
A calculus for team automata∗

Maurice H. ter Beek1, Fabio Gadducci2, Dirk Janssens3

1Istituto di Scienza e Tecnologie dell’Informazione, CNR
via G. Moruzzi 1, 56124 Pisa, Italy

2Dipartimento di Informatica, Università di Pisa
via Buonarroti 2, 56125 Pisa, Italy

3Department of Mathematics and Computer Science, University of Antwerp
Middelheimlaan 1, 2020 Antwerpen, Belgium

m.terbeek@isti.cnr.it, gadducci@di.unipi.it, dirk.janssens@ua.ac.be

Abstract. Team automata are a formalism for the component-based specifica-
tion of reactive, distributed systems. Their main feature is a flexible technique
for specifying coordination patterns among systems, thus extending I/O au-
tomata. Furthermore, for some patterns the language recognized by a team
automaton can be specified via those languages recognized byits components.
We introduce a process calculus tailored over team automata. Each automa-
ton is described by a process, and such that its associated (fragment of a) la-
beled transition system is bisimilar to the original automaton. The mapping is
furthermore denotational, since the operators defined on processes are in a bi-
jective correspondence with a chosen family of coordination patterns and that
correspondence is preserved by the mapping.
We thus extend to team automata a few classical results on I/Oautomata and
their representation by process calculi. Moreover, besides providing a language
for expressing team automata, we widen the family of coordination patterns for
which an equational characterization of the language associated to a composite
automaton can be provided. The latter result is obtained by providing a set of
axioms, in ACP-style, for capturing bisimilarity in our calculus.

1. Introduction

Team automata have originally been introduced in the context of Computer Sup-
ported Cooperative Work (CSCW for short) to formalize the conceptual and archi-
tectural levels of groupware systems [ter Beek et al. 2003, Ellis 1997, Kleijn 2003].
As shown in [ter Beek and Kleijn 2005], they represent an extension of classi-
cal I/O automata [Lynch 1996, Lynch and Tuttle 1989], and since their introduction
they have proved their usefulness also in various application fields [ter Beek 2003,
ter Beek et al. 2005, ter Beek et al. 2006]. Team automata forma mathematical frame-
work enabling one to capture notions like communication, coordination and cooperation
in reactive, distributed systems. The model allows one to separately specify the compo-
nents of a system, to describe their interactions and to reuse the system as a component of

∗Work partly supported by the EU projects HPRN-CT-2002-00275 SEGRAV IS (Syntactic and Semantic
Integration of Visual Modelling Techniques) and IST-3-016004-IP-09 SENSORIA (Software Engineering for
Service-Oriented Overlay Computers).

a higher-level team automaton, thus supporting a modular approach to system design. Its
main feature is a flexible technique for specifying coordination patterns among distributed
systems, extending classical I/O automata.

During the stepwise development of a system, it is desirableto have the possi-
bility to decompose an abstract high-level specification ofa large, complex design into a
more concrete low-level specification. Of course, in order to guarantee that the decom-
position is correct, it is necessary to prove that the chosenmodel is compositional, i.e.,
that the specification of a large system can be obtained from specifications of its com-
ponents [Jonsson 1994]. Unfortunately, as we show (see Proposition 1), for some of the
coordination patterns employed so far it is not possible to capture the behavior of a (fi-
nite!) team automaton (intended as the language it recognizes) in terms of its components,
by resorting only to set-theoretic operations on languages.

In order to overcome this difficulty, we introduce a calculusfor team automata.
Our proposal recalls those calculi that have been defined for(probabilistic) I/O au-
tomata [De Nicola and Segala 1995, Stark et al. 2003, Vaandrager 1991], and the aim is
to transfer the technology involving the equational characterization of behavioral equiva-
lences on processes to team automata, in order to obtain a characterization of the relevant
coordination patterns. The main idea underlying process algebras like theACP frame-
work [Bergstra and Klop 1984] and Hoare’sCSP[Hoare 1985] is to use a set of operators,
each one representing an architectural feature, for an inductive presentation of a complex
system. Our calculus for team automata is essentially an enrichment ofCSP, and its be-
havioral semantics is axiomatized by suitably adapted operators from theACP framework.
Each automaton is described by a process, in such a way that its associated (fragment of a)
labeled transition system is behaviorally equivalent (namely, bisimilar [Milner 1980]) to
the original automaton. Furthermore, the mapping is denotational, since the operators on
processes are in a bijective correspondence with a chosen family of coordination patterns,
and that correspondence is preserved by the mapping.

One of our results is thus the extension to team automata of some classical results
on I/O automata and their representation by process calculi. Another result concerns the
compositionality of team automata. In [ter Beek 2003, ter Beek and Kleijn 2003] it was
shown that certain team automata that are defined by a coordination pattern are compo-
sitional, in the sense that their languages can be obtained from the languages of their
constituting automata. Besides proving that this characterization does not hold for all
coordination patterns devised so far (even in the presence of acyclic automata: See the al-
ready mentioned Proposition 1), we use our calculus to provide some preliminary results
on how to nevertheless obtain the language of a team automaton defined by a coordination
pattern directly from its components. Hence, a compositionality result does exist, even if
the manipulation of the languages of the components does notsuffice. By providing a set
of axioms, in ACP-style, to capture bisimilarity in our calculus, we thus enlarge the family
of coordination patterns for which an equational characterization of the language associ-
ated to a team automaton can be provided. This axiomatization is sound and complete
for finite processes only (i.e., equivalently, for acyclic automata) as is typical for all the
calculi for automata that we are aware of (compare, e.g., thesituation for (probabilistic)
I/O automata, as reported in [De Nicola and Segala 1995, Stark et al. 2003]). The search
for a set of axioms for possibly recursive processes is currently under development.

The paper is organized as follows. Section 2 recalles the main definitions con-
cerning team automata. Then, the syntax and the operationalsemantics of our calculus
for team automata, as well as an equational theory for bisimulation over finite processes,
are given in Section 3. Section 4 presents an encoding from team automata to processes
that preserves bisimulation equivalence, while Section 5 offers a characterization — via
a suitable axiomatization — for language equivalence, thuspartly solving (since the en-
coding preserves the composition patterns on automata) ourmodularity issues. Finally,
Section 6 concludes the paper, hinting at possible future work.

2. Team automata

Roughly speaking, a team automaton consists of component automata — ordinary au-
tomata without final states and with a distinction of their sets of actions into input, output
and internal actions — combined in such a way that they can perform shared actions.
During each clock tick the components within a team can simultaneously participate in
one instantaneous action (i.e., synchronize on this action) or remain idle. Component au-
tomata can thus be combined in a loose or more tight fashion, depending on which actions
are to be synchronized and when.

We now fix some notations and terminology used in this article, after which we
introduce team automata. However, we slightly adapt the usual definition of team au-
tomata [ter Beek et al. 2003]. First, we assume each automaton to have a unique initial
state. This is of course not a real limitation, but it will ease some of the constructions
below. Second, we discard the usual distinction between input, output and internal ac-
tions in component and team automata. In [De Nicola and Segala 1995, Stark et al. 2003,
Vaandrager 1991] the distinction of the set of actions of I/Oautomata into input, output
and internal actions is taken into account. For team automata, however, this distinction
is much less important since — contrary to I/O automata — teamautomata are not re-
quired to be input enabling and synchronizations between output actions are not prohib-
ited [ter Beek et al. 2003, ter Beek and Kleijn 2005]. Hence inteam automata the consid-
eration of input and output actions does not have any syntactic significance. As a result,
taking these actions into account would not affect our calculus. Moreover, it would not be
very difficult to extend our calculus in order to deal with internal actions.

For convenience we sometimes denote the set{1, . . . , n} by [n]; thus [0] = ∅.
The (cartesian) product of setsVi, with i ∈ [n], is denoted either by

∏
i∈[n] Vi or by

V1 × · · · × Vn. Forj ∈ [n], projj :
∏

i∈[n] Vi → Vj is defined by projj((a1, . . . , an)) = aj .
The set difference of setsV andW is denoted byV \W . For a finite setV , its cardinality
is denoted by#V .

Let Γ andΣ be sets of symbols. The morphism presΓ,Σ : Γ∗ → Σ∗, defined by
presΓ,Σ(a) = a if a ∈ Σ and presΓ,Σ(a) = λ otherwise, preserves the symbols fromΣ and
erases all other symbols. We discardΓ when no confusion can arise.

Let f : A → A′ andg : B → B′ be two functions. Thenf×g : A×B → A′×B′

is defined as(f × g)(a, b) = (f(a), g(b)). We usef [2] as shorthand forf × f .

Definition 1 A labeled transition system(LTS for short) is a tripleA = (Q, Σ, δ), with a
setQ of states, a setΣ of actions (satisfyingQ ∩ Σ = ∅) and a setδ ⊆ Q × Σ × Q of
labeled transitions.

The setδa of a-transitionsof A is defined asδa = { (q, q′) | (q, a, q′) ∈ δ } and an
a-transition(q, a, q′) ∈ δ may also be written asq

a
−→ q′. Action a is said to beenabled

in A at stateq ∈ Q, denoted bya enA q, if there existsq′ ∈ Q such that(q, q′) ∈ δa. An
a-transition(q, q) ∈ δa is called aloop (ona).

Definition 2 A (component) automatonC is a finite, rooted LTS, i.e., a quadruple
(Q, Σ, δ, q0), where(Q, Σ, δ) is anLTS with finiteQ andΣ and aninitial stateq0 ∈ Q.

The setC(C) of computationsof C is defined asC(C) = { q0a1q1a2 · · ·anqn | n ≥
0 and(qi−1, ai, qi) ∈ δ for all i ∈ [n] }.

ThelanguageL(C) of C is defined asL(C) = presΣ(C(C)).

In the sequel, we letS = { Ci | i ∈ [n] } be an arbitrary but fixed set of automata,
with n ≥ 0 and eachCi specified asCi = (Qi, Σi, δi, q0i), and we letΣ =

⋃
i∈[n] Σi.

A team automaton overS has the cartesian product of the state spaces of its com-
ponents as its state space and its actions are those of its components. Its transition relation,
however, is based on but not fixed by those of its components: The transition relation of
a team automaton overS is defined by choosing certain synchronizations of actions of its
components, while excluding others.

Definition 3 Let a ∈ Σ. The set∆a(S) of synchronizationsof a is defined as∆a(S) =
{ (q, q′) ∈

∏
i∈[n] Qi ×

∏
i∈[n] Qi | [∃ j ∈ [n] : projj

[2](q, q′) ∈ δj,a] ∧ [∀ i ∈ [n] :

[proji
[2](q, q′) ∈ δi,a] ∨ [proji(q) = proji(q

′)]] }.

The set∆a(S) contains all possible combinations ofa-transitions of the compo-
nents constitutingS, with all non-participating components remaining idle. Itis explic-
itly required that in every synchronization at least one component participates. The state
change of a team automaton overS is thus defined by the local state changes of the com-
ponents constitutingS that participate in the action of the team being executed. Hence,
when defining a team automaton overS, a specific subset of∆a(S) must be chosen for
each actiona. This defines an explicit communication pattern between those components
constituting the team.

Definition 4 A team automatonover S is a quadrupleT = (Q, Σ, δ, q0), with Q =∏
i∈[n] Qi, Σ =

⋃
i∈[n] Σi, δ ⊆ Q×Σ×Q such thatδa = { (q, q′) | (q, a, q′) ∈ δ } ⊆ ∆a(S)

for all a ∈ Σ andq0 =
∏

i∈[n] q0i.

In [ter Beek et al. 2003] several coordination patterns for the synchronizations of a
team automaton were defined, each leading to a uniquely defined team automaton. These
patterns fix the synchronizations of a team by defining — per action a — certain condi-
tions on thea-transitions to be chosen from∆a(S), thus determining a unique subset of
∆a(S) as the set ofa-transitions of the team. Once such subsets have been chosenfor all
actions, the team automaton they define is unique.

Definition 5 Let Γ ⊆ Σ, Ra(S) ⊆ ∆a(S) for all a ∈ Γ andRΓ = {Ra(S) | a ∈ Γ }.
ThenT = (Q, Σ, δ, q0) is theRΣ-team automatonoverS if δa = Ra(S) for all a ∈ Σ.

In this notation we usually discardΣ if no confusion can arise. Here we consider
three coordination patterns, based on those actions ofT that arefree, ai or si. An actiona
is free in T if none of itsa-transitions is brought about by a synchronization ofa by two

or more components fromS, actiona is action-indispensable(ai for short) inT if all its
a-transitions are brought about by a synchronization of all components fromS sharinga
and actiona is state-indispensable(si for short) inT if all its a-transitions are brought
about by a synchronization of all components fromS in whicha is currently enabled.

Definition 6 Leta ∈ Σ. Then we define the sets

• Rno
a (S) = ∆a(S);

• Rfree
a (S) = { (q, q′) ∈ ∆a(S) | #{ i ∈ [n] | a ∈ Σi ∧ proji

[2](q, q′) ∈ δi,a } = 1 };
• Rai

a (S) = { (q, q′) ∈ ∆a(S) | ∀ i ∈ [n] : [a ∈ Σi ⇒ proji
[2](q, q′) ∈ δi,a] };

• Rsi
a (S) = { (q, q′) ∈ ∆a(S) | ∀ i ∈ [n] : [[a ∈ Σi ∧ a enAi

proji(q)] ⇒
proji

[2](q, q′) ∈ δi,a] }.

Each of these subsets of∆a(S) thus defines, for a given actiona ∈ Σ, all tran-
sitions from∆a(S) that satisfy a certain type of synchronization. In the case of no con-
straints, this means that alla-transitions are allowed since nothing is required, and hence
no transition is forbidden. In the other three cases,all and only thosea-transitions are
included that respect the specified property ofa.

Before presenting an example to illustrate the notions defined so far, we define
shorthand notations for three specific types of team automata that we will use in the se-
quel. Letn = 2 (i.e., we considerS = {C1, C2}) and letΓ ⊆ Σ. Then

• C1 |||
f
Γ C2 defines theRno

Σ\Γ ∪Rfree
Γ -team automaton overS;

• C1 |||
ai
Γ C2 defines theRno

Σ\Γ ∪Rai
Γ -team automaton overS;

• C1 |||
si
Γ C2 defines theRno

Σ\Γ ∪Rsi
Γ-team automaton overS.

Example 1 Consider the two component automataC1 = ({p, p′}, {b}, {(p, b, p′)}, p) and
C2 = ({q, q′}, {a, b}, {(q, b, q), (q, a, q′)}, q). They are depicted in Figure 1.

// p
b // p′ // q

b

�� a // q′

Figure 1. From left to right: component automata C1 and C2.

In Figure 2 we have depictedC1 |||f{a,b} C2, C1 |||ai
{b} C2 and C1 |||si{b} C2. Note

thatC1 |||f{a,b} C2 has nob-transition from(p, q) to (p′, q). In fact, this team automaton is
different from theRno

{a,b}-team automaton over{C1, C2} due to the loop onb in C2 (more
about this in Section 3).

A team automaton overS is said to satisfycompositionalityif its behavior (i.e., its
language) can be described in terms of that of its constituting component automata: There
exists a set-theoretic operation that when applied to the languages of the automata inS, the
language of a particular team overS results. In [ter Beek 2003, ter Beek and Kleijn 2003]
it was shown that the construction of team automata according to certain patterns of syn-
chronization, e.g., the ones leading toRfree- andRai-team automata, guarantees compo-
sitionality. In [ter Beek 2003] it is moreover claimed that asimilar result for the case of
Rsi-team automata “seems impossible due to the simple fact thatthe behavior of compo-
nent automata is stripped from all state information”. Herewe prove this statement.

// (p,q)

b

��
a // (p,q′)

b // (p′,q′) (p′,q)
aoo

b

��

// (p,q)
a //

b
//

(p,q′)

(p′,q)
a // (p′,q′)

// (p,q)
a //

b
//

(p,q′) b

(p′,q)
a //

b

FF
(p′,q′)

Figure 2. Clockwise from top: team automata C1|||
f

{a,b}C2, C1|||
si
{b}C2 and C1|||

ai
{b}C2.

Proposition 1 Let C1 and C2 be two component automata. Then there exists no set-
theoretic operation||| on languages such thatL(C1 |||

si
Σ C2) = L(C1) ||| L(C2).

The proof is by counterexample. Consider the component automata in Figure 3. Then
L(D2) = L(D3), while L(D1 |||

si
Σ D2) = L(D1 |||

si
Σ D3) ∪ {abc}.

// p
a // q

b // r

// p
a // q

b

��c
||

r s

// p
a //

a //

q
b

��
r

c // s

Figure 3. Clockwise from top: component automata D1, D2 and D3.

In Section 5 we show that the calculus for team automata that we are going to
introduce does provide a recipe to obtain the language of an acyclic Rsi-team automaton
‘directly’ (i.e., without actually constructing the team automaton) from its constituting
component automata: Translate the component automata to processes, perform the so-
called eager parallel composition operation defined below,derive the normal form of the
resulting process term and its associated regular languageis the desired language.

3. A CSP-like process calculus

In this section we introduce a simple process calculus, essentially an enrichment of
Hoare’sCSP [Hoare 1985], and then present the associated operational semantics.

3.1. Syntax and operational semantics

We assume countable sets ofactionsA, ranged over bya, b, . . ., andagent variablesX,
ranged over byx, y, . . ., with ℘f (A) — the finite subsets ofA — ranged over byL. Terms
are built from actions and variables according to the syntax

M ::= nil | a.x | a.P | a.M | M + M | recx.M

P ::= Mc | P ‖f
L P | P ‖ai

L P | P ‖si
L P

As usual, a variablex is free if it does not occur inside the scope of arecx operator.
The set of(sequential) agentsis ranged over byM, N, . . . , and for its subsets ofclosed
agents the subscriptc is added. The set ofprocessesis denoted byP and ranged over by
P, Q, . . . , and a process isfinite if it contains no occurrence of a recursion operator.

The constantnil represents the terminated process. Theaction prefixa.P can per-
form an atomic actiona and then evolve toP . Summation+ denotesnon-deterministic
choice: M + N behaves either asM or asN , the choice being triggered by the execu-
tion of an action. The intended meaning of therecursionoperatorrecx.M is the process
defined by the equationx = M , with the further restriction implicitly ensured by the syn-
tax, namely that only closed terms may be inserted into a parallel composition operator:
This assumption corresponds to what are usually calledsize-boundedprocesses, and it is
formalized by Proposition 2 below.

There are three different notions of parallel composition.Basically, P ‖ai
L Q

means that processesP andQ must evolve synchronously with respect to all actions in
L, while they may evolve independently of each other with respect to actionsa /∈ L, i.e.,
the actions inL are synchronized according to theai type of synchronization. Similarly
for its eagerversion: Also inP ‖si

L Q both processes must synchronize on the actions in
L, but now a process may in any case evolve with any action that is not offered at the mo-
ment by the other process, i.e., the actions inL are synchronized according to thesi type
of synchronization. Finally, inP ‖f

L Q the two processes may synchronize on actions
a /∈ L, but both processes must evolve independently of each otherfor all actions inL, in
which case a further restriction is imposed in case one of theprocesses may loop: In or-
der to faithfully mimic thefreetype of synchronization for all actions inL, a process may
independently evolve with an actiona ∈ L only if the other process cannot evolve with a
loop ona. This condition seems peculiar in the context of process calculi, but it is a con-
sequence of the lack of explicit information on loops in teamautomata, i.e., in general it is
impossible to distinguish whether or not a component with a loop ona in its current local
state participates in the synchronization of the team ona. In [ter Beek et al. 2003] this led
to the adoption of the maximal interpretation of the components’ participation: Given a
team transition(q, a, q′) it is assumed that thejth component participates in this transition
by executing(projj(q), a, projj(q

′)) whenever proj[2](q, q′) ∈ δj,a, whereas otherwise no
transition takes place in thejth component (see Example 1).

The operational semantics of this calculus is described by theLTS T = (P, A,→),
where→⊆ P×A×P is defined in the so-calledSOSstyle [Plotkin 1981] as the least re-
lation that satisfies the set of axioms and inference rules ofTable 1 (where we omitted the
symmetric rules for the choice operator and for the three parallel composition operators).
Note also the negative premises occurring in the last two rules, namelyasynfL andasynsiL :
Q 6

a
−→ means that fromQ there is no outgoing transition labeled witha andQ 6

a
−→ Q

means that fromQ there is no outgoing transition labeled witha that results in a cycle.
Due to the restricted structure of the processes, and since the inference rules increase the
size of a process, the least transition relation is well-defined. The semantics of a process
P ∈ P, denoted byLTS(P), is defined as the rootedLTS LTS(P) = (P, A,→, P).

Example 2 Consider the simple sequential agentsM = b.nil andN = recx(b.x + a.nil). Their
associated rootedLTS’s are depicted in Figure 4.

// M
b // nil // N

b

�� a // nil

Figure 4. From left to right: LTS(M), M = b.nil, and LTS(N), N = recx(b.x + a.nil).

Table 1. The operational semantics for P.

act :
−

a.P
a

−→ P
sum:

M
a

−→ M ′

M + N
a

−→ M ′
rec :

M [recx.M/x]
a

−→ N

recx.M
a

−→ N

parf :
P

a
−→ P ′, Q

a
−→ Q′

P ‖f
L Q

a
−→ P ′ ‖f

L Q′
a /∈ L asynf :

P
a

−→ P ′

P ‖f
L Q

a
−→ P ′ ‖f

L Q
a /∈ L

parai :
P

a
−→ P ′, Q

a
−→ Q′

P ‖ai
L Q

a
−→ P ′ ‖ai

L Q′
asynai :

P
a

−→ P ′

P ‖ai
L Q

a
−→ P ′ ‖ai

L Q
a /∈ L

parsi :
P

a
−→ P ′, Q

a
−→ Q′

P ‖si
L Q

a
−→ P ′ ‖si

L Q′
asynsi :

P
a

−→ P ′

P ‖si
L Q

a
−→ P ′ ‖si

L Q
a /∈ L

asynfL :
P

a
−→ P ′, Q 6

a
−→ Q

P ‖f
L Q

a
−→ P ′ ‖f

L Q
a ∈ L asynsiL :

P
a

−→ P ′, Q 6
a

−→

P ‖si
L Q

a
−→ P ′ ‖si

L Q
a ∈ L

LetL = {b}. Hence, no constraint is imposed ona. Then theLTS’s corresponding to the
application of the three parallel composition operators toM andN are depicted in Figure 5.

M‖f

{b}
N

b

��
a // M‖f

{b}
nil

b // nil‖f

{b}
nil M‖ai

{b}
N

a //

b
..

M‖ai
{b}

nil

nil‖ai
{b}

N
a // nil‖ai

{b}
nil

M‖si
{b}

N
a //

b
..

M‖si
{b}

nil b

!!

nil‖si
{b}

N
a //

b

HH
nil‖si

{b}
nil

Figure 5. Clockwise from top: the LTS’s for M ‖f

{b} N , M ‖ai
{b} N and M ‖si

{b} N .

The next section focuses on an equational presentation forbisimulation equivalence,
equating those processes exhibiting the same (non-deterministic) operational behavior. The re-
sult below states a property of our operational semantics, making precise the previous remark on
size-bounded processes.

Proposition 2 LetP be a process. Then the rootedLTS LTS(P) is finite.

In other words, no syntactic explosion of a process during its evolution may occur, because
only closed terms may be inserted into parallel compositionoperators.

3.2. Axioms for bisimulation

The aim of this section is to introduce a finite equational theory for bisimulation, which will
later form the basis for the characterization of the language associated to a process (hence, to an
automaton). First we define the notion of bisimulation.

Definition 7 LetT = (Q,Σ, δ) be anLTS. A relationR ⊆ Q × Q is a bisimulationif, whenever
(p, q) ∈ R, then for anyp′, q′ ∈ Q and anya ∈ Σ holds

1. if p
a

−→ p′, thenq
a

−→ q′ for someq′ ∈ Q such that(p′, q′) ∈ R;

2. if q
a

−→ q′, thenp
a

−→ p′ for somep′ ∈ Q such that(p′, q′) ∈ R.

Two statesq, q′ ∈ Q are said to bebisimilar, denoted byq ' q′, if there exists a bisimulation
R such that(q, q′) ∈ R. Two rootedLTS’s T1 = (Q1,Σ1, δ1, q1) andT2 = (Q2,Σ2, δ2, q2) are
bisimilar if q1 ' q2. Two processesP andQ arebisimilar if LTS(P) and LTS(Q) are.

It often occurs that bisimulation is not a congruence with respect to the operators of the
calculus, whenever there are rules containing negative premises. In fact, two of theSOS rules
of Table 1 have negative premises, and the set of rules of our calculus does not fit the general
so-calledntyft/ntyxtformat [Bol and Groote 1996].

The main problem is theasynfL rule, since it contains an explicit hypothesis on the target
state of the negative premise. It is in fact easy to see that the processP = recx.a.x and its
unfoldingQ = a.recx.a.x are bisimilar, whileP ‖f

{a} R andQ ‖f

{a} R are not, forR = a.b.nil.
However, the problem disappears whenever we restrict our attention to finite processes, since the
negative premise of the rule is always void. Thus, in the remaining of the section we restrict our
attention to finite processes only.

Our starting point for a finite equational theory for bisimulation is the solution routinely
adopted in theACP framework [Bergstra and Klop 1984], i.e., to use suitable auxiliary operators
(usually

�
and|) to split the parallel composition operator (‖) into its possible behaviors: either

an asynchronous evolution (
�

) or a forced synchronization (|). For our calculus of finite processes
this leads to the axioms concerning the choice and parallel composition operators reported in
Tables 2 and 3, respectively. Concerning parallel composition, the lack of a superscript (eitherf ,
ai or si) means that the law holds for each of the three operators. Furthermore, given a process
P ∈ P, the predicate En(P) is defined as En(P) = { a ∈ A | ∃Q ∈ P : P

a
−→ Q }.

Table 2. Axioms for the choice operator.

M + M = M M + N = N + M

(M + N) + O = M + (N + O) M + nil = M

Proposition 3 Let P , Q be finite processes. ThenP andQ are bisimilar if and only if they are
equated by the axioms of Tables 2 and 3.

Since the set ofSOS rules of our calculus of finite processes can be transformed into a
set of so-calledsmoothGSOSrules, we could as well have used the general procedure described
in [Aceto et al. 1994] to automatically generate a complete axiomatization for bisimulation. We
however chose to provide a direct, intuitive set of axioms.

Note that the equations of Tables 2 and 3 can be oriented from left to right, so that they
actually induce a rewriting system, modulo the so-called AC(associativity and commutativity)
axioms for the choice operator+. So, two finite processes are bisimilar if they have the same
(modulo AC)normal form(i.e., the process that is obtained after rewriting the original process
according to the rewriting system until no further rewriting can be applied).

Table 3. Axioms for the parallel composition operators.

P ‖L Q = P �L Q + Q �L P + P |L Q (P + Q) |L R = P |L R + Q |L R

(P + Q) �L R = P �L R + Q �L R R |L (P + Q) = R |L P + R |L Q

a.P �f
L Q = a.(P ‖f

L Q) nil �L P = nil

a.P |fL a.Q =

{
a.(P ‖f

L Q) if a 6∈ L
nil otherwise

nil |L P = nil = P |L nil

a.P �ai
L Q =

{
a.(P ‖ai

L Q) if a 6∈ L
nil otherwise

a.P |L b.Q = nil

a.P �si
L Q =

{
a.(P ‖si

L Q) if a 6∈ L ∩ En(Q)
nil otherwise

a.P |
{ai,si}
L a.Q = a.(P ‖

{ai,si}
L Q)

4. From automata to processes
The aim of this section is to present an encoding from automata to processes such that bisimulation
equivalence is preserved. To this end, we now extend the usual definition of automata by assigning
a specific set of states to be considered as entry points for the recursion operator.

Definition 8 LetX be a set of state variables. Then an automaton overX is a pair 〈A, f〉, where
A = (Q,Σ, δ, q0) is an automaton andf : X → Q is an injective (possibly partial) function.

So, for the rest of this section we assume that for each automaton a set of its states is
uniquely labeled by an element inX.

It is now possible to define our encoding from automata to processes.

Definition 9 Let 〈A, f〉 be an automatonA = (Q,Σ, δ, q0) over XA. Then the algorithm ob-
tained by repeatedly applying the three steps below inductively defines anessentially unique— up
to the choice of variables — process Exp(〈A, f〉).

• If q0 has no outgoing transitions, then

Exp(〈A, f〉) =

{
x if f(x) = q0, for somex ∈ XA, and
nil otherwise;

• If q0 hasn > 0 outgoing transitions(q0, ai, qi) and no incoming ones, then

Exp(〈A, f〉) =
∑

i∈{1,...,n}

ai.Exp(〈Ai, f〉)

for automataAi = (Q \ {q0},Σ, δ \ { (q0, a, q) | a ∈ Σ, q ∈ Q }, qi) overXA;

• If q0 hasn > 0 outgoing transitions(q0, ai, qi) and some incoming ones, then

Exp(〈A, f〉) = recx.




∑

i∈{1,...,n}

ai.Exp(〈Ai, g〉)





for a new variablex, automataAi = (Q,Σ, δ \ { (q0, a, q) | a ∈ Σ, q ∈ Q }, qi) over
XA ∪ {x} and functiong extendingf such thatg(x) = q0.

Note that we have implicitly used the fact that the operator+ is commutative and asso-
ciative, up to bisimulation (see the equations in Table 2). Note also that the second rule is actually
not needed: We added it just to associate a finite process to anacyclic automaton.

Proposition 4 Let〈A, f〉 be an automaton overXA and let Exp(〈A, f〉) be its essentially unique
process. ThenA is bisimilar to LTS(Exp(〈A, f〉)).

The proof can be given by coinductive arguments, by associating to the root ofA the state
Exp(〈A, f〉), and to each stateqi all the processesExp(〈Ai, g〉) arising during the translation,
and such thatqi is the root ofAi.

Example 3 Consider now the two component automataC1 = ({p, p′}, {b}, {(p, b, p′)}, {p}) and
C2 = ({q, q′}, {a, b}, {(q, b, q), (q, a, q′)}, {q}) from Example 1 as automata over the sets of state
variablesXC1

andXC2
, respectively.

By Definition 9, Exp(〈C1, f1〉) = b.Exp(〈C′
1, f1〉), with C′

1 = ({p′}, {b}, ∅, p′), and
Exp(〈C′

1, f1〉) = nil; thus Exp(〈C1, f1〉) = b.nil. Moreover,C1 trivially is bisimilar to LTS(b.nil).

Again by Definition 9, Exp(〈C2, f2〉) = recx.(b.x + a.Exp(〈C′
2, f

′
2〉)), with C′

2 =
({q, q′}, {a, b}, ∅, q′) andf ′

2(x) = q, and Exp(〈C′
2, f

′
2〉) = nil; thus Exp(〈C2, f2〉) = recx.(b.x +

a.nil). Finally, C2 trivially is bisimilar to LTS(recx.(b.x + a.nil)).

It is worth noting that the encoding presented in Definition 9can be proved to be com-
positional: Thus, up to bisimulation, the parallel composition of two automata, according to any
of the coordinaton patterns, is mapped into a process that isbisimilar to the parallel composition,
according to the corresponding operator, of the encoding ofthe underlying automata.

Proposition 5 LetA andB be automata, and〈A, ∅〉 and〈B, ∅〉 the associated automata over an
empty set of state variables. ThenA ‖L B is bisimilar to LTS(Exp(〈A, ∅〉)) ‖L LTS(Exp(〈B, ∅〉))
for any set of namesL and any of the three parallel operators.

5. Equations for (finite) languages

Consider again the equational presentation for bisimulation offered in Section 3. In particular, note
how the normal form of a finite process intuitively corresponds to a regular expression, obtained by
using the set of actions of the calculus as the alphabet and action prefixing and non-deterministic
choice as operations. This intuition can be exploited to obtain an equational presentation for the
language of a team automaton.

The correspondence between regular expressions and languages is a staple of theoretical
computer science, so we do not repeat it here. We simply letLP denote the language of a process
P , which is easily derived from its normal form. Moreover, we let L̂ denote the prefix-closed
extension of a languageL overΣ, i.e.,

L̂ = {α ∈ Σ∗ | ∃β ∈ Σ∗ : αβ ∈ L}.

As a direct corollary of Proposition 4 we thus obtain the following result.

Proposition 6 LetA be an automaton. ThenL(A) = L̂Exp(〈A,∅〉).

This result suggests that our calculus can be used to derive the language of an automaton.
This is not surprising, since bisimulation is finer than language equivalence, even if the environ-
ment is slightly more complex than usual, since our calculuscontains three different operators for
parallel composition. This result moreover suggests the use of equational laws to distill a normal
form that is simpler than the original automaton.

Proposition 7 LetP , Q be finite processes. Then̂LP = L̂Q if and only if the normal forms ofP
andQ are equated by using the axioms of+ (except for idempotency, see Table 2) and the axiom

a.M + a.N = a.(M + N).

Also this equation can be interpreted as a left-to-right rewriting rule, allowing for further
reduced normal forms of processes. It is important to realize that this axiom could not simply
have been added to Tables 2 and 3, sincecritical pairs would have arisen due to this axiom’s
incompatibility with the distributivity of eager parallelcomposition.

Example 4 Consider the three automataD1, D2 andD3 used for providing the counterexample
concerning Proposition 1, as shown in Figure 3. If we ignore the above axiom, then clearly
their associated processesD1, D2 and D3 have the normal formsa.b.nil, a.b.nil + a.c.nil and
a.(b.nil + c.nil), respectively. Should the above axiom have been added to theset of equations
in Tables 2 and 3, then clearlyD2 would be equated toD3 and thusD1 ‖si

Σ D2 would have the
same normal form (hence recognize the same langauge) asD1 ‖si

Σ D3, which is not the case:
Instead, the normal form fora.b.nil ‖si

Σ a.b.nil + a.c.nil is a.b.nil + a.b.c.nil + a.c.b.nil, reduced
to a.(b.c.nil + c.b.nil); while the normal form fora.b.nil ‖si

Σ a.(b.nil + c.nil) is a.b.nil + a.c.b.nil,
reduced toa.(b.nil + c.b.nil). The associated languages are easily derived.

The situation so far is thus quite satisfactory for finite processes (i.e., equivalently, for
acyclic automata): In order to prove the equivalence of two team automata with respect to the lan-
guage they recognize, it is sufficient to consider the associated processes and analyze their normal
forms. Moreover, it is relevant that the mapping from team automata to processes preserves, up to
bisimulation, the three composition patterns that were consideres in this paper: This result ensures
that the procedure devised so far for obtaining the normal form is modular.

6. Conclusions and future work

We introduced a process calculus for team automata, extending some classical results on I/O au-
tomata. As a side-effect, we widened the family of team automata that guarantee a degree of
compositionality by providing a way to obtain the language of a (finite)Rsi-team automaton from
its components. While this language cannot be obtained through a direct manipulation of the
languages of the component automata, the resulting degree of modularity favors the use of team
automata in component-based system design.

Future work in this direction should lead to compositionality results for other types of team
automata. A first step in this direction could be to extend ourcalculus with parallel composition
operators that mimic the various peer-to-peer and master-slave patterns of synchronization for
team automata as introduced in [ter Beek et al. 2003], as wellas mixtures of the synchronizations
defined for team automata. As a matter of fact, [ter Beek 2003,ter Beek and Kleijn 2003] contain
compositionality results not only forRfree- andRai-team automata, but also for team automata
constructed according to a mixture of thefree andai synchronizations. It is important to recall,
however, that the various peer-to-peer and master-slave patterns of synchronization make use of
the distinction of the set of actions of team automata into input, output and internal actions. This
means that in order to tackle the above issues, our calculus should first be extended to take this
distinction into account.

Our correspondence results between automata and processes(as summed up by the two
propositions in Section 4) relate the behavior ofpossibly cyclicautomata andpossibly recursive
processes. We restrained however from tackling the axiomatization of recursive processes. It
would be relatively easy to come up with a complete set of equational laws for those recursive

processes not containing the parallel operators, since they basically boil down to regular ex-
pressions equipped with a Kleene star operator. On the otherhand, the lack of a complete set
of axioms for recursive processes is a common trait for all the calculi proposed for automata
that we are aware of (compare, e.g., the situation for (probabilistic) I/O automata, as reported
in [De Nicola and Segala 1995, Stark et al. 2003]). We hope that our syntactical restriction will
suffice to obtain a relatively small set of equations which iscomplete, but we leave this topic as
the subject of future work.

Lastly, in order to be really useful in practical applications of team automata, it would be
worthwhile to study the complexity of the algorithms introduced in this paper, e.g., what is the
cost of obtaining the language of a team automaton via its translation into a process.

Acknowledgments

We are grateful to Jetty Kleijn and to the anonymous refereesfor their useful comments on a
preliminary version of this paper.

References

Aceto, L., Bloom, B., and Vaandrager, F. W. (1994). Turning SOS rules into equations.Informa-
tion and Computation, 111(1):1–52.

ter Beek, M. H. (2003).Team Automata—A Formal Approach to the Modeling of Collaboration
Between System Components. PhD thesis, Leiden University.

ter Beek, M. H., Ellis, C. A., Kleijn, J., and Rozenberg, G. (2003). Synchronizations in team
automata for groupware systems.Computer Supported Cooperative Work, 12(1):21–69.

ter Beek, M. H. and Kleijn, J. (2003). Team automata satisfying compositionality. In Araki, K.,
Gnesi, S., and Mandrioli, D., editors,International Symposium of Formal Methods Europe,
volume 2805 ofLect. Notes in Comp. Sci., pages 381–400. Springer.

ter Beek, M. H. and Kleijn, J. (2005). Modularity for teams ofI/O automata.Information Pro-
cessing Letters, 95(5):487–495.

ter Beek, M. H., Lenzini, G., and Petrocchi, M. (2005). Team automata for security: A survey.
In R., F. and Zavattaro, G., editors,International Workshop on Security Issues in Coordination
Models, Languages, and Systems, volume 128 ofElectr. Notes in Theor. Comp. Sci., pages
105–119. Elsevier.

ter Beek, M. H., Lenzini, G., and Petrocchi, M. (2006). A teamautomaton scenario for the
analysis of security properties of communication protocols. Journal of Automata, Languages
and Combinatorics. To appear.

Bergstra, J. A. and Klop, J. W. (1984). Process Algebra for Synchronous Communication.Infor-
mation and Control, 60(1–3):109–137.

Bol, R. N. and Groote, J. F. (1996). The meaning of negative premises in transition system speci-
fications.Journal of the ACM, 43(5):863–914.

De Nicola, R. and Segala, R. (1995). A process algebraic viewof input/output automata.Theoret-
ical Computer Science, 138(2):391–423.

Ellis, C. A. (1997). Team automata for groupware systems. InInternational Conference on
Supporting Group Work, pages 415–424. ACM Press.

Hoare, C. A. R. (1985).Communicating Sequential Processes. Prentice Hall.

Jonsson, B. (1994). Compositional specification and verification of distributed systems.ACM
Transactions on Programming Languages and Systems, 16(2):259–303.

Kleijn, J. (2003). Team automata for CSCW: A survey. InPetri Net Technology for Communi-
cation-Based Systems, volume 2472 ofLect. Notes in Comp. Sci., pages 295–320. Springer.

Lynch, N. A. (1996).Distributed Algorithms. Morgan Kaufmann.

Lynch, N. A. and Tuttle, M. R. (1989). An introduction to input/output automata.CWI Quarterly,
2(3):219–246. Also appeared as Technical Memo MIT/LCS/TM-373, MIT, 1988.

Milner, R. (1980).A Calculus of Communicating Systems, volume 92 ofLect. Notes in Comp. Sci.
Springer.

Plotkin, G. (1981). A structural approach to operational semantics. Technical Report DAIMI
FN-19, Computer Science Department, Aarhus University.

Stark, E. W., Cleaveland, R., and Smolka, S. A. (2003). A process-algebraic language for prob-
abilistic I/O automata. In Amadio, R. and Lugiez, D., editors, International Conference on
Concurrency Theory, volume 2761 ofLect. Notes in Comp. Sci., pages 193–207. Springer.

Vaandrager, F. W. (1991). On the relationship between process algebra and input/output automata
(extended abstract). InSymposium on Logic in Computer Science, pages 387–398. IEEE Com-
puter Society Press.

