
MP-Boost: A Multiple-Pivot Boosting Algorithm
and its Application to Text Categorization

Andrea Esuli and Tiziano Fagni
Istituto di Scienza e Tecnologie dell’Informazione

Consiglio Nazionale delle Ricerche
Via G Moruzzi, 1 – 56124 Pisa, Italy

{andrea.esuli,tiziano.fagni}@isti.cnr.it

Fabrizio Sebastiani
Dipartimento di Matematica Pura e Applicata

Università di Padova
Via GB Belzoni, 7 – 35131 Padova, Italy

fabrizio.sebastiani@unipd.it

ABSTRACT
AdaBoost.MH is a popular supervised learning algorithm
for building multi-label (aka n-of-m) text classifiers. Ad-
aBoost.MH belongs to the family of “boosting” algorithms,
and works by iteratively building a committee of “decision
stump” classifiers, where each such classifier is trained to
especially concentrate on the document-class pairs that pre-
viously generated classifiers have found harder to correctly
classify. Each decision stump hinges on a specific “pivot
term”, checking its presence or absence in the test doc-
ument in order to take its classification decision. In this
paper we propose an improved version of AdaBoost.MH,
called MP-Boost, obtained by selecting, at each iteration
of the boosting process, not one but several pivot terms, one
for each category. The rationale behind this choice is that
this provides highly individualized treatment for each cate-
gory, since each iteration thus generates, for each category,
the best possible decision stump. The result of the learn-
ing process is thus not a single classifier committee, but a
set of such committees, one for each category. We present
the results of experiments showing that MP-Boost is much
more effective than AdaBoost.MH. In particular, the im-
provement in effectiveness is spectacular when few boosting
iterations are performed, and (only) high for many such it-
erations. The improvement is especially significant in the
case of macroaveraged effectiveness, which shows that MP-
Boost is especially good at working with hard, infrequent
categories.

1. INTRODUCTION
Given a set of textual documents D and a predefined set of
categories (aka labels) C = {c1, . . . , cm}, multi-label (aka n-
of-m) text classification is the task of approximating, or esti-
mating, an unknown target function Φ : D×C → {−1, +1},
that describes how documents ought to be classified, by
means of a function Φ̂ : D ×C → {−1, +1}, called the clas-

sifier, such that Φ and Φ̂ “coincide as much as possible”1.
Here, “multi-label” indicates that the same document can
belong to zero, one, or several categories at the same time.

AdaBoost.MH [13] is a popular supervised learning algo-
rithm for building multi-label text classifiers. AdaBoost.MH
belongs to the family of “boosting” algorithms (see [8] for
a review), which have enjoyed a wide popularity in the text
categorization and filtering community [1, 3, 4, 7, 9, 10, 13,
14, 15, 16] because of their state-of-the-art effectiveness and
of the strong justifications they have received from computa-
tional learning theory. AdaBoost.MH works by iteratively
building a committee of “decision stump” classifiers2, where
each such classifier is trained to especially concentrate on
the document-category pairs that previously generated clas-
sifiers have found harder to correctly classify. Each decision
stump hinges on a specific “pivot term”, and takes its clas-
sification decision based on the presence or absence of the
pivot term in the test document.

We here propose an improved version of AdaBoost.MH,
called MP-Boost, obtained by selecting, at each iteration
of the boosting process, not one but several pivot terms,
one for each category. The rationale behind this choice is
that this provides highly individualized treatment for each
category, since each iteration generates, for each category,
the best possible decision stump. The result of the learn-
ing process is thus not a single classifier committee, but a
set of such committees, one for each category. We present
the results of experiments showing that MP-Boost is much
more effective than AdaBoost.MH. In particular, the im-
provement in effectiveness is spectacular when few boosting
iterations are performed, and (only) high for many such it-
erations. The improvement is especially significant in the
case of macroaveraged effectiveness, which shows that MP-
Boost is especially good at working with hard, infrequent
categories. This ultimately means that the same level of ef-
fectiveness can be obtained by MP-Boost with much fewer
iterations than AdaBoost.MH requires.

The paper is structured as follows. In Section 2 we concisely
describe boosting and the AdaBoost.MH algorithm. Sec-
tion 3 describes in detail our MP-Boost algorithm and the

1Consistently with most mathematical literature we use the
caret symbol (ˆ) to indicate estimation.
2A decision stump is a decision tree of depth one, i.e. con-
sisting of a root node and two or more leaf nodes.

rationale behind it. Section 4 discusses the computational
cost of MP-Boost relative to that of AdaBoost.MH. In
Section 5 we present experimental results comparing Ad-
aBoost.MH and MP-Boost. Section 6 concludes.

2. AN INTRODUCTION TO BOOSTING AND
ADABOOST.MH

AdaBoost.MH [13] (see Figure 1) is a boosting algorithm,
i.e. an algorithm that generates a highly accurate classifier
(also called final hypothesis) by combining a set of moder-
ately accurate classifiers (also called weak hypotheses). The
input to the algorithm is a training set Tr = {〈d1, C1〉, . . . ,
〈dg, Cg〉}, where Ci ⊆ C is the set of categories to each of
which di belongs.

AdaBoost.MH works by iteratively calling a weak learner
to generate a sequence Φ̂1, . . . , Φ̂S of weak hypotheses; at
the end of the iteration the final hypothesis Φ̂ is obtained
as a sum Φ̂ =

PS
s=1 Φ̂s of these weak hypotheses. A weak

hypothesis is a function Φ̂s : D × C → R. We interpret
the sign of Φ̂s(di, cj) as the prediction of Φ̂s on whether di

belongs to cj , i.e. Φ̂s(di, cj) > 0 means that di is believed

to belong to cj while Φ̂s(di, cj) < 0 means it is believed not
to belong to cj . We instead interpret the absolute value of

Φ̂s(di, cj) (indicated by |Φ̂s(di, cj)|) as the strength of this
belief.

At each iteration s AdaBoost.MH tests the effectiveness of
the newly generated weak hypothesis Φ̂s on the training set
and uses the results to update a distribution Ds of weights
on the training pairs 〈di, cj〉. The weight Ds+1(di, cj) is

meant to capture how effective Φ̂1, . . . , Φ̂s have been in cor-
rectly predicting whether the training document di belongs
to category cj or not. By passing (together with the training
set Tr) this distribution to the weak learner, AdaBoost.MH

forces this latter to generate a new weak hypothesis Φ̂s+1

that concentrates on the pairs with the highest weight, i.e.
those that had proven harder to classify for the previous
weak hypotheses.

The initial distribution D1 is uniform. At each iteration s all
the weights Ds(di, cj) are updated to Ds+1(di, cj) according
to the rule

Ds+1(di, cj) =
Ds(di, cj) exp(−Φ(di, cj) · Φ̂s(di, cj))

Zs
(1)

where

Zs =

gX
i=1

mX
j=1

Ds(di, cj) exp(−Φ(di, cj) · Φ̂s(di, cj)) (2)

is a normalization factor chosen so that Ds+1 is in fact a dis-
tribution, i.e. so that

Pg
i=1

Pm
j=1 Ds+1(di, cj) = 1. Equa-

tion 1 is such that the weight assigned to a pair 〈di, cj〉
misclassified by Φ̂s is increased, as for such a pair Φ(di, cj)

and Φ̂s(di, cj) have different signs and the factor Φ(di, cj) ·
Φ̂s(di, cj) is thus negative; likewise, the weight assigned to

a pair correctly classified by Φ̂s is decreased.

2.1 Choosing the weak hypotheses
In AdaBoost.MH each document di is represented as a
vector 〈w1i, . . . , wri〉 of r binary weights, where wki = 1

(resp. wki = 0) means that term tk occurs (resp. does not
occur) in di; T = {t1, . . . , tr} is the set of terms that occur
in at least one document in Tr. Of course, AdaBoost.MH
does not make any assumption on what constitutes a term;
single words, stems of words, or phrases are all plausible
choices.

In AdaBoost.MH the weak hypotheses generated by the
weak learner at iteration s are decision stumps of the form

Φ̂s(di, cj) =

a0j if wki = 0
a1j if wki = 1

(3)

where tk (called the pivot term of Φ̂s) belongs to {t1, . . . , tr},
and a0j and a1j are real-valued constants. The choices for
tk, a0j and a1j are in general different for each iteration
s, and are made according to an error-minimization policy
described in the rest of this section.

Schapire and Singer [12] have proven that the Hamming

loss of the final hypothesis Φ̂, defined as the percentage
of pairs 〈di, cj〉 for which sign(Φ(di, cj)) 6= sign(Φ̂(di, cj)),
is at most ΠS

s=1Zs. The Hamming loss of a hypothesis is
a measure of its classification (in)effectiveness; therefore, a
reasonable (although suboptimal) way to maximize the ef-

fectiveness of the final hypothesis Φ̂ is to “greedily” choose
each weak hypothesis Φ̂s (and thus its parameters tk, a0j

and a1j) in such a way as to minimize the normalization
factor Zs.

Schapire and Singer [13] define three different variants of
AdaBoost.MH, corresponding to three different methods
for making these choices:

1. AdaBoost.MH with real-valued predictions (here nick-
named AdaBoost.MHR);

2. AdaBoost.MH with real-valued predictions and ab-
staining (AdaBoost.MHRA);

3. AdaBoost.MH with discrete-valued predictions
(AdaBoost.MHD).

In this paper we concentrate on AdaBoost.MHR, since it
is the one that, in the experiments of [13], has been ex-
perimented most thoroughly and has given the best results;
the modifications to AdaBoost.MHR that we discuss in
Section 3 straightforwardly apply also to the other two vari-
ants. AdaBoost.MHR (from next section on simply called
AdaBoost.MH) chooses weak hypotheses of the form de-
scribed in Equation 3 by the following algorithm.

Algorithm 1 (The AdaBoost.MH weak learner).

1. For each term tk ∈ {t1, . . . , tr}, select, among all the

weak hypotheses Φ̂ that have tk as the “pivot term”, the
one (indicated by Φ̂best(k)) for which Zs is minimum.

2. Among all the hypotheses Φ̂best(1), . . . , Φ̂best(r) selected
for the r different terms in Step 1, select the one (in-

dicated by Φ̂s) for which Zs is minimum.

Input: A training set Tr = {〈d1, C1〉, . . . , 〈dg, Cg〉}
where Ci ⊆ C = {c1, . . . , cm} for all i = 1, . . . , g.

Body: Let D1(di, cj) =
1

gm
for all i = 1, . . . , g and for all j = 1, . . . , m

For s = 1, . . . , S do:
• pass distribution Ds(di, cj) to the weak learner;

• get the weak hypothesis Φ̂s from the weak learner;

• set Ds+1(di, cj) =
Ds(di, cj) exp(−Φ(di, cj) · Φ̂s(di, cj))

Zs

where Zs =

gX
i=1

mX
j=1

Ds(di, cj) exp(−Φ(di, cj) · Φ̂s(di, cj))

is a normalization factor chosen so that

gX
i=1

mX
j=1

Ds+1(di, cj) = 1

Output: A final hypothesis Φ̂(d, c) =

SX
s=1

Φ̂s(d, c)

Figure 1: The AdaBoost.MH algorithm.

Step 1 is clearly the key step, since there are a non-enumerable
set of weak hypotheses with tk as the pivot term. Schapire
and Singer [12] have proven that, given term tk and category
cj ,

Φ̂best(k)(di, cj) =

8><>:
1
2

ln
W

0jk
+1

W
0jk
−1

if wki = 0

1
2

ln
W

1jk
+1

W
1jk
−1

if wki = 1
(4)

where

W xjk
b =

gX
i=1

Ds(di, cj) · [[wki = x]] · [[Φ(di, cj) = b]] (5)

for b ∈ {−1, +1}, x ∈ {0, 1}, j ∈ {1, . . . , m} and k ∈
{1, . . . , r}, and where [[π]] indicates the characteristic func-
tion of predicate π (i.e. the function that returns 1 if π is
true and 0 otherwise). For these values of axj we obtain

Zs = 2

mX
j=1

1X
x=0

(W xjk
+1 W xjk

−1)
1
2 (6)

Choosing 1
2

ln
W

xjk
+1

W
xjk
−1

as the value for axj has the effect that

Φ̂s(di, cj) outputs a positive real value in the two following
cases:

1. wki = 1 (i.e. tk occurs in di) and the majority of the
training documents in which tk occurs belong to cj ;

2. wki = 0 (i.e. tk does not occur in di) and the majority
of the training documents in which tk does not occur
belong to cj .

In all the other cases Φ̂s outputs a negative real value. Here,
“majority” has to be understood in a weighted sense, i.e.

by bringing to bear the weight Ds(di, cj) associated to the
training pair 〈di, cj〉. The larger this majority is, the higher

the absolute value of Φ̂s(di, cj) is; this means that this ab-

solute value represents a measure of the confidence that Φ̂s

has in its own prediction [12].

In practice, the value axj = 1
2

ln
W

xjk
+1 +ε

W
xjk
−1 +ε

is chosen in place of

axj = 1
2

ln
W

xjk
+1

W
xjk
−1

, since this latter may produce outputs with

a very large or infinite absolute value when the denominator
is very small or zero3.

The output of the final hypothesis is the value

Φ̂(di, cj) =

SX
s=1

Φ̂s(di, cj) (7)

obtained by summing the outputs of the weak hypotheses.

2.2 Implementing AdaBoost.MH
Following [15], in our implementation of AdaBoost.MH

we have further optimized the final hypothesis Φ̂(di, cj) =PS
s=1 Φ̂s(di, cj) by “compressing” the weak hypotheses Φ̂1, . . . , Φ̂S

according to their pivot term tk. In fact, note that if {Φ̂1, . . . , Φ̂S}
contains a subset {Φ̂(k)

1 , . . . , Φ̂
(k)

q(k)} of weak hypotheses that

all hinge on the same pivot term tk and are of the form

Φ̂(k)
r (di, cj) =

ar
0j if wki = 0

ar
1j if wki = 1

(8)

3In [13] the value for ε is chosen by 3-fold cross validation on
the training set, but this procedure is reported to give only
marginal improvements with respect to the default choice of
ε = 1

gm
, which we adopt in this work.

for r = 1, . . . , q(k), the collective contribution of Φ̂
(k)
1 , . . . , Φ̂

(k)

q(k)

to the final hypothesis is the same as that of a “combined
hypothesis”

Φ̂(k)(di, cj) =

 Pq(k)
r=1 ar

0j if wki = 0Pq(k)
r=1 ar

1j if wki = 1
(9)

In the implementation we have thus replaced
PS

s=1 Φ̂s(di, cj)

with
P∆

k=1 Φ̂(k)(di, cj), where ∆ is the number of different

terms that act as pivot for the weak hypotheses in {Φ̂1, . . . , Φ̂S}.

This modification brings about a considerable efficiency gain
in the application of the final hypothesis to a test example.
For instance, the final hypothesis we obtained on Reuters-
21578 with AdaBoost.MH when S = 1000 consists of 1000
weak hypotheses, but the number of different pivot terms is
only 766 (see Section 5.2). The reduction in the size of
the final hypothesis which derives from this modification is
usually larger when high reduction factors have been applied
in a feature selection phase, since in this case the number of
different terms that can be chosen as the pivot is smaller.

3. MP-BOOST, AN IMPROVED BOOSTING
ALGORITHM WITH MULTIPLE PIVOT
TERMS

We here propose an improved version of AdaBoost.MH,
that we call AdaBoost.MH with multiple pivot terms (here
nicknamed MP-Boost), that basically consists in modifying
the form of weak hypotheses and how they are generated.

Looking at Equation 3 we may note that, at each iteration s,
choosing a weak hypothesis means choosing (i) a pivot term
tk, the same for all categories, and (ii) for each category
cj , a pair of constants 〈a0j , a1j〉. We contend that the fact
that, at iteration s, the same term tk is chosen as the pivot
term on which the binary classifiers for all categories hinge,
is clearly suboptimal. At this iteration term tk may be a
very good discriminator for category c′, but a very poor
discriminator for category c′′, which means that the weak
hypothesis generated at this iteration would contribute very
little to the correct classification of documents under c′′. We
claim that choosing, at every iteration s, a different pivot
term t〈s,j〉 for each category cj allows the weak hypothesis to
provide customized, improved treatment to each individual
category.

In MP-Boost the weak hypotheses generated by the weak
learner at iteration s are thus of the form

Φ̂s(di, cj) =

a0j if w〈s,j〉i = 0
a1j if w〈s,j〉i = 1

(10)

where term t〈s,j〉 is the pivot term chosen for category cj at
iteration s.

To see how MP-Boost chooses weak hypotheses of the
form described in Equation 10, let us first define a weak
cj-hypothesis as a function

Φ̂j(di) =

a0j if wki = 0
a1j if wki = 1

(11)

that is only concerned with classifying documents under cj ;
a weak hypothesis is the union of weak cj-hypotheses, one

for each category cj ∈ C. At each iteration s, MP-Boost

chooses a weak hypothesis Φ̂s by means of the following
variation of Algorithm 1.

Algorithm 2 (The MP-Boost weak learner).

1. For each category cj and for each term tk ∈
{t1, . . . , tr}, select, among all weak cj-hypothesis Φ̂j

that have tk as the pivot term, the one (indicated by

Φ̂j
best(k)) which minimizes

Zj
s =

gX
i=1

Ds(di, cj) exp(−Φ(di, cj) · Φ̂j(di)) (12)

2. For each category cj, among all the hypotheses Φ̂j
best(1),

. . . , Φ̂j
best(r) selected in Step 1 for the r different terms,

select the one (indicated by Φ̂j
s) for which Zj

s is mini-
mum;

3. Choose, as the weak hypothesis Φ̂s, the “union”, across
all cj ∈ C, of the weak cj-hypotheses selected in Step 2,

i.e. the function such that Φ̂s(di, cj) = Φ̂j
s(di).

Note the difference between Algorithm 1, as described in
Section 2.1, and Algorithm 2; in particular, Step 2 of Algo-
rithm 2 is such that weak cj-hypotheses based on different
pivot terms may be chosen for different categories cj .

For reasons analogous to the ones discussed in Section 2.1,
Step 1 is the key step; it is important to observe that Φ̂j

best(k)

is still guaranteed to have the form described in Equation 4,
since the weak hypothesis generated by Equation 10 is the
same that Equation 3 generates when m = 1, i.e. when C
contains one category only.

Note also that the “outer” algorithm of Figure 1 is un-
touched by our modifications, except for the fact that a
normalization factor Zj

s local to each category cj is used
(in place of the “global” normalization factor Zs) in order
to obtain the revised distribution Ds+1; i.e.

Ds+1(di, cj) =
Ds(di, cj) exp(−Φ(di, cj) · Φ̂j(di))

Zj
s

The main difference in the algorithm is thus in the “inner”
part, i.e. in the weak hypotheses that are received from the
weak learner, which now have the form of Equation 10, and
in the way they are generated.

Concerning the optimizations discussed in Section 2.2, ob-
tained by merging into a single weak hypothesis all weak
hypotheses that share the same pivot term, note that in
MP-Boost these must be done on a category-by-category
basis, i.e. by merging into a single weak cj-hypothesis all
weak cj-hypotheses that share the same pivot term. The ef-
fect of this is that the different categories c1, . . . , cm may be
associated to final hypotheses consisting of different num-
bers ∆1, . . . , ∆m of weak hypotheses.

Last, let us note that one consequence of switching from Ad-
aBoost.MH to MP-Boost is that local feature selection
(i.e. choosing different reduced feature sets for different cat-

egories) can also be used in place of global feature selection
(i.e. choosing the same reduced feature set for all categories).
In fact, since in MP-Boost the choice of pivot terms is
category-specific, the vectorial representations of documents
can also be category-specific. This allows the designer to se-
lect, ahead of the learning phase and by means of standard
feature selection techniques, the terms that are the most dis-
criminative for a given category cj , and are thus highly likely
to be chosen as pivot terms for the cj-hypotheses. This can
be done separately for each individual category, and thus
allows the use of even higher reduction factors; from the
standpoint of efficiency this is advantageous, given that the
computational cost of MP-Boost has a linear dependence
on the number of features used (see Section 4).

4. THE COMPUTATIONAL COST OF MP-
BOOST

We now analyse the computational costs of AdaBoost.MH
and MP-Boost, and show that the latter has the same com-
putational complexity of the former, despite generating (un-
like AdaBoost.MH) classifiers that provide individualized
treatment for each category. In Section 5.2 we also report
and discuss actual running times recorded during the exper-
iments.

Let us first discuss the cost of classifier training. The key
steps of AdaBoost.MH are (i) computing, for each tk ∈ T ,

the Zs(Φ̂best(k)) factor, and (ii) computing the minimum,

over all tk, of such Zs(Φ̂best(k)) factors. By inspecting Equa-
tions 5 and 6 we can clearly see that, for each tk, Step (i)
requires O(gm) operations, where g is the number of train-
ing documents and m is the number of categories; since
there are r such terms, the entire step requires O(gmr) op-
erations. Step (ii) requires O(r) operations, so the entire
AdaBoost.MH training process is O(gmr). In the case
of MP-Boost, the key steps are (i) computing, for each

tk ∈ T and for each cj ∈ C, the Zj
s(Φ̂best(k)) factor, and

(ii) for each cj ∈ C, computing the minimum, over all tk,

of such Zj
s(Φ̂best(k)) factors. This time, for each pair 〈tk, cj〉

Step (i) only requires O(g) operations ; but since there are
r terms and m categories, the entire step requires, again,
O(gmr) operations. Step (ii) requires O(mr) operations, so
the entire MP-Boost training process is, again, O(gmr).
This shows that, at training time, the computational costs
of AdaBoost.MH and MP-Boost are of the same order of
magnitude; this is confirmed by the experiments reported in
Table 2.

At a first approximation, applying the final hypothesis gen-
erated by AdaBoost.MH to a test document consists in
applying to it a committee of S decision stumps; the cost
is thus O(S). In the case of MP-Boost the cost is instead
O(mS) since there is a committee of S decision stumps for
each of the m categories. In practice, since weak hypotheses
are “compressed”, as described in Section 2.2, for both learn-
ers the cost linearly depends on ∆, the number of distinct
pivot terms selected during the training process (for MP-
Boost, we take ∆ to be an average of the category-specific
∆i values). For a given value of S the value of ∆ tends to
be much smaller for MP-Boost than for AdaBoost.MH,
since the “good” pivot terms for a specific category tend
to be few. As a result, for the testing phase the differen-

tial in cost between the two algorithms is, in practice, much
smaller than the upper bounds discussed above seem to sug-
gest. Table 1 shows how, in our experiments, the value of ∆
varies, for both learners, as S increases.

In terms of space, a weak hypothesis consists of 1 pivot
term and 2m constants in AdaBoost.MH, and of m pivot
terms and 2m constants in MP-Boost; the cost of storing
the final hypothesis is thus O(mS) (where S is the total
number of boosting iterations) for both AdaBoost.MH and
MP-Boost.

Reuters-21578 RCV1-v2

ffs rfs ffs rfs

A
d
a
B

o
o
st

.M
H

M
P
-B

o
o
st

A
d
a
B

o
o
st

.M
H

M
P
-B

o
o
st

A
d
a
B

o
o
st

.M
H

M
P
-B

o
o
st

A
d
a
B

o
o
st

.M
H

M
P
-B

o
o
st

5 5 4.5 5 4.5 5 4.9 5 4.9
10 10 8.4 10 8.4 10 9.7 10 9.7
20 20 15.0 20 15.1 20 19.1 20 19.2
50 50 30.6 50 31.3 50 46.2 50 46.6

100 98 50.1 98 51.1 95 88.6 95 89.0
200 192 79.8 192 81.4 191 163.7 191 165.4
500 433 136.6 433 134.7 479 338.9 483 344.0

1000 766 191.7 703 181.5 950 533.7 946 538.2

Table 1: Difference between the ∆ values of Ad-
aBoost.MH and MP-Boost; “ffs” and “rfs” stand
for “full feature set” and “reduced feature set”, re-
spectively.

5. EXPERIMENTS
We have run a series of experiments for testing MP-Boost,
using AdaBoost.MH as a baseline. Section 5.1 describes
the setting of these experiments and Section 5.2 describes
the results we have obtained.

5.1 Experimental setting
The corpora we have used in our experiments are Reuters-
21578 and RCV1-v2.

The “Reuters-21578, Distribution 1.0” corpus is currently
the most widely used benchmark in multi-label text catego-
rization research4. It consists of a set of 12,902 news sto-
ries, partitioned (according to the “ModApté” split we have
adopted) into a training set of 9,603 documents and a test
set of 3,299 documents. The documents are labelled by 118
categories; the average number of categories per document
is 1.08, ranging from a minimum of 0 to a maximum of 16;
the number of positive examples per category ranges from
a minimum of 1 to a maximum of 3964. In our experiments
we have restricted our attention to the 115 categories with
at least one positive training example.

The Reuters Corpus Volume 1 version 2 (RCV1-v2)5 is
a more recent text categorization benchmark made available
4The Reuters-21578 corpus is freely avail-
able for experimentation purposes from
http://www.daviddlewis.com/resources/testcollections/
reuters21578/
5http://trec.nist.gov/data/reuters/reuters.html

by Reuters and consisting of 804,414 news stories produced
by Reuters from 20 Aug 1996 to 19 Aug 1997; all news
stories are in English, and have 109 distinct terms per doc-
ument on average [11]. In our experiments we have used
the “LYRL2004” split, defined in [6], in which the (chrono-
logically) first 23,149 documents are used for training and
the other 781,265 are used for test. Out of the 103 “Topic”
categories, in our experiments we have restricted our atten-
tion to the 101 categories with at least one positive training
example.

In all the experiments discussed in this paper, stop words
have been removed using the stop list provided in [5, pages
117–118], punctuation has been removed, all letters have
been converted to lowercase, numbers have been removed,
and stemming has been performed by means of Porter’s
stemmer. Feature selection has been performed by scoring
features by means of information gain, defined as

IG(tk, ci) =
X

c∈{ci,ci}

X
t∈{tk,tk}

P (t, c) · log P (t, c)

P (t) · P (c)

The final set of features has been chosen according to For-
man’s round robin technique, which consists in picking, for
each category ci, the v features with the highest IG(tk, ci)
value, and pooling all of them together into a category-
independent set [2]. This set thus contains at most vm
features, where m is the number of categories; it usually
contains strictly fewer than vm features, since some fea-
tures are among the best v features for more than one cate-
gory. We have set v to 48 (for Reuters-21578) and 177 (for
RCV1-v2); these are the values that bring about feature set
sizes of 2,012 (Reuters-21578) and 5,509 (RCV1-v2), thus
achieving 90% reduction with respect to the original sets
which consisted of of 20,123 (Reuters-21578) and 55,051
(RCV1-v2) terms.

As a measure of effectiveness that combines the contribu-
tions of precision (π) and recall (ρ) we have used the well-
known F1 function, defined as

F1 =
2πρ

π + ρ
=

2TP

2TP + FP + FN
(13)

and which corresponds to the harmonic mean of precision
and recall (here, TP stands for true positives, FP for false
positives, and FN for false negatives). Note that F1 is
undefined when TP = FP = FN = 0; in this case we take
F1 to equal 1.0, since the classifier has correctly classified all
documents as negative examples.

We compute both microaveraged F1 (denoted by F µ
1) and

macroaveraged F1 (F M
1). F µ

1 is obtained by (i) computing
the category-specific values TPi, (ii) obtaining TP as the
sum of the TPi’s (same for FP and FN), and then (iii)
applying Equation 13. F M

1 is obtained by first computing
the F1 values specific to the individual categories, and then
averaging them across the ci’s.

5.2 Results
The results of our experiments are reported in Table 2 for
some key values of the number of iterations S; Figure 2
reports the same results in graphical form for any value of
S comprised in the [1..1000] interval. It is immediate to

observe that, for any value of S, MP-Boost always improves
on AdaBoost.MH, in terms of both F µ

1 and F M
1 .

Let us discuss the results obtained on Reuters-21578 (the
ones obtained on RCV1-v2 are qualitatively similar). For
small values of S the improvement in effectiveness of MP-
Boost wrt AdaBoost is spectacular: F µ

1 goes up by +69.47%
for S = 5, by +57.07% for S = 10, and by +30.07% for
S = 20. As the value of S grows, the margin between the
two learners narrows: we obtain +4.34% for S = 1, 000 and
+4.20% for S = 10, 000. This fact may be explained by
noting that in AdaBoost.MH, if the final hypothesis con-
sists of a few weak hypotheses only, it is likely that only
few categories have been properly addressed (i.e. that the
pivot terms used in the committee have a high discrimina-
tion power for few categories only). When the number of
weak hypotheses gets larger, it is more likely that many (or
most of the) categories have been properly catered for. Con-
versely, MP-Boost has already used the best pivot terms
for each category right from the very first iterations; this ex-
plains the fact that MP-Boost is highly effective even for
small values of S.

Note that the improvement brought about by the individu-
alized treatment of categories implemented by MP-Boost
is not recovered by AdaBoost.MH even by pushing S to
the limit. For instance, note that not even in 10,000 it-
erations AdaBoost.MH manages to obtain the F µ

1 values
obtained by MP-Boost in just 50 iterations: MP-Boost
with S = 50 obtains a slightly superior effectiveness (+1.4%)
than AdaBoost.MH with S = 10, 000, in less than 1% the
training time and in about 10% the testing time of this lat-
ter.

These effectiveness improvements are even more significant
when considering macroaveraged effectiveness. In this case,
we obtain a relative improvement in F M

1 that ranges from a
minimum of +21.13% (obtained for S = 10, 000) to a max-
imum of +124,70% (obtained for S = 5). Again, not even
in 10,000 iterations AdaBoost.MH obtains the F M

1 values
obtained by MP-Boost in just 5 iterations. This may be ex-
plained by recalling the well-known fact that macroaveraged
effectiveness especially rewards those classifiers that perform
well also on infrequent categories (i.e. categories with few
positive training examples); indeed, unlike AdaBoost.MH,
MP-Boost places equal emphasis on all categories, regard-
less of their frequency, thus picking the very best pivot terms
for the infrequent categories too right from the first itera-
tions.

Let us now discuss the relative efficiency of the two learners.
As expected, for both learners the time required to gener-
ate the final committees grows linearly with the number of
boosting iterations S. We also observed an almost constant
ratio between the running times of the two learners, with
MP-Boost being about 9% slower than AdaBoost.MH.
A profiling session on the applications has pointed out that
this difference is due to the larger (by a constant factor)
size of weak hypotheses in MP-Boost (see Section 4),
which generates a small overhead in memory management.
In terms of testing time, instead, it turns out that MP-
Boost is, for equal numbers S of boosting iterations, from
one to four times slower than AdaBoost.MH (see Table 2).

AdaBoost.MH MP-Boost MP-Boost wrt AdaBoost.MH

S F µ
1 F M

1 τ(Tr) τ(Te) F µ
1 F M

1 τ(Tr) τ(Te) F µ
1 F M

1 τ(Tr) τ(Te)

R
e
u
t
e
r
s-

2
1
5
7
8

fu
ll

fe
a
tu

re
se

t
5 0.416 0.235 12.1 0.1 0.704 0.529 13.2 0.2 +69.47% +124.70% +9.09% +100.0%

10 0.483 0.271 24.2 0.1 0.759 0.556 26.4 0.3 +57.07% +105.52% +9.09% +183.3%
20 0.611 0.325 48.4 0.1 0.795 0.586 52.8 0.5 +30.07% +80.44% +9.09% +266.6%
50 0.723 0.392 96.8 0.2 0.822 0.589 105.7 1.1 +13.79% +50.44% +9.19% +324.0%

100 0.776 0.454 193.6 0.4 0.837 0.608 211.3 1.7 +7.91% +34.06% +9.14% +326.8%
200 0.798 0.461 387.1 0.8 0.843 0.600 422.7 3.1 +5.68% +30.16% +9.20% +297.4%
500 0.811 0.485 774.2 2.0 0.848 0.604 845.3 6.3 +4.51% +24.62% +9.18% +216.1%

1000 0.811 0.482 1548.4 3.7 0.846 0.603 1690.6 9.2 +4.34% +25.06% +9.18% +150.1%
10000 0.810 0.497 15483.9 10.0 0.844 0.602 16906.2 20.6 +4.20% +21.13% +9.18% +106.0%

R
C

V
1
-v

2

fu
ll

fe
a
tu

re
se

t

5 0.361 0.037 34.5 21.8 0.519 0.306 37.3 54.0 +43.89% +720.57% +8.12% +147.9%
10 0.406 0.070 69.1 25.5 0.588 0.367 74.7 91.8 +44.80% +421.88% +8.10% +260.7%
20 0.479 0.131 138.1 32.7 0.646 0.418 149.4 148.5 +34.96% +218.09% +8.18% +354.7%
50 0.587 0.239 276.2 54.6 0.700 0.455 298.7 286.2 +19.24% +90.63% +8.15% +423.8%

100 0.650 0.333 552.4 87.5 0.726 0.474 597.5 472.5 +11.75% +42.33% +8.16% +439.8%
200 0.701 0.396 1104.8 161.5 0.745 0.487 1194.9 837.0 +6.20% +23.00% +8.16% +418.3%
500 0.735 0.435 2209.7 516.1 0.761 0.495 2389.9 1698.3 +3.58% +13.74% +8.15% +229.1%

1000 0.745 0.442 4419.3 1014.4 0.768 0.496 4779.7 2478.6 +2.99% +12.21% +8.16% +144.4%
10000 0.754 0.459 44192.3 2831.4 0.765 0.485 47796.2 5772.4 +1.46% +5.66% +8.16% +103.9%

R
e
u
t
e
r
s-

2
1
5
7
8

re
d
.
fe

a
tu

re
se

t 5 0.416 0.235 9.3 0.1 0.704 0.515 10.2 0.2 +69.23% +119.15% +9.68% +133.3%
10 0.483 0.271 18.5 0.1 0.760 0.560 20.4 0.3 +57.35% +106.64% +10.27% +200.0%
20 0.611 0.325 37.1 0.1 0.794 0.567 40.7 0.5 +29.95% +74.46% +9.70% +307.7%
50 0.723 0.392 74.1 0.2 0.826 0.596 81.4 1.0 +14.25% +52.04% +9.85% +325.0%

100 0.773 0.457 148.3 0.4 0.839 0.614 162.9 1.7 +8.54% +34.35% +9.84% +315.0%
200 0.790 0.474 296.5 0.7 0.845 0.623 325.8 2.9 +6.96% +31.43% +9.88% +288.0%
500 0.811 0.485 593.0 1.9 0.846 0.617 651.5 5.8 +4.32% +27.22% +9.87% +202.1%

1000 0.806 0.484 1186.0 3.2 0.839 0.619 1303.0 8.2 +4.09% +27.89% +9.87% +153.2%

R
C

V
1
-v

2

re
d
.
fe

a
tu

re
se

t 5 0.361 0.037 28.2 21.1 0.519 0.307 30.5 49.6 +43.77% +729.73% +8.16% +135.6%
10 0.406 0.070 56.4 24.4 0.587 0.365 61.0 78.0 +44.58% +421.43% +8.16% +219.3%
20 0.479 0.131 112.7 31.2 0.646 0.416 122.1 125.6 +34.86% +217.56% +8.34% +302.1%
50 0.587 0.239 225.4 54.6 0.701 0.458 244.2 247.4 +19.42% +91.63% +8.34% +352.8%

100 0.650 0.333 450.9 84.6 0.727 0.478 488.4 442.3 +11.85% +43.54% +8.32% +422.7%
200 0.701 0.396 901.8 154.4 0.744 0.493 976.8 896.9 +6.13% +24.49% +8.32% +481.0%
500 0.734 0.431 1803.5 495.9 0.760 0.503 1953.5 2133.1 +3.54% +16.71% +8.32% +330.2%

1000 0.747 0.445 3607.0 974.7 0.764 0.505 3907.0 3500.6 +2.28% +13.48% +8.32% +259.2%

Table 2: Comparative performance of AdaBoost.MH and MP-Boost on the Reuters-21578 and RCV1-v2
benchmarks, with (i) a full feature set and with (ii) a reduced feature set obtained with a round-robin
technique and 90% reduction factor. S indicates the number of boosting iterations; F µ

1 and F M
1 indicate

micro- and macro-averaged F1, respectively; τ(Tr) and τ(Te) indicate the time (in seconds) required for
training and testing, respectively.

This is due to the fact that AdaBoost.MH selects, for the
same value S, a number ∆ of distinct pivot terms smaller
than the number

Pm
i=1 ∆i that MP-Boost selects (see Sec-

tion 2.2), and to the fact that the classifier tests all the
values of these terms in the document. However, note that
for MP-Boost this loss in testing efficiency is more than
compensated by the large gain in effectiveness. Also, with
MP-Boost trained on the full feature set with S = 1000
(a value at which effectiveness peaks) the time required for
classifying all the 781,265 RCV1-v2 test documents is about
79 minutes, which is more than acceptable.

Last, let us note that the experiments run with the re-
duced feature set (see Table 2) have produced practically
unchanged effectiveness results wrt those obtained with the
full feature set, but (as expected – see Section 4) at the
advantage of dramatically smaller training times and sub-
stantially smaller testing times. That feature selection does
not reduce effectiveness might seem surprising in the context
of a boosting algorithm, since feature selection brings about
smaller degrees of freedom in the choice of the best pivot
term; quite evidently, IG is very effective at discarding the
terms that the boosting algorithm would not choose anyway
as pivots.

6. CONCLUSION
We have presented MP-Boost, a novel algorithm for multi-
label text categorization that improves upon the well-known
AdaBoost.MH algorithm by selecting multiple pivot terms
at each boosting iteration, we have provided (training time
and testing time) complexity results for it, and we have
thoroughly tested it on two well-known benchmarks, one
of which consisting of more than 800,000 documents. The
results allow us to conclude that MP-Boost is a largely su-
perior alternative to AdaBoost.MH since, at the price of a
tolerable decrease in classification efficiency, it yields speed-
ier convergence, superior microaveraged effectiveness, and
dramatically superior macroaveraged effectiveness. This lat-
ter fact makes it especially suitable to categorization prob-
lems in which the distribution of training examples across
the categories is highly skewed.

7. REFERENCES
[1] L. Cai and T. Hofmann. Text categorization by boosting

automatically extracted concepts. In Proceedings of
SIGIR-03, 26th ACM International Conference on
Research and Development in Information Retrieval, pages
182–189, Toronto, CA, 2003.

[2] G. Forman. A pitfall and solution in multi-class feature
selection for text classification. In Proceedings of ICML-04,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

F 1

number of iterations S

MP-Boost Fµ
1

AdaBoost Fµ
1

MP-Boost FM
1

AdaBoost FM
1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000
F 1

number of iterations S

MP-Boost Fµ
1

AdaBoost Fµ
1

MP-Boost FM
1

AdaBoost FM
1

Figure 2: Effectiveness of AdaBoost.MH and MP-Boost on Reuters-21578 (left) and RCV1-v2 (right) as a
function of the number S of iterations. The X axis is displayed on a logarithmic scale.

21st International Conference on Machine Learning, Banff,
CA, 2004.

[3] R. D. Iyer, D. D. Lewis, R. E. Schapire, Y. Singer, and
A. Singhal. Boosting for document routing. In Proceedings
of CIKM-00, 9th ACM International Conference on
Information and Knowledge Management, pages 70–77,
McLean, US, 2000.

[4] Y.-H. Kim, S.-Y. Hahn, and B.-T. Zhang. Text filtering by
boosting naive Bayes classifiers. In Proceedings of
SIGIR-00, 23rd ACM International Conference on
Research and Development in Information Retrieval, pages
168–175, Athens, GR, 2000.

[5] D. D. Lewis. Representation and learning in information
retrieval. PhD thesis, Department of Computer Science,
University of Massachusetts, Amherst, US, 1992.

[6] D. D. Lewis, F. Li, T. Rose, and Y. Yang. RCV1: A new
benchmark collection for text categorization research.
Journal of Machine Learning Research, 5:361–397, April
2004.

[7] Y. Liu, Y. Yang, and J. Carbonell. Boosting to correct the
inductive bias for text classification. In Proceedings of
CIKM-02, 11th ACM International Conference on
Information and Knowledge Management, pages 348–355,
McLean, US, 2002.

[8] R. Meir and G. Rätsch. An introduction to boosting and
leveraging. In S. Mendelson and A. J. Smola, editors,
Advanced lectures on machine learning, pages 118–183.
Springer Verlag, Heidelberg, DE, 2003.

[9] K. Myers, M. Kearns, S. Singh, and M. A. Walker. A
boosting approach to topic spotting on subdialogues. In
Proceedings of ICML-00, 17th International Conference on
Machine Learning, pages 655–662, Stanford, US, 2000.

[10] P. Nardiello, F. Sebastiani, and A. Sperduti. Discretizing
continuous attributes in AdaBoost for text categorization.
In Proceedings of ECIR-03, 25th European Conference on
Information Retrieval, pages 320–334, Pisa, IT, 2003.

[11] T. Rose, M. Stevenson, and M. Whitehead. The Reuters
Corpus Volume 1: From yesterday’s news to tomorrow’s
language resources. In Proceedings of LREC-02, 3rd
International Conference on Language Resources and
Evaluation, pages 827–832, Las Palmas, ES, 2002.

[12] R. E. Schapire and Y. Singer. Improved boosting
algorithms using confidence-rated predictions. Machine
Learning, 37(3):297–336, 1999.

[13] R. E. Schapire and Y. Singer. BoosTexter: a
boosting-based system for text categorization. Machine
Learning, 39(2/3):135–168, 2000.

[14] R. E. Schapire, Y. Singer, and A. Singhal. Boosting and
Rocchio applied to text filtering. In Proceedings of
SIGIR-98, 21st ACM International Conference on
Research and Development in Information Retrieval, pages
215–223, Melbourne, AU, 1998.

[15] F. Sebastiani, A. Sperduti, and N. Valdambrini. An
improved boosting algorithm and its application to
automated text categorization. In Proceedings of CIKM-00,
9th ACM International Conference on Information and
Knowledge Management, pages 78–85, McLean, US, 2000.

[16] H. Taira and M. Haruno. Text categorization using
transductive boosting. In Proceedings of ECML-01, 12th
European Conference on Machine Learning, pages 454–465,
Freiburg, DE, 2001.

