{2,3}(bici). Then clearly u ∈ ϕ−1

1,{j}(u). Next let x = b1c1b2c2 · · · .
Then x ∈ ϕ−1

2,{3}(v) ∩ ϕ−1
3,{2}(w). Since for all i ≥ 1, ϕj,{1}(αi) = βj(αi) =

ψ{2,3}(bici) and ai ∈ [∆, 1] ∪ {λ}, it follows that u ∈ ϕ−1
j,{1}(ψ{2,3}(x)). Thus

u ∈ ϕ−1
1,{j}(u) ∩ ϕ−1

j,{1}(ψ{2,3}(x)). Finally, the fact that for all i ≥ 1, βj(αi) =
ψ{2,3}(bici) now implies that ψ{1,j}(u) = ψ{1,2,3}(z) = z. �

With this lemma it is now straightforward to prove that fair shuffling of
possibly infinite words is associative, a result which is mentioned in [19] (where
fair shuffling is called fair merge) but which is not proved there due to the
complications caused by a different setting.

Theorem 3.3 Let u, v, w ∈ ∆∞. Then u ||| (v ||| w) = (u ||| v) ||| w.

Proof By Theorem 3.1 and Lemma 3.1,

u ||| (v ||| w) = ψ{1,4}(ϕ
−1
1,{4}(u) ∩ ϕ−1

4,{1}(ψ{2,3}(ϕ
−1
2,{3}(v) ∩ ϕ−1

3,{2}(w))))

= ψ{1,2,3}(ϕ
−1
1,{2,3}(u) ∩ ϕ−1

2,{1,3}(v) ∩ ϕ−1
3,{1,2}(w)) .

Similarly, we have

(u ||| v) ||| w = ψ{3,4}(ϕ
−1
4,{3}(ψ{1,2}(ϕ

−1
1,{2}(u) ∩ ϕ−1

2,{1}(v))) ∩ ϕ−1
3,{4}(w))

= ψ{1,2,3}(ϕ
−1
1,{2,3}(u) ∩ ϕ−1

2,{1,3}(v) ∩ ϕ−1
3,{1,2}(w)) .

Hence u ||| (v ||| w) = (u ||| v) ||| w. �

Since for finite words shuffles and fair shuffles are the same, this theorem
implies that shuffling is associative for finite words. This is a well-known fact
(see, e.g., [7, 10, 13, 17, 20, 22]) which we state here explicitly for completeness’
sake and for future reference.
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Corollary 3.4 Let u, v, w ∈ ∆∗. Then u || (v || w) = (u || v) || w.

Theorem 3.1 supplies an alternative definition for fair shuffles only, since the
inverse homomorphisms used to insert subwords are applied to the complete
words to be shuffled. To extend this theorem to the general case we would
have to consider also the prefixes of one word in case the other word is infinite.
Because of this case distinction, this would lead to a less uniform description for
shuffles than we now have for fair shuffles. Rather than proving associativity on
basis of such an alternative definition or by further investigating the implications
of the associativity of fair shuffling, we will present in the next section a more
general approach based on prefix properties. We will express shuffles as limits
of shuffles of finite words, which should then allow us to apply the associativity
of the shuffling of finite words (Corollary 3.4).

4 General Shuffles

In this section we will prove that a word is a shuffle of two given words if and
only if each of its prefixes is a shuffle of prefixes of these two words. We begin
by introducing the concept of decomposition as an explicit description of how a
shuffle is obtained from two given finite words.

Definition 4.1 Let w ∈ ∆∗. A decomposition of w is a sequence d = (u1, v1,
u2, v2, . . . , un, vn) with n ≥ 1, u1 ∈ ∆∗, u2, u3, . . . , un, v1, v2, . . . , vn−1 ∈ ∆+,
vn ∈ ∆∗, and w = u1v1u2v2 · · ·unvn. If u1u2 · · ·un = u and v1v2 · · · vn = v, then
d is called a (u, v)-decomposition of w. The norm of d, denoted by || d ||, is n.

Note that decompositions — apart from the first and the last subword men-
tioned — only refer to nonempty subwords of the words that are shuffled. This
provides us with a normal form for the description of finite shuffles.

Lemma 4.2 Let u, v, w ∈ ∆∗. Then there exists a (u, v)-decomposition of w if
and only if w ∈ u || v.

Proof (Only if) Immediate from Definitions 2.1 and 4.1.
(If) Let w ∈ u || v. Then by Definition 2.1 we have w = u1v1u2v2 · · · , with

ui, vi ∈ ∆∗ for all i ≥ 1, u = u1u2 · · · , and v = v1v2 · · · . Let ρ1 = (u1, v1) and if
ρk = (α1, β1, α2, β2, . . . , α`, β`) for some ` ≥ 1 and αj , βj ∈ ∆∗, for all 1 ≤ j ≤ `,
then

ρk+1 =


(α1, β1, α2, β2, . . . , α`uk+1, vk+1) if β` = λ,
(α1, β1, α2, β2, . . . , α`, β`vk+1) if β` 6= λ and uk+1 = λ, and
(α1, β1, α2, β2, . . . , α`, β`, uk+1, vk+1) if β` 6= λ and uk+1 6= λ.

Thus ρk+1 is obtained from ρk by adding the words uk+1 and vk+1. These are
added in such a way that only the first and the last element of ρk+1 are al-
lowed to equal λ. In general, if ρk = (α1, β1, α2, β2, . . . , α`, β`), then α1, β` ∈
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∆∗, αj ∈ ∆+, for all 1 < j ≤ `, and βj ∈ ∆+, for all 1 ≤ j < `. Fur-
thermore, α1β1α2β2 · · ·α`β` = u1v1u2v2 · · ·ukvk, α1α2 · · ·α` = u1u2 · · ·uk, and
β1β2 · · ·β` = v1v2 · · · vk. Since w is finite, there must exist an m ≥ 1 such that
for all n > m, un = vn = λ. Then ρm = (α1, β1, α2, β2, . . . , α`, β`) is such that
α1β1α2β2 · · ·α`β` = w, α1 ∈ ∆∗, β1, α2, β2, α3, . . . , β`−1, α` ∈ ∆+, β` ∈ ∆∗,
α1α2 · · ·α` = u, and β1β2 · · ·β` = v. Hence ρm is a (u, v)-decomposition of w.

�

It is not difficult to see that a shuffle may have several decompositions. In
a series of papers (see, e.g., [16, 17]) Mateescu et al. use so-called ‘trajectories’
to describe shuffles. A trajectory defines, in a binary fashion, when to switch
from one word to another. When applied, a trajectory thus defines a unique
decomposition. Associativity is consequently discussed per set of trajectories.
However, associativity of the shuffle as investigated here is not considered.

To be able to describe extensions of shuffles explicitly, we introduce a prece-
dence relation for decompositions.

Definition 4.3 Let d = (x1, y1, x2, y2, . . . , xk, yk) and d′ = (u1, v1, u2, v2, . . . ,
un, vn) be two decompositions of x1y1x2y2 · · ·xkyk ∈ ∆∗ and u1v1u2v2 · · ·unvn ∈
∆∗, respectively. Then

(1) d directly precedes d′ if k ≤ n and for all 1 ≤ j ≤ k − 1, xj = uj and
yj = vj , and—moreover—either

(a) k = n, xk = uk, and yka = vk, for some a ∈ ∆, or

(b) k = n, yk = vk = λ, and xka = uk, for some a ∈ ∆, or

(c) k = n− 1, yk 6= λ, vk+1 = λ, and uk+1 = a, for some a ∈ ∆, and

(2) d precedes d′ if there exist decompositions d0, d1, . . . , d` such that ` ≥ 0,
d = d0, d′ = d`, and for all 0 ≤ j ≤ `− 1, dj directly precedes dj+1.

Note that if d and d′ are two decompositions such that d directly precedes d′,
then || d′|| = || d || or || d′|| = || d ||+ 1. Hence if d precedes d′, then || d′|| ≥ || d ||.

It is easy to see that whenever a decomposition d precedes a decomposition
d′, then d decomposes a prefix of the word that d′ decomposes. In fact, we have
the following result.

Lemma 4.4 Let d = (x1, y1, x2, y2, . . . , xk, yk) and d′ = (u1, v1, u2, v2, . . . ,
un, vn) be two decompositions such that d precedes d′. Then

x1x2 · · ·xk ∈ pref (u1u2 · · ·un) ,

y1y2 · · · yk ∈ pref (v1v2 · · · vn) ,

and
x1y1x2y2 · · ·xkyk ∈ pref (u1v1u2v2 · · ·unvn) .
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Proof If d = d′ there is nothing to prove, so let us assume that d 6= d′. From
Definition 4.3 it is clear that the statement holds in case d immediately precedes
d′.

If d precedes d′, then there exist (sj , tj)-decompositions dj of words wj ∈ ∆∗

with 0 ≤ j ≤ `, for some ` ≥ 1, such that d0 = d, d` = d′, and dj im-
mediately precedes dj+1, for all 0 ≤ j < `. Hence, for all 0 ≤ j < ` − 1,
sj ∈ pref (sj+1), tj ∈ pref (tj+1), and wj ∈ pref (wj+1). Thus s0 = x1x2 · · ·xk ∈
pref (s`) = pref (u1u2 · · ·un), t0 = y1y2 · · · yk ∈ pref (t`) = pref (v1v2 · · · vn), and
w0 =x1y1x2y2 · · ·xkyk∈pref (w`)=pref (u1v1u2v2 · · ·unvn). �

Given this lemma it can be proved that the limit of the shuffles defined by
an ordered sequence of (ui, vi)-decompositions is a shuffle of the limits of the ui

and the vi.

Lemma 4.5 For all i ≥ 0, let di be a (ui, vi)-decomposition of a word wi over
∆ such that di precedes di+1. Then u = lim

i→∞
ui, v = lim

i→∞
vi, and w = lim

i→∞
wi

exist, and w ∈ u || v.

Proof By Lemma 4.4 it follows that ui ≤ ui+1, vi ≤ vi+1, and wi ≤ wi+1, for
all i ≥ 0, so indeed u, v, and w exist and we only have to prove that w ∈ u || v.
We distinguish two cases.

First we consider the case that there exists an N ∈ N such that || di|| = || dN ||
for all i ≥ N . Let N0 ∈ N be such an N . Again we distinguish two cases.

Let us assume first that, for all i ≥ N0, if di = (x1, y1, x2, y2, . . . , xn, yn),
then yn = λ. Consequently, for all i ≥ N0, vi = vN0 . From ui ≤ ui+1, for all
i ≥ 0, we infer that for all i > N0 there exist zi−N0 ∈ ∆∗ such that ui+1 =
uizi−N0 . Observe that u = lim

i→∞
ui = uN0 lim

i→∞
z1z2 · · · zi−N0 . We thus obtain

that for all i > N0 we have wi = wN0z1z2 · · · zi−N0 . Since wN0 ∈ uN0 || vN0

by Lemma 4.2, we conclude that w = lim
i→∞

wi ∈ (uN0 || vN0) lim
i→∞

z1z2 · · · zi−N0 =

(uN0 || vN0)( lim
i→∞

z1z2 · · · zi−N0 || λ) ⊆ u || vN0 ⊆ u || v by Lemma 2.5(2) and the

definition of u.
Next assume there exist an i ≥ N0 such that di = (x1, y1, x2, y2, . . . , xn, yn)

with yn 6= λ. Let `0 be the smallest such i. Thus, for all i ≥ `0, ui = u`0 . From
vi ≤ vi+1, for all i ≥ 0, we infer that for all i > `0 there exist zi−`0 ∈ ∆∗

such that vi+1 = vizi−`0 . Observe that v = lim
i→∞

vi = v`0 lim
i→∞

z1z2 · · · zi−`0 .

Thus for all i > `0 we have wi = w`0z1z2 · · · zi−`0 . Since w`0 ∈ u`0 || v`0

by Lemma 4.2, we conclude that w = lim
i→∞

wi ∈ (u`0 || v`0) lim
i→∞

z1z2 · · · zi−`0 =

(u`0 || v`0)(λ || lim
i→∞

z1z2 · · · zi−`0) ⊆ u`0 || v ⊆ u || v by Lemma 2.5(2) and the

definition of u.
Now we move to the case that for all N ∈ N there exists a k ∈ N such

that || dk|| ≥ N . Let j1, j2, . . . ∈ N be the (unique) infinite sequence of integers
such that for all i ∈ N, || dji || < || dji+1 || and || d`|| = || dji || for all ji ≤ ` <
ji+1. Since || d0|| ≤ || d1|| ≤ · · · is an unbounded sequence of integers we know
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that the ji as just described exist. Since each dji precedes dji+1 , Definition 4.3
implies that there exist x1, x2, . . . , y1, y2, . . . , s1, s2, . . . , t1, t2, · · · ∈ ∆∗ such that
dji = (x1, y1, x2, y2, . . . , x|| dji

||−1, y|| dji
||−1, si, ti), for all i ≥ 1. By Lemma 4.4,

uji = x1x2 · · ·x|| dji
||−1si ∈ pref (uji+1) = pref (x1x2 · · ·x|| dji+1

||−1si+1), for all
i ≥ 1, and thus u = lim

n→∞
x1x2 · · ·xn. Analogously, v = lim

n→∞
y1y2 · · · yn, and

w = lim
n→∞

x1y1x2y2 · · ·xnyn. Thus w = x1y1x2y2 · · · with x1 ∈ ∆∗, xi ∈ ∆+

for all i ≥ 2, yi ∈ ∆+ for all i ≥ 1, u = x1x2 · · · , and v = y1y2 · · · . Hence
w ∈ u || v. �

On the other hand, we would now like to show that whenever every prefix of a
word w can be obtained as a shuffle of a prefix of a word u and a prefix of a word
v, then w is indeed a shuffle of u and v. To prove this it would be convenient if
the decompositions describing the prefixes of w as shuffles of prefixes of u and
v would precede each other and ultimately lead to w as a shuffle of u and v. As
the next lemma demonstrates, this can be achieved by requiring that u and v
have no letters in common. We write alph(w) to denote the alphabet of a word
w, i.e. the set of all letters that actually occur in w.

Lemma 4.6 Let u, v ∈ ∆∞ be such that alph(u)∩ alph(v) = ∅ and let w ∈ ∆ω.
Then pref (w) ⊆ pref (u) || pref (v) implies w ∈ u || v.

Proof Let pref (w) ⊆ pref (u) || pref (v). Now consider two arbitrary consecu-
tive prefixes of w. Thus for some n ≥ 0 we have w[n] and w[n+ 1] = w[n]a with
a ∈ alph(u) or a ∈ alph(v). Since pref (w) ⊆ pref (u) || pref (v), there are pre-
fixes un and un+1 of u, and prefixes vn and vn+1 of v such that w[n] ∈ un || vn

and w[n + 1] ∈ un+1 || vn+1. Consequently, un+1 = una and vn+1 = vn if
a ∈ alph(u), and vn+1 = vna and un+1 = un if a ∈ alph(v). Now let dn be
a (un, vn)-decomposition of w[n] with dn = (x1, y1, x2, y2, . . . , xk, yk) for some
k ≥ 0. Then we obtain a (un+1, vn+1)-decomposition of w[n+ 1] as follows.

First assume that a ∈ alph(u). If yk = λ, then dn+1 = (x1, y1, x2, y2, . . . ,
xka, yk), whereas if yk 6= λ, then dn+1 = (x1, y1, x2, y2, . . . , xk, yk, a, λ). In
both cases we have x1x2 · · ·xka = una = un+1 and y1y2 · · · yk = vn = vn+1.
Moreover x1y1x2y2 · · ·xkyka = w[n]a = w[n + 1]. Thus dn+1 is a (un+1, vn+1)-
decomposition of w[n+ 1] and dn precedes dn+1.

Secondly, let a ∈ alph(v). Now dn+1 = (x1, y1, x2, y2, . . . , xk, yka). Since
x1x2 · · ·xk = un = un+1 and y1y2 · · · yka = vna = vn+1 are such that x1y1x2y2 · · ·
xkyka = w[n]a = w[n+ 1] we thus know that dn+1 is a (un+1, vn+1)-decomposi-
tion of w[n+ 1], which is preceded by dn.

Observe that the only decomposition of w[0] = λ is d0 = (λ, λ). Hence we
have defined an infinite (and unique) sequence of (ui, vi)-decompositions di of
w[i], with i ≥ 0, such that di precedes di+1 for all i ≥ 0. From Lemma 4.5 it
thus follows that w = lim

n→∞
w[n] ∈ ( lim

n→∞
un) || ( lim

n→∞
vn) = u || v. �

Note that this proof uses the observation that—thanks to the disjointness of
the alphabets—any decomposition of a prefix of w into prefixes of u and v, has a
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(unique) successor describing a decomposition of the next prefix. This ultimately
leads to a description of w as a shuffle of u and v. Unfortunately, in general, it
is not true that decompositions of prefixes can be extended to decompositions of
the next prefix. This is shown in the following example, which even shows that
an infinite word may have infinitely many prefixes with non-extendable prefixes.

Example 4.7 Let u = (a3b)ω and v = bω. Clearly {a3, a3b} ⊆ pref (u),
{b2, b3} ⊆ pref (v), and w = a3b3 ∈ pref (u) || pref (v). Note that d1 = (a3, b3)
and d2 = (a3b, b2) are two decompositions of w.

Next consider w′ = wa = a3b3a ∈ pref (u) || pref (v). The only decomposi-
tions of w′ which are directly preceded by a decomposition of prefixes of u and
v are d′ = (a3b, b2, a, λ) and d′′ = (a3, b2, ba, λ). Clearly, d1 neither precedes d′

nor d′′. Note, however, that d2 precedes d′.
Finally, let j ≥ 0, uj = a3(ba3)j ∈ pref (u), and vj = b3(b3)j ∈ pref (v). Then

clearly both wj = (a3b4)j
a3b3 ∈ pref (u) ||pref (v) and w′j =wja=(a3b4)j

a3b3a∈
pref (u) ||pref (v). Note that dj =(x0, y0, x1, y1, . . . , xj , yj , a

3, b3), where xi =a3b
and yi = b3 for all 0 ≤ i ≤ j, is a (uj , vj)-decomposition of wj . Reasoning as for
j= 0 it is however clear that there does not exist a decomposition of w′j based
on prefixes of u and v that is preceded by dj .

Despite this example, it can however be shown that for all words u, v ∈ ∆∞ and
w ∈ ∆ω, whenever pref (w) ⊆ pref (u) || pref (v) then w ∈ u || v, even when u
and v have letters in common. We do this by establishing the existence of an
infinite sequence of (un, vn)-decompositions of w[n], with n ≥ 0, preceding each
other. With this in mind we now recall König’s Lemma.

Lemma 4.8 (König’s Lemma) If G is an infinite finitely-branching rooted
tree, then there exists an infinite path through G, starting in the root.

For later use we prove a more general result, by not just considering words, but
limit-closed languages. Limit-closedness guarantees that the infinitary part of a
language is characterized by its finite prefixes. This notion has been defined in
many disguises throughout the literature on theoretical computer science. The
oldest reference we found is [1], where the terminology used is ‘a closed process’,
while the term limit closure was coined in [9]—after initially referring to the
same concept as ‘König closure’ in its preceding technical report.

Definition 4.9 Let K ⊆ ∆∞. K is limit-closed if for all w1 ≤ w2 ≤ · · · ∈
pref (K), lim

n→∞
wn ∈ K ∪ pref (K).

Example 4.10 All singleton languages {u} and all finitary languages L =
{λ, a, . . . , an :n≥1} over a unary alphabet are limit-closed, whereas a∗ is not as
lim

n→∞
an =aω /∈a∗ ∪ L. However, a∗ ∪ aω and aω are limit-closed.
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Lemma 4.11 Let K,L ⊆ ∆∞ be limit-closed and let w ∈ ∆ω. Then pref (w) ⊆
pref (K) || pref (L) implies w ∈ K || L.

Proof Let pref (w) ⊆ pref (K) || pref (L). For n ≥ 0, let

Vn = {d : d is a (un, vn)-decomposition of w[n],
un ∈ pref (K), and vn ∈ pref (L)}

be the set of all possible decompositions of the prefix w[n] of w. Note that
V0 = {(λ, λ)}. Note furthermore that each Vn is finite, for n ≥ 0, and that
Vn ∩ Vn′ = ∅, for all n > n′ ≥ 0.

Consider the directly precedes relation E = {(d, d′) : d directly precedes d′}.
Thus E ⊆

⋃
n≥1(Vn−1 × Vn). Note that G = (

⋃
n≥0 Vn, E) is a directed acyclic

graph. It is sketched in Figure 1.

Figure 1: Sketch of tree G = (
⋃

n≥0 Vn, E).

Except for (λ, λ), every vertex of G has precisely one incoming edge. This
can be seen as follows. The fact that pref (w) ⊆ pref (K) || pref (L) implies that
every vertex has at least one incoming edge, whereas the fact that for every
decomposition of a prefix w[n], with n ≥ 1, we can immediately distinguish the
unique last symbol of w[n], implies that every vertex has at most one incoming
edge. Furthermore, from Definition 4.3 it follows that every vertex has at most
two outgoing edges, depending on whether the symbol added to w[n], with n ≥ 0,
to obtain w[n+ 1] ‘belongs’ to a prefix from K or to a prefix from L. Hence G
is an infinite finitely-branching rooted tree with root (λ, λ).

We can thus use König’s Lemma to conclude that there exists an infinite
path π through G, starting in the root (λ, λ). Let π = (d0, d1, . . . ). Then for all
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n ≥ 0, dn is a (un, vn)-decomposition of w[n] and (dn, dn+1) ∈ E. Hence from
Lemma 4.5 it follows that u = lim

n→∞
un, v = lim

n→∞
vn, and w = lim

n→∞
wn exist, and

w ∈ u || v. Since K and L are limit-closed this implies that w ∈ K || L. �

The statement of this lemma in general does not hold when either K or L is
not limit-closed.

Example 4.12 Let K = a∗ and L = {λ}. Then

pref (aω) = a∗ = pref (K) || pref (L) ,

but aω /∈ a∗ = K || L.

Since singleton languages are limit-closed, we directly obtain as a corollary the
desired result.

Corollary 4.13 Let u, v ∈ ∆∞ and w ∈ ∆ω. Then pref (w) ⊆ pref (u) || pref (v)
implies w ∈ u || v.

It must be noted here that this result does not hold for fair shuffles.

Example 4.14 Consider aω. We have pref (aω) = a∗ and

a∗ ⊆ pref (aω) ||| pref (b) = pref (aω) || pref (b) .

However, as we have seen in Example 2.2, aω ∈ aω || b, but aω 6∈ aω ||| b.

Theorem 2.6 and Lemma 4.11 together characterize the shuffles of two words
(limit-closed languages) as exactly the limits of the shuffles of the prefixes of
these words (languages).

Theorem 4.15 Let u, v ∈ ∆∞, let K,L ⊆ ∆∞ be limit-closed, and let w ∈ ∆ω.
Then
(1) w ∈ u || v if and only if pref (w) ⊆ pref (u) || pref (v), and
(2) w ∈ K || L if and only if pref (w) ⊆ pref (K) || pref (L).

We need one more observation in order to conclude that shuffling is associative.

Corollary 4.16 Let v, w ∈ ∆∞. Then v || w is limit-closed.

Proof Let y1 ≤ y2 ≤ · · · ∈ pref (v || w) and let y = lim
n→∞

yn. Since for all

x ∈ pref (y), there exists an i ≥ 0 such that x ∈ pref (yi) ∈ pref (pref (v || w)) =
pref (v || w), it follows that pref (y) ⊆ pref (v || w). We distinguish two cases. If
y ∈ ∆∗, then y ∈ pref (v || w). If y ∈ ∆ω, then by Theorem 4.15(1), y ∈ v || w.
Hence y ∈ v || w ∪ pref (v || w) and v || w is thus limit-closed. �

Theorem 4.17 Let u, v, w ∈ ∆∞. Then u || (v || w) = (u || v) || w.
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Proof If u, v, w are finite words, we have Corollary 3.4. If at least one of
them is infinite, then both u || (v || w) and (u || v) || w consist of infinite words
only. Let x ∈ u || (v || w). Then Theorem 4.15(2) implies that pref (x) ⊆
pref (u) || pref (v || w). Thus, by Theorem 2.6,

pref (x) ⊆ pref (u) || (pref (v) || pref (w)) .

Consequently pref (x) ⊆ (pref (u) || pref (v)) || pref (w) by Corollary 3.4 and
pref (x) ⊆ pref (u || v) || pref (w) by Theorem 2.6. Finally, since u || v and {w}
are limit-closed, Theorem 4.15(2) implies that x ∈ (u || v) || w. The converse
inclusion follows from the above and Theorem 2.3. �

5 Discussion

In this paper we have considered a general shuffling operation for possibly infinite
words, which is not necessarily fair, and we have studied its limit behaviour. This
has led to a characterization of shuffles in terms of the shuffles of their prefixes,
with the associativity of shuffling as an immediate corollary. This proof of
the associativity of shuffling is fully self-contained and it does not rely on the
sometimes vague or not substantiated claims made in the literature for related
operations.

Associativity is of interest not only from a purely mathematical point of
view. In fact, as mentioned in the Introduction, our motivation to study the
associativity of shuffling stems from the use of shuffling and some of its vari-
ants to prove compositionality for different types of team automata [2,4]. Team
automata consist of component automata that collaborate through synchroniza-
tions. These synchronizations can be freely chosen depending on the specific
protocol of collaboration to be modelled. In [3] we have defined different strate-
gies for choosing the synchronizations of a team automaton. To describe the
behaviours of these team automata in terms of the behaviours of their compo-
nents, several types of ‘synchronized shuffling’ have been introduced in [2, 4].
The associativity of shuffling as defined in this paper, is the basis for proofs of
the associativity of some variants of synchronized shuffling in the Ph.D. thesis of
the first author [2]. The associativity of these variants, in their turn, is crucial
to prove that several types of team automata satisfy compositionality in [2, 4]
(in the latter only finitary behaviours are considered).

Since the behaviours of team automata and their components are prefix-
closed languages representing ongoing behaviours, we have focussed on the prefix
properties of shuffles. As follows from Theorem 2.6, the shuffle operation is sound
in the sense that indeed all prefixes of an infinite shuffle appear as shuffles of finite
words (behaviours). In addition, the key Lemma 4.11 and its Corollary 4.13 show
that every word which is represented through its finite prefixes in the shuffles
of finite words is a shuffle of their limits (component behaviours). Together
they provide a tool to investigate infinite shuffles as limits of finite shuffles. In
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a forthcoming paper we intend to address similar issues for the more involved
shuffles with synchronization.
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