A calculus for team automatda
Maurice H. ter Beek!, Fabio Gadducct, Dirk Janssens

!Istituto di Scienza e Tecnologie dell’Informazione, CNR
via G. Moruzzi 1, 56124 Pisa, Italy

2Dipartimento di Informatica, Universita di Pisa
via Buonarroti 2, 56125 Pisa, Italy

3Department of Mathematics and Computer Science, Uniyassintwerp
Middelheimlaan 1, 2020 Antwerpen, Belgium

m terbeek@sti.cnr.it, gadducci @i .unipi.it, dirk.janssens@a. ac. be

Abstract. Team automata are a formalism for the component-based fggzeci
tion of reactive, distributed systems. Their main featsra flexible technique
for specifying coordination patterns among systems, thaenéing I/O au-

tomata. Furthermore, for some patterns the language rezeghby a team
automaton can be specified via those languages recogniziesl dymponents.

We introduce a process calculus tailored over team automé&tach automa-
ton is described by a process, and such that its associatagnient of a) la-

beled transition system is bisimilar to the original autdora The mapping is
furthermore denotational, since the operators defined atgsses are in a bi-
jective correspondence with a chosen family of coordimagiatterns and that
correspondence is preserved by the mapping.

We thus extend to team automata a few classical results oautdGmata and
their representation by process calculi. Moreover, besig®viding a language
for expressing team automata, we widen the family of coatdin patterns for

which an equational characterization of the language asged to a composite
automaton can be provided. The latter result is obtained foyiding a set of
axioms, in ACP-style, for capturing bisimilarity in our calus.

1. Introduction

Team automata have originally been introduced in the condéxComputer Sup-
ported Cooperative Work (CSCW for short) to formalize thenaaptual and archi-
tectural levels of groupware systems [ter Beek et al. 200B8s 2997, Kleijn 2003].
As shown in [ter Beek and Kleijn 2005], they represent an resitsn of classi-
cal 1/0 automata [Lynch 1996, Lynch and Tuttle 1989], andcsirtheir introduction
they have proved their usefulness also in various apphicafields [ter Beek 2003,
ter Beek et al. 2005, ter Beek et al. 2006]. Team automata tomathematical frame-
work enabling one to capture notions like communicatiomrdmation and cooperation
in reactive, distributed systems. The model allows one pasdely specify the compo-
nents of a system, to describe their interactions and t@rngssystem as a component of

*Work partly supported by the EU projects HPRN-CT-2002-3ZGRAV IS (Syntactic and Semantic
Integration of Visual Modelling Techniquesnd IST-3-016004-1P-09s3SORIA (Software Engineering for
Service-Oriented Overlay Computgrs

a higher-level team automaton, thus supporting a modufamoagh to system design. Its
main feature is a flexible technique for specifying coortdorapatterns among distributed
systems, extending classical I/0O automata.

During the stepwise development of a system, it is desirableave the possi-
bility to decompose an abstract high-level specification #rge, complex design into a
more concrete low-level specification. Of course, in ordeguarantee that the decom-
position is correct, it is necessary to prove that the chosedel is compositional, i.e.,
that the specification of a large system can be obtained fyuifications of its com-
ponents [Jonsson 1994]. Unfortunately, as we show (seeBitam 1), for some of the
coordination patterns employed so far it is not possibleajotare the behavior of a (fi-
nite!) team automaton (intended as the language it receghia terms of its components,
by resorting only to set-theoretic operations on languages

In order to overcome this difficulty, we introduce a calculosteam automata.
Our proposal recalls those calculi that have been definedpimbabilistic) I/0 au-
tomata [De Nicola and Segala 1995, Stark et al. 2003, Vaged091], and the aim is
to transfer the technology involving the equational chemazation of behavioral equiva-
lences on processes to team automata, in order to obtainactédzation of the relevant
coordination patterns. The main idea underlying procegshaas like theacp frame-
work [Bergstra and Klop 1984] and Hoare€sp[Hoare 1985] is to use a set of operators,
each one representing an architectural feature, for arctivépresentation of a complex
system. Our calculus for team automata is essentially anhenent ofcsp, and its be-
havioral semantics is axiomatized by suitably adaptedaipes from thexcp framework.
Each automaton is described by a process, in such a waydlassibciated (fragment of a)
labeled transition system is behaviorally equivalent (enbisimilar [Milner 1980]) to
the original automaton. Furthermore, the mapping is deiooial, since the operators on
processes are in a bijective correspondence with a chosegly faf coordination patterns,
and that correspondence is preserved by the mapping.

One of our results is thus the extension to team automatanoé stassical results
on 1/0 automata and their representation by process calsobther result concerns the
compositionality of team automata. In [ter Beek 2003, tezlBand Kleijn 2003] it was
shown that certain team automata that are defined by a cabiahrpattern are compo-
sitional, in the sense that their languages can be obtanoed the languages of their
constituting automata. Besides proving that this charaetiton does not hold for all
coordination patterns devised so far (even in the presdrgyolic automata: See the al-
ready mentioned Proposition 1), we use our calculus to gesome preliminary results
on how to nevertheless obtain the language of a team autardafimed by a coordination
pattern directly from its components. Hence, a composalionresult does exist, even if
the manipulation of the languages of the components doesuffate. By providing a set
of axioms, in ACP-style, to capture bisimilarity in our caligs, we thus enlarge the family
of coordination patterns for which an equational charaaéon of the language associ-
ated to a team automaton can be provided. This axiomatizagisound and complete
for finite processes only (i.e., equivalently, for acyclid@mata) as is typical for all the
calculi for automata that we are aware of (compare, e.g.sitbhation for (probabilistic)
I/O automata, as reported in [De Nicola and Segala 1995k 8taal. 2003]). The search
for a set of axioms for possibly recursive processes is ntlyrender development.

The paper is organized as follows. Section 2 recalles the hafinitions con-
cerning team automata. Then, the syntax and the operasenantics of our calculus
for team automata, as well as an equational theory for bisitiaun over finite processes,
are given in Section 3. Section 4 presents an encoding fram sutomata to processes
that preserves bisimulation equivalence, while Sectioffér®a characterization — via
a suitable axiomatization — for language equivalence, gartly solving (since the en-
coding preserves the composition patterns on automatanodularity issues. Finally,
Section 6 concludes the paper, hinting at possible futum.wo

2. Team automata

Roughly speaking, a team automaton consists of componéotnata — ordinary au-

tomata without final states and with a distinction of thetss® actions into input, output
and internal actions — combined in such a way that they cafoqershared actions.

During each clock tick the components within a team can danelously participate in

one instantaneous action (i.e., synchronize on this gatioremain idle. Component au-
tomata can thus be combined in a loose or more tight fashepertling on which actions
are to be synchronized and when.

We now fix some notations and terminology used in this artiafeer which we
introduce team automata. However, we slightly adapt theludefinition of team au-
tomata [ter Beek et al. 2003]. First, we assume each autontatbave a unique initial
state. This is of course not a real limitation, but it will eamome of the constructions
below. Second, we discard the usual distinction betweeutjmqutput and internal ac-
tions in component and team automata. In [De Nicola and €45, Stark et al. 2003,
Vaandrager 1991] the distinction of the set of actions ofdi@omata into input, output
and internal actions is taken into account. For team autanmawever, this distinction
is much less important since — contrary to I/0O automata — teatomata are not re-
quired to be input enabling and synchronizations betwed&pub@ctions are not prohib-
ited [ter Beek et al. 2003, ter Beek and Kleijn 2005]. Henceeam automata the consid-
eration of input and output actions does not have any syatsighificance. As a result,
taking these actions into account would not affect our dakcuMoreover, it would not be
very difficult to extend our calculus in order to deal withamal actions.

For convenience we sometimes denote the{set.., n} by [n]; thus[0] = @.
The (cartesian) product of sets, with i € [n], is denoted either by[,., Vi or by
Vix - x V,. Forj € [n], proj; : [[,c;, Vi — V; is defined by proj((ai, . .., an)) = a;.
The set difference of set andV is denoted by \ 1V. For a finite se¥/, its cardinality
is denoted by#V.

LetI" and¥ be sets of symbols. The morphism prgs: I'* — ¥*, defined by
pres x(a) = aif a € ¥ and pregy;(a) = A otherwise, preserves the symbols frahand
erases all other symbols. We disc&rdvhen no confusion can arise.

Letf: A— A’andg: B — B’betwo functions. Therixg: AxB — A'xB’
is defined agf x ¢)(a,b) = (f(a), g(b)). We usef? as shorthand fof x f.

Definition 1 A labeled transition systeaTs for short) is a triple A = (@, X, 9), with a
set() of statesa setX of actions (satisfying) N> = @) andaset) C Q) x X x @ of
labeled transitions

The set, of a-transitionsof A is defined as, = { (¢,¢) | (¢,a,¢') € 6 } and an
a-transition(q, a, ¢') € 6 may also be written ag — ¢'. Action a is said to beenabled
in A at stateq €), denoted by: eny ¢, if there exists; € @ such thatq, ¢’) € 6,. An
a-transition(q, ¢) € 4, is called doop (on a).

Definition 2 A (component) automatod is a finite, rooted LTS, i.e., a quadruple
(@Q,%,6,q), where(Q, X, §) is anLTs with finite @ andX and aninitial stateq, € Q.

The setC(C) of computation®f C is defined a€>(C) = { qoarqras - - - angn | n >
0and(g—1,a;,q;) € 6 foralli € [n] }.

ThelanguagédL(C) of C is defined ad.(C) = pres;(C(C)).

In the sequel, we le$ = {C; | i € [n] } be an arbitrary but fixed set of automata,
with n > 0 and eaclt; specified a€; = (Q;, s, s, qo;), and we let> = |] Y.

A team automaton ove® has the cartesian product of the state spaces of its com-
ponents as its state space and its actions are those of ifpo@mts. Its transition relation,
however, is based on but not fixed by those of its componertts:tfBnsition relation of
a team automaton oveé¥is defined by choosing certain synchronizations of actidiiis o
components, while excluding others.

1€

Definition 3 Leta € ¥. The setA,(S) of synchronizationsf a is defined as\,(S) =
{(0.d) € TLiep @i X [Ligp @i | (37 € [n] : projj[Z](Q7q/) € dja N [Vi € [n] :
[proj;*(q. ¢') € 6] V [proj;(q) = proj;(¢")]] }.

The setA,(S) contains all possible combinations @fransitions of the compo-
nents constituting, with all non-participating components remaining idleislexplic-
itly required that in every synchronization at least one ponent participates. The state
change of a team automaton overs thus defined by the local state changes of the com-
ponents constituting that participate in the action of the team being executechcege
when defining a team automaton overa specific subset ak,(S) must be chosen for
each actioru. This defines an explicit communication pattern betweesdltmmponents
constituting the team.

Definition 4 A team automatomver S is a quadrupleZ = (Q, 3,9, qo), with Q =
HZEM Qi X = Ul.e[n] ¥, 0 COxXx@suchthat, = {(q,¢) | (¢,a,¢) € 6} T AL(S)
forall a € Y andqy =[], q0:-

In [ter Beek et al. 2003] several coordination patternsterdynchronizations of a
team automaton were defined, each leading to a uniquely deBaen automaton. These
patterns fix the synchronizations of a team by defining — pgolae — certain condi-
tions on theu-transitions to be chosen from, (S), thus determining a unique subset of
A,(S) as the set ofi-transitions of the team. Once such subsets have been clursgh
actions, the team automaton they define is unique.

Definition 5 LetI' C ¥, R,(S) C A, (S) foralla € ' andRr = { Ru(S) | a € T'}.
Then7 = (Q, %, 0, qo) is theRx-team automatooversS if §, = R,(S) forall a € X.

In this notation we usually discaid if no confusion can arise. Here we consider
three coordination patterns, based on those actiofistbat arefree ai or si. An actiona
is freein 7 if none of itsa-transitions is brought about by a synchronizatiom tfy two

or more components froil, actiona is action-indispensabléai for short) in7 if all its
a-transitions are brought about by a synchronization of@hponents fron& sharinga
and actiona is state-indispensablési for short) in7 if all its a-transitions are brought
about by a synchronization of all components fr6rm which a is currently enabled.

Definition 6 Leta € X. Then we define the sets

o R(S) = Au(S);

o RIC(S) ={(q.q) € Aa(S) | #{i € n]|ae%; AprojP(gq)edia} =1}

e RI(S)={(q, Q) € Ay(S) |Vien]: [a€ = proj(q,q) € 6id] };

e R(S) = {(q,¢) € Au(S) | Vi € [n] : [[a € Xi A aeny, proj(q)] =
proj;,?(¢,¢) € 5m]}.

Each of these subsets of, (S) thus defines, for a given actiane ¥, all tran-
sitions fromA, (S) that satisfy a certain type of synchronization. In the ceseoaon-
straints, this means that alitransitions are allowed since nothing is required, andccben
no transition is forbidden. In the other three casdsand only those:-transitions are
included that respect the specified property.of

Before presenting an example to illustrate the notions ddfso far, we define
shorthand notations for three specific types of team autothat we will use in the se-
quel. Letn = 2 (i.e., we conside§ = {C;,C,}) and letl’ C 3. Then

e C |||L C, defines theR U RI*®.team automaton oves;
o C ||| C, defines theRir U R3-team automaton ove,
o Ci ||Iii C defines theR . U R-team automaton oves.

Example 1 Consider the two component automé&ta= ({p,p'}, {0}, {(p,b,?')}, p) and
C2 = ({¢. ¢} {a, b}, {(q,b,9), (¢,a,¢")}, ¢). They are depicted in Figure 1.

i oy

Figure 1. From left to right: component automata C; and Cs.

In Figure 2 we have depicted \H{a,b} Ca, C1 |[Ifhy Co @ndCy |||, Co. Note
thatC, |||{a » C2 has nob-transition from(p,) to (p', ¢). In fact, this team automaton is

different from thefR”0 -team automaton oveliCy, Co} due to the loop o in C; (more
about this in Sectlon 3)

A team automaton ove® is said to satisfigompositionalityf its behavior (i.e., its
language) can be described in terms of that of its constjutomponent automata: There
exists a set-theoretic operation that when applied to tiguages of the automatadh the
language of a particular team ov@results. In [ter Beek 2003, ter Beek and Kleijn 2003]
it was shown that the construction of team automata acogtdicertain patterns of syn-
chronization, e.g., the ones leadingRd®e- andR¥-team automata, guarantees compo-
sitionality. In [ter Beek 2003] it is moreover claimed thasianilar result for the case of
RS-team automata “seems impossible due to the simple factttbdtehavior of compo-
nent automata is stripped from all state information”. Heesprove this statement.

(p,9) T (pd)

)
b
Figure 2. Clockwise from top: team automata c1|||{a,b}c2, C1|||§Z}C2 and C1|||?b§62.

Proposition 1 Let C; and C, be two component automata. Then there exists no set-
theoretic operation|| on languages such that(C; |||5! Co) = L(Cy) ||| L(Ca).

The proof is by counterexample. Consider the componentna@atto in Figure 3. Then
L(D;) = L(D;), while (D |3 D2) = L(Dy ||[$ D3) U {abc}.

P — P—"—{1]
- VAN
Figure 3. Clockwise from top: component automata D, D2 and Ds.

In Section 5 we show that the calculus for team automata tleadne going to
introduce does provide a recipe to obtain the language oéywrlia RS-team automaton
‘directly’ (i.e., without actually constructing the teamatamaton) from its constituting
component automata: Translate the component automatategses, perform the so-
called eager parallel composition operation defined beli@nye the normal form of the
resulting process term and its associated regular langsahe desired language.

3. A CSP-like process calculus

In this section we introduce a simple process calculus,ntisdlg an enrichment of
Hoare'scsp[Hoare 1985], and then present the associated operatiemealrgics.

3.1. Syntax and operational semantics

We assume countable setsaaftions A, ranged over by, b, . . ., andagent variablesX,
ranged over by, y, . . ., with p(A) — the finite subsets of — ranged over by.. Terms
are built from actions and variables according to the syntax

M == nil|ax]|aPlaM|M+M]|rec, M
P = M| P|,P|P|fP|P|fP

As usual, a variable: is free if it does not occur inside the scope ofrac, operator.
The set of(sequential) agentis ranged over by/, NV, ..., and for its subsets aflosed
agents the subscriptis added. The set qfrocessess denoted byP and ranged over by
P, Q,...,and a process fniteif it contains no occurrence of a recursion operator.

The constantil represents the terminated process. ab&on prefixa. P can per-
form an atomic actiom and then evolve t@’. Summatior+ denotesnon-deterministic
choice M + N behaves either a&/ or as N, the choice being triggered by the execu-
tion of an action. The intended meaning of teeursionoperatorrec,.M is the process
defined by the equatian= M, with the further restriction implicitly ensured by the syn
tax, namely that only closed terms may be inserted into dlphc@mposition operator:
This assumption corresponds to what are usually calteelboundegrocesses, and it is
formalized by Proposition 2 below.

There are three different notions of parallel compositi@asically, P || Q
means that processésand(@ must evolve synchronously with respect to all actions in
L, while they may evolve independently of each other with eespo actions: ¢ L, i.e.,
the actions inL are synchronized according to thetype of synchronization. Similarly
for its eagerversion: Also inP ||5* @ both processes must synchronize on the actions in
L, but now a process may in any case evolve with any actionsghmdtioffered at the mo-
ment by the other process, i.e., the action& iare synchronized according to thigype
of synchronization. Finally, inP ||{ @ the two processes may synchronize on actions
a ¢ L, but both processes must evolve independently of each fathall actions inL, in
which case a further restriction is imposed in case one optheesses may loop: In or-
der to faithfully mimic thefreetype of synchronization for all actions i, a process may
independently evolve with an actianc L only if the other process cannot evolve with a
loop ona. This condition seems peculiar in the context of processutiabut it is a con-
sequence of the lack of explicit information on loops in teutomata, i.e., in general itis
impossible to distinguish whether or not a component withoglona in its current local
state participates in the synchronization of the team.dn [ter Beek et al. 2003] this led
to the adoption of the maximal interpretation of the compuasieparticipation: Given a
team transitioriq, a, ¢') it is assumed that thgh component participates in this transition
by executing(proj; (¢), a, proj;(¢')) whenever prof (¢, ¢') € 4;,, whereas otherwise no
transition takes place in thegh component (see Example 1).

The operational semantics of this calculus is describetiéyrs 7 = (P, A, —),
where— C P x A x P is defined in the so-callesiosstyle [Plotkin 1981] as the least re-
lation that satisfies the set of axioms and inference ruldsblie 1 (where we omitted the
symmetric rules for the choice operator and for the threellghicomposition operators).
Note also the negative premises occurring in the last t\/\ﬂssru1amelyasyr’£ andasyrj’:

Q 4 means that frong) there is no outgoing transition labeled witrandQ 4~ Q
means that frond) there is no outgoing transition labeled wittthat results in a cycle.
Due to the restricted structure of the processes, and diedaference rules increase the
size of a process, the least transition relation is wellrgefi The semantics of a process
P € P, denoted by TS P), is defined as the rooteds LTS P) = (P, A, —, P).

Example 2 Consider the simple sequential agefts= b.nil and N = rec, (b.z + a.nil). Their
associated rootedrs’'s are depicted in Figure 4.

b

- b . a
Ll Ll

Figure 4. From left to right: LTS(M), M = b.nil, and LTSN), N = rec,(b.x + a.nil).

Table 1. The operational semantics for P.

— M 25 M’ Mrece-Mjy) -“» N
act: ————— sum: - rec: -
a.P — P M+ N — M rec,. M — N
P-4 P.Q-5Q P P
par/ : — 7 ag¢ L asyn : — - ag¢ L
Pl Q— P @ PlQ@— P71 @Q
. PP Q-5Q _ P2 P
par® : . - _ asyrt’ : . ~ . a¢ L
Pl Q— P |7 Pl Q— P |7 Q
. P=P,Q=C | PP
par® : - - - asyr’ : - ~ - a¢ L
Pl7Q—r |7 Pl7Q— P 7@
PS5 P QA4 Q , PP QA
asyr : acL asyr : a€lL

PliQ--P|iQ

PliQ—PF}Q

Let L = {b}. Hence, no constraint is imposed enThen the_.Ts’s corresponding to the
application of the three parallel composition operatorsitband N are depicted in Figure 5.

b

My N || Ml fy i il y i M N = Ml
b , .
nil| 4 N —— nil]| ¢ nil
Ml N = g it
b . -~
\ nill[35, N @ nil]| 4 nil

b

Figure 5. Clockwise from top: the LTS’s for M ||{b} N, M |¢; Nand M |3, N.

The next section focuses on an equational presentatiomifimulation equivalence,
equating those processes exhibiting the same (non-deiistitj operational behavior. The re-
sult below states a property of our operational semantiekimg precise the previous remark on

size-bounded processes.
Proposition 2 Let P be a process. Then the rootets LTS P) is finite.

In other words, no syntactic explosion of a process dursgublution may occur, because
only closed terms may be inserted into parallel compositiogrators.

3.2. Axioms for bisimulation

The aim of this section is to introduce a finite equationabthiefor bisimulation, which will
later form the basis for the characterization of the languasgociated to a process (hence, to an
automaton). First we define the notion of bisimulation.

Definition 7 Let7 = (@, %, 0) be anLTs. Arelation R C @ x @ is abisimulationif, whenever
(p,q) € R, then for anyy’, ¢’ € Q and anya € ¥ holds

1. ifp % ¢/, theng - ¢/ for someg’ € Q such that(p’, ¢') € R;

2. ifqg % ¢/, thenp - p/ for somey’ € Q such that(p’, ¢') € R.

Two statesy, ¢’ € @ are said to bebisimilar, denoted by; ~ ¢/, if there exists a bisimulation
R such that(q,¢’) € R. Two rootedLTs's 71 = (Q1,%1,01,q1) and Tz = (Q2, X2, d2,q2) are
bisimilarif g; ~ ¢o. Two processe® and(@ are bisimilarif LTS(P) and LTSQ) are.

It often occurs that bisimulation is not a congruence witpeet to the operators of the
calculus, whenever there are rules containing negativeipes. In fact, two of thesosrules
of Table 1 have negative premises, and the set of rules of alaulos does not fit the general
so-calledntyft/ntyxtformat [Bol and Groote 1996].

The main problem is thasyrf rule, since it contains an explicit hypothesis on the target
state of the negative premise. It is in fact easy to see tlapthcessP = rec,.a.x and its
unfolding @ = a.rec,.a.x are bisimilar, whileP H{a} R and@ H{a} R are not, forR = a.b.nil.
However, the problem disappears whenever we restrict temtain to finite processes, since the
negative premise of the rule is always void. Thus, in the reimg of the section we restrict our
attention to finite processes only.

Our starting point for a finite equational theory for bisimtin is the solution routinely
adopted in thexcp framework [Bergstra and Klop 1984], i.e., to use suitableilewy operators
(usually|| and]) to split the parallel composition operatdy) (nto its possible behaviors: either
an asynchronous evolutiofj { or a forced synchronization)(For our calculus of finite processes
this leads to the axioms concerning the choice and parabelposition operators reported in
Tables 2 and 3, respectively. Concerning parallel comioosithe lack of a superscript (eithér
ai or si) means that the law holds for each of the three operatorghé&mnore, given a process
P ¢ P, the predicate EiP) is defined as EfP) = {a € A | 3Q e P: P Q).

Table 2. Axioms for the choice operator.

M+ M=M M+N=N+M
(M+N)+0=M+(N+O0) M +nil=M

Proposition 3 Let P, Q be finite processes. Théhand @ are bisimilar if and only if they are
equated by the axioms of Tables 2 and 3.

Since the set ofosrules of our calculus of finite processes can be transformeda
set of so-calledmoothGcsosrules, we could as well have used the general procedureilegcr
in [Aceto et al. 1994] to automatically generate a complederaatization for bisimulation. We
however chose to provide a direct, intuitive set of axioms.

Note that the equations of Tables 2 and 3 can be oriented f&étnol right, so that they
actually induce a rewriting system, modulo the so-called (A€sociativity and commutativity)
axioms for the choice operater. So, two finite processes are bisimilar if they have the same
(modulo AC)normal form(i.e., the process that is obtained after rewriting theinalgprocess
according to the rewriting system until no further rewigtican be applied).

Table 3. Axioms for the parallel composition operators.

PleQ=P.Q+Q|tP+P|.Q (P+Q)|tR=P|LR+Q|LR
(P+Q) e R=PlLR+Q[LR RIL(P+Q)=R|L,P+R|.Q
a.P |l Q=a(P|] Q) nil || L P = nil
f .
a.P ! a.Q= { Zil(P Iz @) gtﬁj\,ﬁse il |, P = nil = P |, nil
a.P LL%ZQZ{ z“(P 11 @) gtﬁfrvﬁse a.P | b.Q = nil

si a. P st |f a L N En ai,si ai,si
w1 Q={ T IFQ TAFLOEND ap) 0g = air I)

4. From automata to processes

The aim of this section is to present an encoding from autatogirocesses such that bisimulation
equivalence is preserved. To this end, we now extend thé dsfiaition of automata by assigning
a specific set of states to be considered as entry pointsdaetiursion operator.

Definition 8 Let X be a set of state variables. Then an automaton dvés a pair (A4, f), where
A=(Q,X%,6,q) is an automaton and : X — @ is an injective (possibly partial) function.

So, for the rest of this section we assume that for each atton@set of its states is
uniquely labeled by an element .

It is now possible to define our encoding from automata togsses.

Definition 9 Let (A, f) be an automatomd = (Q, X, d, qo) over X 4. Then the algorithm ob-
tained by repeatedly applying the three steps below indelgtidefines aessentially unique— up
to the choice of variables — process E&q, f)).

e If ¢ has no outgoing transitions, then

x If f(x) = qo, for somer € X 4, and
nil otherwise;

Exp((4, 1) — {

e If go hasn > 0 outgoing transitiongqo, a;, ¢;) and no incoming ones, then

Exp((A, f) = > a.Exp((A;, f)
i€{1,...,n}

for automatad; = (Q \ {q0}, 2,0\ { (q0,a,9) | a € ¥,q € Q }, q;) overX 4;

e If go hasn > 0 outgoing transitiongqo, a;, ¢;) and some incoming ones, then

Exp((A, f)) = rec,. (Z ai.EXp((Ai,g>))

Ze{lyvn}

for a new variabler, automatad; = (Q,%,d \ {(q0,a,q9) | a € ¥,q € Q },q;) over
X 4 U {z} and functiong extendingf such thaty(x) = qo.

Note that we have implicitly used the fact that the operatds commutative and asso-
ciative, up to bisimulation (see the equations in Table ZjteMlso that the second rule is actually
not needed: We added it just to associate a finite processdoyatic automaton.

Proposition 4 Let (A, f) be an automaton oveX 4 and let Exgj(.A, f)) be its essentially unique
process. Thenl is bisimilar to LTSExXp((A, f))).

The proof can be given by coinductive arguments, by assogidab the root of A the state
Exp((A, f)), and to each statg; all the processe&xp((.A;, g)) arising during the translation,
and such tha; is the root ofA;.

Example 3 Consider now the two component autométa= ({p,p'}, {b}, {(p,b,p')}, {p}) and
Co = ({q,q'},{a,b},{(q,b,9),(q,a,q¢')},{q}) from Example 1 as automata over the sets of state
variables X, and X¢,, respectively.

By Definition 9, Exp(C1, f1)) = b.Exp((C}, f1)), with C} = ({p'},{b},2,p’), and
Exp((C, f1)) = nil; thus Exg(C1, f1)) = b.nil. Moreover,; trivially is bisimilar to LTSb.nil).

Again by Definition 9, Ex@Cs, f2)) = recy.(b.x + a.Exp((C), f3))), with C}, =

({q.4'},{a, b}, 2,¢") and fi(x) = ¢, and Ex@(C}, f3)) = nil; thus Exg(Cs, f2)) = rec,.(b.x +
a.nil). Finally, Cy trivially is bisimilar to LTS rec,.(b.z + a.nil)).

It is worth noting that the encoding presented in Definitiona® be proved to be com-
positional: Thus, up to bisimulation, the parallel comgosi of two automata, according to any
of the coordinaton patterns, is mapped into a process thigiisilar to the parallel composition,
according to the corresponding operator, of the encodirigeofinderlying automata.

Proposition 5 Let.A and5 be automata, andA,) and (B, @) the associated automata over an
empty set of state variables. Thdr|;, Bis bisimilar to LTSExp((A, @))) ||z LTS EXp((B, 2)))
for any set of names and any of the three parallel operators.

5. Equations for (finite) languages

Consider again the equational presentation for bisimanatffered in Section 3. In particular, note
how the normal form of a finite process intuitively corresgeto a regular expression, obtained by
using the set of actions of the calculus as the alphabet amhgrefixing and non-deterministic
choice as operations. This intuition can be exploited t@inbén equational presentation for the
language of a team automaton.

The correspondence between regular expressions and eyisa staple of theoretical
computer science, so we do not repeat it here. We simplg gaenote the language of a process
P, which is easily derived from its normal form. Moreover, ve¢ L denote the prefix-closed
extension of a languagé over;, i.e.,

L={aeX |3Bex*: afc L)
As a direct corollary of Proposition 4 we thus obtain thedwaling result.

Proposition 6 Let.4 be an automaton. Then(A) = EEXMA,@).

This result suggests that our calculus can be used to deéevamguage of an automaton.
This is not surprising, since bisimulation is finer than laage equivalence, even if the environ-
ment is slightly more complex than usual, since our calcobrgains three different operators for
parallel composition. This result moreover suggests tieeofigquational laws to distill a normal
form that is simpler than the original automaton.

Proposition 7 Let P, Q be finite processes. Thehy = L, if and only if the normal forms oP
andQ are equated by using the axioms+ef{except for idempotency, see Table 2) and the axiom

a.M+a.N =a.(M+ N).

Also this equation can be interpreted as a left-to-rightritavg rule, allowing for further
reduced normal forms of processes. It is important to redlimt this axiom could not simply
have been added to Tables 2 and 3, siadtcal pairs would have arisen due to this axiom'’s
incompatibility with the distributivity of eager parallebmposition.

Example 4 Consider the three automaf@;, D, and D5 used for providing the counterexample
concerning Proposition 1, as shown in Figure 3. If we igndne ebove axiom, then clearly
their associated processds;, D, and D3 have the normal forms.b.nil, a.b.nil + a.c.nil and
a.(b.nil + c.nil), respectively. Should the above axiom have been added ðef equations
in Tables 2 and 3, then clearl, would be equated t®3 and thusD, Hszi D5 would have the
same normal form (hence recognize the same langaugé);ags! Ds, which is not the case:
Instead, the normal form far.b.nil [|3¢ a.b.nil + a.c.nil is a.b.nil + a.b.c.nil + a.c.b.nil, reduced
to a.(b.c.nil + c.b.nil); while the normal form fow.b.nil ||5¢ a.(b.nil 4 c.nil) is a.b.nil + a.c.b.nil,
reduced tau.(b.nil + c.b.nil). The associated languages are easily derived.

The situation so far is thus quite satisfactory for finiteqasses (i.e., equivalently, for
acyclic automata): In order to prove the equivalence of ®amt automata with respect to the lan-
guage they recognize, it is sufficient to consider the aasettiprocesses and analyze their normal
forms. Moreover, it is relevant that the mapping from teanoeuata to processes preserves, up to
bisimulation, the three composition patterns that wereictanes in this paper: This result ensures
that the procedure devised so far for obtaining the nornrat is modular.

6. Conclusions and future work

We introduced a process calculus for team automata, extgrstime classical results on 1/0O au-
tomata. As a side-effect, we widened the family of team aatanthat guarantee a degree of
compositionality by providing a way to obtain the languaga finite) RS-team automaton from
its components. While this language cannot be obtainedidgfir@a direct manipulation of the
languages of the component automata, the resulting defireedularity favors the use of team
automata in component-based system design.

Future work in this direction should lead to compositiotyalesults for other types of team
automata. A first step in this direction could be to extendaalculus with parallel composition
operators that mimic the various peer-to-peer and maktes-patterns of synchronization for
team automata as introduced in [ter Beek et al. 2003], asasetlixtures of the synchronizations
defined for team automata. As a matter of fact, [ter Beek 2d3Beek and Kleijn 2003] contain
compositionality results not only foR™®- and R¥-team automata, but also for team automata
constructed according to a mixture of three andai synchronizations. It is important to recall,
however, that the various peer-to-peer and master-slaverps of synchronization make use of
the distinction of the set of actions of team automata inpaiinoutput and internal actions. This
means that in order to tackle the above issues, our calchluddfirst be extended to take this
distinction into account.

Our correspondence results between automata and progassesmmed up by the two
propositions in Section 4) relate the behaviompoksibly cyclicautomata anghossibly recursive
processes. We restrained however from tackling the axieatdtn of recursive processes. It
would be relatively easy to come up with a complete set of ggpua laws for those recursive

processes not containing the parallel operators, singe lihsically boil down to regular ex-
pressions equipped with a Kleene star operator. On the btnad, the lack of a complete set
of axioms for recursive processes is a common trait for @l ¢hlculi proposed for automata
that we are aware of (compare, e.g., the situation for (fotibac) I/O automata, as reported
in [De Nicola and Segala 1995, Stark et al. 2003]). We hoptdhasyntactical restriction will
suffice to obtain a relatively small set of equations whichamplete, but we leave this topic as
the subject of future work.

Lastly, in order to be really useful in practical applicasoof team automata, it would be
worthwhile to study the complexity of the algorithms intumetd in this paper, e.g., what is the
cost of obtaining the language of a team automaton via itskation into a process.

Acknowledgments

We are grateful to Jetty Kleijn and to the anonymous refefeesheir useful comments on a
preliminary version of this paper.

References

Aceto, L., Bloom, B., and Vaandrager, F. W. (1994). Turnir@SSrules into equationdnforma-
tion and Computation111(1):1-52.

ter Beek, M. H. (2003).Team Automata—A Formal Approach to the Modeling of Collabon
Between System ComponerisD thesis, Leiden University.

ter Beek, M. H., Ellis, C. A., Kleijn, J., and Rozenberg, G0@3). Synchronizations in team
automata for groupware systen@@omputer Supported Cooperative WotR(1):21-69.

ter Beek, M. H. and Kleijn, J. (2003). Team automata satigfydompositionality. In Araki, K.,
Gnesi, S., and Mandrioli, D., editorinternational Symposium of Formal Methods Eurppe
volume 2805 ol_ect. Notes in Comp. Scpages 381-400. Springetr.

ter Beek, M. H. and Kleijn, J. (2005). Modularity for teamslfd automata.Information Pro-
cessing Letter95(5):487—-495.

ter Beek, M. H., Lenzini, G., and Petrocchi, M. (2005). Teamoeata for security: A survey.
In R., F. and Zavattaro, G., editoflsternational Workshop on Security Issues in Coordination
Models, Languages, and Systenaslume 128 ofElectr. Notes in Theor. Comp. Scpages
105-119. Elsevier.

ter Beek, M. H., Lenzini, G., and Petrocchi, M. (2006). A teamtomaton scenario for the
analysis of security properties of communication protecdburnal of Automata, Languages
and CombinatoricsTo appear.

Bergstra, J. A. and Klop, J. W. (1984). Process Algebra farcByonous Communicatiorinfor-
mation and Contrql60(1-3):109-137.

Bol, R. N. and Groote, J. F. (1996). The meaning of negatieenises in transition system speci-
fications. Journal of the ACM43(5):863-914.

De Nicola, R. and Segala, R. (1995). A process algebraic afénput/output automatal heoret-
ical Computer Sciencel38(2):391-423.

Ellis, C. A. (1997). Team automata for groupware systems.Intarnational Conference on
Supporting Group Workpages 415-424. ACM Press.

Hoare, C. A. R. (1985)Communicating Sequential ProcessBsentice Hall.

Jonsson, B. (1994). Compositional specification and vatifia of distributed systemsACM
Transactions on Programming Languages and Syst&6{(8):259—-303.

Kleijn, J. (2003). Team automata for CSCW: A survey. Petri Net Technology for Communi-
cation-Based System#lume 2472 otect. Notes in Comp. Scpages 295-320. Springer.

Lynch, N. A. (1996).Distributed Algorithms Morgan Kaufmann.

Lynch, N. A. and Tuttle, M. R. (1989). An introduction to inpoutput automataCWI Quarterly
2(3):219-246. Also appeared as Technical Memo MIT/LCS/318; MIT, 1988.

Milner, R. (1980).A Calculus of Communicating Systemslume 92 ofLect. Notes in Comp. Sci.
Springer.

Plotkin, G. (1981). A structural approach to operationahastics. Technical Report DAIMI
FN-19, Computer Science Department, Aarhus University.

Stark, E. W., Cleaveland, R., and Smolka, S. A. (2003). A @ssealgebraic language for prob-
abilistic I/0 automata. In Amadio, R. and Lugiez, D., editdnternational Conference on
Concurrency Theorwolume 2761 of_ect. Notes in Comp. Scpages 193—-207. Springer.

Vaandrager, F. W. (1991). On the relationship between gsakgebra and input/output automata
(extended abstract). Bymposium on Logic in Computer Scienuages 387-398. IEEE Com-
puter Society Press.

