
Quantitative Episode Trees?

Mirco Nanni1 and Christophe Rigotti1,2

1KDD Laboratory, University of Pisa and ISTI-CNR Pisa, Italy
2INSA-LIRIS UMR 5205 CNRS, Lyon, France

Abstract. Among the family of the local patterns, episodes are com-
monly used when mining a single or multiple sequences of discrete events.
An episode reflects a qualitative relation is-followed-by over event types,
and the refinement of episodes to incorporate quantitative temporal in-
formation is still an on going research, with many application opportu-
nities. In this paper, focusing on serial episodes, we design such a refine-
ment called quantitative episodes and give a corresponding extraction
algorithm. The three most salient features of these quantitative episodes
are: (1) their ability to characterize main groups of homogeneous behav-
iors among the occurrences, according to the duration of the is-followed-
by steps, and providing quantitative bounds of these durations organized
in a tree structure; (2) the possibility to extract them in a complete way;
and (3) to perform such extractions at the cost of a limited overhead
with respect to the extraction of standard episodes.

1 Introduction

Sequential data is a common form of information available in several appli-
cation contexts, thus naturally inducing a strong interest for them among data
analysts. A decade-long attention has been paid by researchers in data mining
to study forms of patterns appropriated to this kind of data, such as sequential
patterns [1] and episodes [7]. In particular, in this paper we will focus on serial
episodes, that are sequences of event types extracted from single or multiple in-
put sequences, and that reflect a qualitative relation is-followed-by between the
event types.

Episodes have natural applications into several domains, including for in-
stance the analysis of business time series [2], medical data [8], geophysical
data [9] and also alarm log analysis for network monitoring (especially in telecom-
munications) [5]. However, in many applications episodes clearly show some lim-
itations, due to the fact that the information provided by the is-followed-by
relation is not always enough to properly characterize the phenomena at hand.
This, in particular, pulls our research toward the refinement of episodes to in-
corporate quantitative temporal information, able to describe the time intervals
observed for the is-followed-by relation.
? This research is partly funded by EU contracts IQ IST-FP6-516169, and GeoPKDD

IST-FP6-014915.

In this paper, we propose a refinement of episodes called quantitative episodes,
that provides quantitative temporal information in a readable, tree-based graph-
ically representable form. These quantitative episodes describe the main groups
of homogeneous behaviors within the occurrences of each episode, according to
the elapsed times between the consecutive event types of the episode. Moreover,
they are not provided in an isolated way, but in trees giving a global view of
how the occurrences of the corresponding episode differentiate in homogeneous
groups along the elements of the pattern. From a computational point of view,
the main interest of the quantitative episodes is that they can be mined in a
sound and complete way without increasing the cost of extractions significantly
when compared to extractions of episodes alone. This is achieved through an
extraction algorithm that tightly integrates episode extraction with a computa-
tionally reasonable analysis of temporal quantitative information.

This paper is organized as follows: in Section 2 some preliminary definitions
needed concerning episodes are recalled from the literature; Section 3, then,
introduces quantitative episodes; Section 4 presents the principle of an algorithm
for efficiently extracting quantitative episodes, which is evaluated experimentally
in Section 5; finally, in Section 6 we briefly review the related literature and
conclude with a summary in Section 7.

2 Preliminary definitions

We briefly introduce standard notions [7], or give equivalent definitions when
more appropriated to our presentation.

Definition 1. (event, event sequence,operator v) Let E be a set of event
types and ≺ a total order on E. An event is a pair denoted (e, t) where e ∈ E
and t ∈ N. The value t denotes the time stamp at which the event occurs. An
event sequence S is a tuple of events S = 〈(e1, t1), (e2, t2), . . . , (el, tl)〉 such that
∀i ∈ {1, . . . , l − 1}, ti < ti+1∨ (ti = ti+1 ∧ ei ≺ ei+1). Given two sequences of
events S and S′, S′ is a subsequence of S, denoted S′ v S, if S′ is equal to S or
if S′ can be obtained by removing some elements in S.

Definition 2. (episode, occurrence, minimal occurrence, support) An
episode is a non empty tuple α of the form α = 〈e1, e2, . . . , ek〉 with ei ∈ E for
all i ∈ {1, . . . , k}. In this paper, we will use the notation e1 → e2 → . . . → ek

to denote the episode 〈e1, e2, . . . , ek〉 where ’→’ may be read as ’is followed by’.
The size of α is denoted |α| and is equal to the number of elements of the tuple
α, i.e., |α| = k. The prefix of α is the episode 〈e1, e2, . . . , ek−1〉. We denote it
as prefix (α). An episode α = 〈e1, e2, . . . , ek〉 occurs in an event sequence S if
there exists at least one sequence of events S′ = 〈(e1, t1), (e2, t2), . . . , (ek, tk)〉
such that ∀i ∈ {1, . . . , k − 1}, ti < ti+1 and S′ v S. The pair 〈t1, tk〉 is called an
occurrence of α in S. Moreover, if there is no other occurrence 〈t′1, t′k〉 such that
[t′1, t

′
k] ⊂ [t1, tk], then the pair 〈t1, tk〉 is called a minimal occurrence of α. The

support of α in S, denoted support(α, S), is the number of minimal occurrences
of α in S.

Intuitively, a minimal occurrence is simply an occurrence that does not
strictly contain another occurrence of the same episode. These episodes and
their occurrences correspond to the serial episodes of [7]. For instance, let S =
〈(a, 0), (b, 1), (c, 1), (b, 2)〉 be an event sequence and α = a → b be an episode.
Then, α has two occurrences in S: 〈0, 1〉 and 〈0, 2〉. The former is a minimal
occurrence, while the latter is not, since [0, 1] ⊂ [0, 2]. Notice that there is no
occurrence of episode α′ = b → c.

These definitions, and the ones introduced in the rest of the paper, are given
for a single sequence S, but they extend trivially to multiple sequences. In that
case the support is the sum of the number of occurrences in all sequences.

3 Quantitative episodes

3.1 Informal presentation

The idea of quantitative episodes essentially consists in dividing the set of oc-
currences of an episode into homogeneous, significantly populated groups. Ho-
mogeneity, in particular, is obtained when on each step, made of two consecutive
elements of the episode, the occurrences in the same group show similar tran-
sition times (i.e., similar times elapsed between an element and the next one
within the episode). The result can be graphically summarized through a tree-
like structure, as the one depicted in Figure 1 that represents homogeneous
groups of occurrences of an episode α = A → B → C → D. The figure can be
read in the following way:

– The episode has 1000 occurrences in the sequence of events, and this value
is written under the first event of the episode.

– Among these 1000 occurrences, there are 2 subgroups that show homoge-
neous duration for step A → B: one (the upper branch of the split) corre-
sponds to transition times between 2 and 10, and covers 500 occurrences; the
other (lower branch) corresponds to transition times in interval [15, 20] and
covers 400 occurrences. Notice that 100 occurrences of A → B → C → D are
lost, meaning that they exhibit a rather isolated duration for step A → B
and cannot be associated with other occurrences to form a significantly pop-
ulated group.

– In the largest group obtained above, all occurrences present similar step
durations for steps B → C and C → D, and are kept together in a single
group. The other group, containing 400 occurrences, is split further into
homogeneous groups w.r.t. duration of step B → C. Notice that the resulting
homogeneous groups overlap, sharing a subset of occurrences and resulting
in non-disjoint time intervals. Indeed, we can observe that the total count of
occurrences in the two groups (205+202) is greater than the original total
amount (400), since some occurrences are counted twice.

– One of these two groups is further split into two (disjoint) groups while the
other is not.

– Each path from the root to a leaf in the tree corresponds to a group of
occurrences that shows an homogeneous behavior along all the steps of the
episode, and covers a sufficient number of occurrences (in this example, at
least 90). This homogeneous behavior can be represented by the sequence of
time intervals on the path, and can be added to the episode as a quantitative
feature to form a main grouping quantitative episode. The tree in Figure 1
depicts four such patterns (one for each path from the root to a leaf). The
tree relates these patterns together, showing how the occurrences can be
differentiated into groups along the steps of the episode.

90

490500

1000

400

205

490

100

200202

[2,10]

[15,20]

[5,20]

[10,40]

[35,60]

[10,15]

[10,30]

[30,45]

[5,20]

DCBA

Fig. 1. Tree of quantitative episodes for episode α = A → B → C → D.

3.2 Quantitative episode definition

Definition 3. (quantitative episode) A quantitative episode (q-episode) is a
pair P = 〈α, IT 〉 where α is an episode of size k > 1, and IT = 〈it1, . . . , itk−1〉,
with ∀i ∈ {1, . . . , k − 1}, iti = [ai, bi] ⊂ N+ (i.e., iti is an interval in N+). The
size of P , denoted |P | is defined as |P | = |α|.

The iti intervals are intended to represent values of elapsed time between
the occurrences of two consecutive event types of the episode α. For instance
〈A → B → C → D, 〈[15, 20], [10, 40], [5, 20]〉〉 is one of the q-episodes depicted
in Figure 1.

To handle the time stamps of the events corresponding to all event types
within an episode the definition of occurrence needs to be modified as follows.

Definition 4. (occurrence) An occurrence of an episode α = 〈e1, e2, . . . , ek〉
in an event sequence S is a tuple 〈t1, t2, . . . , tk〉 such that there exists S′ =
〈(e1, t1), (e2, t2), . . . , (ek, tk)〉 satisfying ∀i ∈ {1, . . . , k− 1}, ti < ti+1 and S′ v S.

Notice that subsequence S′ in the definition above can be formed by non-
contiguous elements of sequence S. Using this definition of occurrence, the notion
of minimal occurrence can be redefined accordingly.

Definition 5. (minimal occurrence) An occurrence 〈t1, . . . , tk〉 of an episode
α in event sequence S is a minimal occurrence if (1) there is no other occurrence
〈t′1, . . . , t′k〉 of α such that [t′1, t

′
k] ⊂ [t1, tk], and (2) if k > 2 then 〈t1, . . . , tk−1〉 is

a minimal occurrence of prefix (α).

As we will consider only minimal occurrences of episodes, we will simply use
the term occurrence, when there is no ambiguity.

For a step ei → ei+1 in an episode α, and its durations among a set of occur-
rences of α, now we define how these duration values are grouped. Informally,
groups correspond to maximal sets of duration values that form dense inter-
vals, where dense means that any sub-interval of significant size ws contains a
significant number of values ns. More precisely, ws ∈ R, ws ≥ 1 and ns ∈ N+

are termed the density parameters and characterize the groups in the following
definition.

Definition 6. (occurrence groups) Let O be a set of occurrences of episode α
and i be an integer parameter such that 1 ≤ i < |α| (i identifies a step ei → ei+1).
Let ∆i(x) = ti+1 − ti for any occurrence x = 〈t1, . . . , t|α|〉 (i.e., the duration of
step ei → ei+1 for occurrence x). Then, the occurrence groups of O at level i,
denoted as group(O, i), are defined as follows:

group(O, i) = { g | g is a maximal subset of O s.t.:
∀a, b ∈ [minx∈g ∆i(x), maxx∈g ∆i(x)],

b− a ≥ ws ⇒ |{x ∈ g | ∆i(x) ∈ [a, b]}| ≥ ns}

For example, consider the set of occurrences O = {x1, . . . , x8} having the
respective durations 3,4,6,6,9,15,16,16 for step ei → ei+1 (i.e., the values of ∆i).
Let the density parameters be ws = 3 and ns = 2 (i.e., at least two elements
in any sub-interval of size 3). Then group(O, i) = {{x1, . . . , x5}, {x6, x7, x8}}
(corresponding respectively to the durations 3, 4, 6, 6, 9 and 15, 16, 16).

The next definition specifies the tree structure of the occurrence groups.

Definition 7. (occurrence group tree) Let O be the set of occurrences of
episode α. Then, the occurrence group tree (group tree for short) of α is a
rooted tree with labelled edges such that:

– the tree has |α| levels, numbered from 1 (the root) to |α| (the deepest leaves);
– each node v is associated with a set v.g of occurrences of α;
– the root is associated with root .g = O, i.e., with all the occurrences of α;
– if a node v at level i, 1 ≤ i < |α|, is such that group(v.g, i) = {g1, . . . , gk},

then it has k children v1, . . . , vk, with vj .g = gj , i ∈ {1, . . . , k}.
– each edge connecting node v at level i with its child vj is labelled with the

interval [minx∈vj .g ∆i(x), maxx∈vj .g ∆i(x)];

Notice that such tree is unique, up to permutations in the order of the children
of each node. Then, the main grouping q-episodes correspond simply to the sets
of occurrences that have not been separated from the root to a leaf and that
have a significant size.

Definition 8. (main grouping q-episode) A q-episode P = 〈α, IT 〉 is said
to be a main grouping q-episode if the group tree of α contains a path from the
root to a leaf v such that:

– the labels of the edges met along the path correspond to the intervals in IT ;
– and |v.g|, called the support of P , is greater or equal to σg, a user defined

minimum group size.

For instance, Figure 1 depicts a tree of main grouping q-episodes for α =
A → B → C → D and σg = 90 (a group tree restricted to paths forming main
grouping q-episodes).

Since a minimal occurrence of α can be obtained only by extending a minimal
occurrence of prefix (α), we have the following simple property that is used as a
safe pruning criterion in the extraction principle.

Theorem 1. Let α be an episode such that |α| > 1. If there exists a main group-
ing q-episode 〈α, IT 〉, then there exists a main grouping q-episode 〈prefix (α), IT ′〉.

4 Extracting q-episodes

In this section we present the principles of an algorithm called Q-epiMiner to
find all main grouping q-episodes. It interleaves frequent episode extraction and
group tree computation in a tight and efficient way. A more detailed presentation
of the algorithm is given in the report [10].

Let α = 〈e1, . . . , en〉 be an episode. For each event type ei in α, i > 1, we
consider a list Di that collects the durations between ei−1 and ei, i.e., the values
∆i−1(x) for all occurrences x of α, and we suppose that each Di is sorted by
increasing duration value. By convention, for the sake of uniformity, D1 contains
a duration of 0 for all occurrences (there is no element before e1).

In the following, we describe how these lists D1, . . . , Dn can be used to com-
pute the group tree of pattern α, and then how they can be updated when
expanding α with an event type en+1.

Splitting one node. Splitting the group of occurrences of α associated to one node
of the tree at level i (to obtain its children at level i + 1) can be done simply by
a single scan of the elements in the group if these elements are ordered by the
duration between ei and ei+1. We use a function named splitGroup performing
this simple treatment. We suppose that it takes as input a list of occurrences in
a group, sorted by duration of ei → ei+1, and gives as output a collection of all
maximal sublists satisfying the density criterion.

Computing the whole tree. Suppose that we have already computed the groups
of occurrences denoted g1, . . . , gk that are associated respectively to the nodes
v1, . . . , vk of a level i of the tree. These groups are split in the following way to
obtain the nodes of the next level. Firstly, we create for each node vj an empty

list denoted vj .sortedGroup. Then we scan Di+1 from first to last element, and
for each occurrence found in Di+1 if the occurrence is in a group gj then we insert
the occurrence at the end of vj .sortedGroup. Now, we have at hand for each vj

its group of occurrences sorted by increasing duration between ei and ei+1. Then,
we can apply on each vj .sortedGroup the splitGroup function to compute the
children of vj and their associated groups of occurrences and thus obtain the
next level of the group tree. Repeating this process allows to build the group
tree in a levelwise way, taking advantage of the sorted lists D1, . . . , Dn. In the
following, we assume that such a tree is computed by a function computeTree,
applied on a tuple 〈D1, . . . , Dn〉.

Obtaining the information needed to compute the tree. The other key operation is
the efficient computation of the sorted lists D′

1, . . . , D
′
n, D′

n+1 of a pattern α → e.
Suppose that we know the list Le of occurrences of α → e, and the sorted lists
D1, . . . , Dn of occurrences of α. Then, the main property used is that D′

1, . . . , D
′
n

are sublists of, respectively, D1, . . . , Dn, since each occurrence of α → e comes
from the expansion of an occurrence of α. So a list D′

i can be obtained simply
by scanning Di from the first to the last element and picking (in order) the
occurrences in Di that have been extended to form an occurrence of α → e. The
result is a list D′

i sorted by increasing duration between ei−1 and ei. The case of
the list D′

n+1 is different since it contains the same occurrences as Le, so D′
n+1

is simply a copy of Le, but has to be sorted by increasing duration (between
en and en+1). Having at hand the sorted lists D′

1, . . . , D
′
n, D′

n+1 we can then
compute the group tree of α → e by calling computeTree(〈D′

1, . . . , D
′
n, D′

n+1〉).

Integration with the extraction of episodes. One remaining problem to be solved
is to build the occurrence list of the episode under consideration (as the list
Le for α → e). Fortunately, several approaches to extract episodes, or closely
related patterns like sequential patterns, are based on the use of such occurrence
lists (e.g., [7, 9, 13]), providing the information needed to update the duration
lists Di. Due to space limitation we will not detail this principle here. The basic
idea is that if we store in a list L the locations (positions in the data sequence)
of the occurrences of a pattern α, then for an event type e, we can use1 L to
build the list Le of occurrences of α → e. In our case, for the occurrences of
an episode α = 〈e1, . . . , en〉 the location information stored in L are simply the
time stamps of the last element en of α, sorted by increasing value. We use a
function expand that takes the input sequence S and L, and that returns a set
Lexp of tuples 〈e, Le〉. The set Lexp contains for each event type e, the list Le

of locations of occurrences of α → e. As for L, the location information in Le

are the time stamps of the last element of α → e and Le is sorted by increasing
location value.

The overall enumeration strategy of the episodes used is a standard depth-
first prefix-based strategy because it fits both with the episode extraction and

1 Together with other information, like the data sequence itself, or the location of the
occurrences of e.

with the use of the sorted lists Di to derive the sorted lists D′
i to compute the

group trees. The strategy can simply be sketched as follows: when an episode α
is considered we use it as a prefix to expand it and to obtain new episodes of
the form α → e, and then, one after the other, we consider and expand each of
these α → e.

Pruning strategy and correctness. Consider an episode α such that all leaves at
level |α| of its group tree are associated to groups of size strictly less than σg (α
has no corresponding main grouping q-episode, but α itself can have a support
greater or equal to σg). By Theorem 1, we can also safely avoid the expansion of
α, since this expansion cannot correspond to any main grouping q-episode. The
exhaustive enumeration strategy of the episodes and the safety of the pruning
strategy ensure the correctness of the general extraction principle.

5 Experiments

In this section we present the results of a set of experiments mainly aimed at
studying how the size of the input data and the value of some input parameters
impact on the performances of the Q-epiMiner algorithm described in this paper.
The experiments presented are made on datasets containing several sequences.
As mentioned previously, the definitions extended trivially to that case (the
support is simply the sum of the support in all sequences). The only change
in the abstract algorithm is that the occurrence locations are not simply time
stamps, but sequence identifiers together with time stamps in the sequences. The
algorithm was implemented in C, and all experiments were performed on a Intel
Xeon 2Ghz processor with 1Gb of RAM over a Linux 2.6.14 platform.

5.1 Performance analysis on synthetic datasets

In order to collect large datasets having controlled characteristics, we randomly
generated them by means of the Quest Synthetic Data Generator from IBM2,
by varying the number of input sequences generated (from 10K to 250K), the
sequence length3 (from 5 to 70) and the number of different event types used
(from 5K to 20K). Where not specified hereafter, the following default parameter
values were adopted: 100K input sequences, sequence length equal to 25, 5K
event types, ws = 8 and ns = 4.

The curves in Figure 2(left) show the execution times of the prototype over
datasets of increasing size and for three different numbers of event types used
in the data. The σg parameter was set to 40 for 10K sequences and then was
increased proportionally, up to 1000 for 250K sequences. As we can see, the exe-
cution time always grows almost linearly, having a higher slope when fewer event
2
http://www.almaden.ibm.com/software/projects/iis/hdb/Projects/data mining/mining.shtml

3 The parameter of the generator controlling the number of events per time stamp
was set to 1.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250

R
un

ni
ng

 ti
m

e
[s

ec
.]

N. of input sequences [x1000]

N. event types = 5k
N. event types = 10k
N. event types = 20k

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250

R
un

ni
ng

 ti
m

e
[s

ec
.]

N. of input sequences [x1000]

Serial Episodes
Quantitative Episodes

Fig. 2. Scalability w.r.t. number of input sequences.

types are in the data4. A similar scalability analysis is provided in Figure 2(right),
where Q-epiMiner is compared against the extraction of serial episodes having
at least a support of σg (this extraction is performed using the frequent episodes
mining technique embedded in Q-epiMiner, without computing the durations,
groups and trees, and implemented with the same low level optimizations). The
values of σg were the same as in the previous experiment. The two curves are very
close, meaning that the overhead introduced by the computation of main group-
ing q-episodes is well balanced by the pruning it allows. Finally, similar results
are obtained by varying the length of the input sequences (see Figure 3(left)),
where both curves have an apparently-quadratic growth (σg was set to 80 for
length 5 and then was increased proportionally, up to 1120 for length 70). Obvi-
ously, for very long sequences usual episode constraints, like maximum window
size, might be used [7].

Figure 3(right) reports the behaviour of the prototype when the minimum
size of the groups is varied from 100 to 2000, and again its comparison to the
mining of frequent serial episodes at minimum support σg. Here also, the two
algorithms behave very similarly, this time showing a fast drop in the execution
time as σg grows – as usual for frequent pattern mining algorithms. Due to space
limits, we do not report the results obtained by varying the density parameters,
that, however, seemed to have only a very limited impact on execution times of
the algorithm on this kind of data.

5.2 Experiments on a real dataset

In this set of experiments we used real world data consisting of the July 2000
weblog from the web server of the Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley5. In a preprocessing
step, all non-HTML pages where removed and user sessions were extracted,

4 Fewer event types with the same number of sequences leads to higher supports for
the remaining event types and more frequent patterns of large size.

5 http://www.cs.berkeley.edu/logs/http

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70

R
un

ni
ng

 ti
m

e
[s

ec
.]

Avg. input sequence length

Serial Episodes
Quantitative Episodes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
un

ni
ng

 ti
m

e
[s

ec
.]

Min. group size σg

Serial Episodes
Quantitative Episodes

Fig. 3. Scalability w.r.t. input sequence length and min. group size σg, with 100K
sequences.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 140 160 180 200 220 240 260

R
un

ni
ng

 ti
m

e
[s

ec
.]

Min. group size σg

Serial Episodes
Quantitative Episodes

QE w/o pruning

 50

 60

 70

 80

 90

 100

 110

 120

 5 10 15 20 25 30

R
un

ni
ng

 ti
m

e
[s

ec
.]

ns

ws = 60
ws = 120
ws = 180

Serial Episodes

Fig. 4. Berkely dataset: Scalability w.r.t. σg and effects of the density parameters.

resulting in 90295 user sessions (used as input sequences) of average length of
13.0 with 72014 distinct pages.

In Figure 4 two graphs are plotted that describe the performances of the Q-
epiMiner prototype on the Berkeley dataset for different minimum group sizes
(graph on the left, with ws = 120 and ns = 15) and different density parameters
(on the right, with σg = 200). The first plot confirms the results obtained on
synthetic data, i.e., execution times drop very quickly as σg decreases. Moreover,
an additional curve is plotted that represents a version of Q-epiMiner that does
not apply any pruning based on the absence of a main grouping q-episode, but
only applies a pruning based on the support of the episodes (an episode is not
expanded only when its support is strictly less than σg). This curve shows the
effectiveness of the full pruning made by Q-epiMiner. It should also be noticed
that on this dataset, Q-epiMiner performs even better than the serial episode
miner (with minimum support set to σg), confirming the fact that the pruning
capabilities of the prototype are able to balance its potential overhead.

Finally, Figure 4(right) shows that, quite reasonably, the execution time de-
creases with larger minimum density parameter ns (since they allow a stronger

s s σgw = 100, n = 1, = 50551

[1,549]

[993,1850]

210

257

256

158

[14,30]

[3,608]
w = 5, n = 10, = 20s s σg

[5,35] [2,21]

134 25141

24

23

179

[25,35]

[50,60]

[16,26]

Fig. 5. Examples of trees of main grouping q-episodes.

pruning), and increases with larger window sizes ws (which acts in the opposite
direction).

We conclude this section by providing in Figure 5 two sample outputs ob-
tained from the Berkeley dataset. In particular, we notice that the first tree
contains two groups that split at the first step, showing well separated intervals
of times ([1, 549] against [993, 1850]). On the contrary, the second one contains
three groups that split only at the third step, two of which overlap ([16, 26] and
[25, 35]). In both cases, each time a group splits some of the occurrences it con-
tains are lost, i.e., they are not part of any subgroup (of size at least σg) created
by the split.

6 Related work

The need of quantitative temporal information in patterns over event se-
quences has been pointed in recent works in the data mining literature [12, 3, 11,
4, 6, 9].

An important difference between these approaches and the q-episodes intro-
duced here, is that the former provide patterns in isolation, while q-episodes are
related in tree structures. Such trees give a global view of how the occurrences of
a pattern differentiate in homogeneous groups along the sequence of event types
(from the first to the last element of the pattern).

Different notions of intervals are also considered. In [6] the intervals are not
determined by the data but are fixed by the user; only the interval between the
beginning and the end of a pattern is considered in [9]; and in [3] intervals are
derived from intervals of occurrences of patterns of size two only.

The other approaches [12, 11, 4] compute the intervals from the data and
for all pattern lengths, as in the case of the q-episodes. However, among these
approaches, only [4] considers an exhaustive extraction (at the cost of intrinsi-
cally expensive algorithmic solutions), while the others compute only some of
the patterns using heuristics and/or non-deterministic choices.

Finally, it should be noticed that the overhead of computing the quantitative
temporal information was not assessed in these previous works.

7 Conclusion

In this paper we introduced quantitative episodes, an extension of serial
episodes that refines standard episodes by integrating quantitative temporal in-
formation. A tight integration of episode extraction and group tree computation
allowed to obtain a complete and efficient algorithm that adds a negligible over-
head to the extraction of serial episodes, as assessed by the experimental results
on performances. We think that these features, and the possibility of an easy-
to-grasp representation of the output into a graphical tree-like structure, make
the approach suitable for many applications.

References

1. R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. of ICDE, pages
3–14, 1995.

2. G. Das, L. K.I., H. Mannila, G. Renganathan, and P. Padhraic Smyth. Rule
discovery from time series. In Proc. of KDD, pages 16–22, 1998.

3. C. Dousson and T. V. Duong. Discovering chronicles with numerical time con-
straints from alarm logs for monitoring dynamic systems. In Proc. of IJCAI, pages
620–626, 1999.

4. F. Giannotti, M. Nanni, and D. Pedreschi. Efficient mining of temporally annotated
sequences. In Proc. of the SIAM Conference on Data Mining (SDM), 2006.

5. K. Hatonen, M. Klemettinen, H. Mannila, P. Ronkainen, and H. Toivonen. TASA:
Telecomunications alarm sequence analyzer or: How to enjoy faults in your network.
In Proc. of IEEE Network Operations and Management Symposium, pages 520–
529, 1996.

6. Y. Hirate and H. Yamana. Sequential pattern mining with time intervals. In Proc.
of PAKDD, 2006.

7. H. Mannila, H. Toivonen, and A. Verkamo. Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery, 1(3):259–298, November 1997.

8. N. Meger, C. Leschi, N. Lucas, and C. Rigotti. Mining episode rules in STULONG
dataset. In Proc. of the ECML/PKDD Discovery Challenge, 2004.

9. N. Meger and C. Rigotti. Constraint-based mining of episode rules and optimal
window sizes. In Proc. of PKDD, pages 313–324, 2004.

10. M. Nanni and C. Rigotti. Quantitative episode trees. Technical report, 17 pages,
2006.

11. A. Vautier, M.-O. Cordier, and R. Quiniou. An inductive database for mining
temporal patterns in event sequences. In Proc. of ECML/PKDD Workshop on
Mining Spatial and Temporal Data, 2005.

12. M. Yoshida et al. Mining sequential patterns including time intervals. In Proc.
of SPIE Conference on Data Mining and Knowledge Discovery: Theory, Tools and
Technology II, 2000.

13. M. Zaki. Spade: an efficient algorithm for mining frequent sequences. Machine
Learning, Special issue on Unsupervised Learning, 42(1/2):31–60, Jan/Feb 2001.

