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Abstract. We propose a comprehensive approach to distributed query process-
ing in wireless sensor networks. We consider various aspects related to database
system design and we revise, reinterpret, and redefine them according to the wire-
less sensor networks context. We consider the aspects related to the definition of a
query language, data model, query algebra, and query optimization strategies. All
these aspects are consistently discussed and defined. We show that the proposed
approach enables optimizations of the query plan which may reduce the costs, in
terms of consumed energy, of orders of magnitude.

1 Introduction

Wireless Sensor Networks are networks specialized for environmental monitoring [6,
12]. They are composed of a set of (tiny) devices (hereafter called nodes or sensors),
each of which is a microsystem comprising a processor, a memory, a set of transduc-
ers, and a low-range, low-bandwidth radio transceiver. Sensors are powered by on board
batteries thus their lifetime is limited and their energy efficiency is critical in most appli-
cations. Typical applications of sensor networks include environment sampling, disaster
areas monitoring, health monitoring, surveillance, security, inventory management, and
they have also been envisioned as an architectural support for applications of pervasive
computing.

The sensors can be easily deployed in the environment (sensing field) and they self-
organize to form a (multihop) wireless network. They can be programmed to sample
parameters of the surrounding environment, to process sampled data and to forward this
information to a sink node which, in turn, provides connectivity between the network
and the user. Trivial data gathering applications request sensors to forward periodic
samples to the sink node which performs data processing, however in more sophisticate
paradigms data processing is performed by the network itself. These approaches gener-
ally results in energy saves since a smaller amount of data needs to be transmitted and
radio transmissions use an important fraction of the energy budget of the nodes.

A major issue, in these approach, is related to the injection of sensing tasks in the
network. Recently proposed methods [23, 29, 25] suggest the use of database paradigms
and query languages (generally SQL-like), to interact with sensor networks. A query
submitted (or injected) to the sensor network specifies the sensing and data processing
tasks to be performed by the network itself. With this paradigm, the database to be
queried is the physical environment where the wireless sensor network is deployed.
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This database is highly dynamic and it is not persistent. In fact, measured data change
continuously and if a data is missed (for instance temperature is not acquired in a certain
instant) it is missed forever. Measurable physical parameters of the real world form a
continuous flow of data that can be filtered, processed, and cross-related by the wireless
sensor network.

In this paper we propose a comprehensive approach to distributed query processing
in wireless sensor networks. We consider the various aspects related to database system
design and we revise, reinterpret, and redefine them according to the wireless sensor
networks context. To our knowledge this is the first work were all these aspects are con-
sidered together and consistently to define a framework for distributed query processing
in wireless sensor networks:

– We first define a query language with constructs specialized for sensor networks.
The query language individually manipulates data sources consisting of specific
transducers located on individual nodes. Queries can relate and compare data ac-
quired by multiple (remote) nodes. Queries can also aggregate data in the spatial
and temporal dimension. Virtual sources can be created and used in queries by
combining basic sources. Section 4 discusses these aspects.

– In support to the query language we have defined a data model based on streams,
where the origin of manipulated data is maintained explicit. The defined data model
distinguishes between data acquired locally, data received from remote nodes, and
data generated locally during query processing. Given that data acquisition and
transmission is the primary concern for energy efficiency, the data model offers
useful information to the query optimizer to generate query execution plans that
minimize the execution cost. The data model is discussed in Section 5.

– We have defined a query algebra offering operators able to process queries specified
in our language that exploit the features provided by the data model. A query is
translated into a distributed query plan consisting of operators of the query algebra
connected by streams. A query is executed by the wireless sensor network in a
distributed fashion. Each node involved in a query execute the part of the query
plan it was assigned to. The defined operators have a strictly pipelined behavior,
and they control the phases of data acquisition and data transmission. The proposed
query algebra is simple enough to be implemented by a distributed query processor
running exclusively on nodes of the sensor network. The data model and the query
algebra provide the query optimizer with features that allow the optimization of the
query processing, by accurately orchestrating data transmission, data acquisition,
and data processing. We define the operators of the query algebra in Section 6.

– We have defined a cost model to estimate the cost of a query plan execution, by
taking into account data acquisition and transmission (implied by the various com-
binations of streams and operators) in conjunction with the expected selectivity of
predicates used in the queries. Section 7 discusses these aspects.

– The cost model is an important element for the query optimizer that we have de-
fined. We use an algebraic approach to query optimization that use transformation
rules based on heuristics aimed at reducing the query execution cost. The trans-
formations also exploit ordering strategies for the operators of the query plan. We
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show that the query execution cost can be reduced by orders of magnitude using
our approach. Query optimization issues are discussed in Section 8.

The approach proposed in this paper was implemented in the MaD-WiSe (Manage-
ment of Data in Wireless Sensor networks) system. The distributed query processor of
MaD-WiSe was implemented on the MICAz motes platform produced by CrossBow
[1], relying on TinyOS [3]. The query parser and optimizer was implemented in Java
and runs on a standard PC. Additional information and downloads can be found at the
MaD-WiSe project web site [2]

2 Related work

The first attempt to define a data management paradigm in sensor networks is Directed
Diffusion [19]. In Directed Diffusion the user queries the network by injecting inter-
ests. Each interest is associated with a sampling rate and it specifies a set of pairs (at-
tribute,value) describing the kind of data the user is interested in. Interests are broad-
casted to all nodes in the network and during the broadcast propagation each node sets
up gradients directed to the sink. In practice the gradients set up a directed acyclic com-
munication graph rooted at the sink. Data detected by the sensors which matches an
interest is propagated to the sink along this graph. Directed diffusion also include some
mechanisms aimed at the management of the interests in the network and it allows some
simple form of data aggregation.

The natural evolution of Directed Diffusion had been towards paradigms integrat-
ing database management systems and sensor networks. These paradigms use query
languages (such as SQL, for instance) to program the sensing task and translate the
queries into query plans executable by the sensors. Among the various proposals pur-
suing this approach, pioneers and (to some extent) state of the art are considered Fijord
[23], Cougar [29], and TinyDB [25].

Fijord is one of the first attempt in this direction. It is not bound to any specific
query language, rather it offers an infrastructure allowing the user to issue queries to
the network. In the Fijord architecture the sensors are clustered around high power ma-
chines called proxies with abundant memory and processing power, and a sensor can
only interact with its proxy. The role of the proxies is two fold: they serve as interme-
diary between sensors and query plans and they manage the streams of data generated
by the sensors. In this way the proxies can execute the query plans by issuing simple
commands to the sensors and efficiently managing their energy. They can also merge
streams and historical data local and enable sharing of work between queries. Proxies
receive the query plan from a central machine via wired or wireless network and instan-
tiate operators and queues. The former implement tuple processing (including selection
and projection) over data streams while the latter interconnect operators, providing a
dataflow-like computation architecture. The framework allows multiple queries by al-
lowing operators to output their results to several output queues. Operators and queues
implement both a push and pull operating mode wherein queries based on periodic sam-
pling (acquisition-driven) and queries requesting data on demand can be implemented.
Queues provide an uniform interface to connect either two local operators or a local and
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a remote operator (i.e., one instantiated on a different proxy). Users can perform joins
and aggregates over fixed-size windows which they define on streams. The main limi-
tation of the Fjords approach is that it requires high-powered proxies to be located near
the sensors and it only uses the latter for sampling (the rest of query processing happens
on proxies). A proxy can only adjust the sampling rate of its sensors or switch them in
power save mode (i.e. the sensors are switched off most of the time and they wake up
periodically to check for new queries to be served). A limited amount of processing in
the form of selections or aggregation can actually be performed on the sensors if that is
compatible with all running queries.

Cougar is another sensor database that integrates stored data and sensor data. Stored
data are maintained as relations in a traditional database and mainly contain information
on sensors in the network, including the characteristics of every sensor in the network
and their position. Sensor data refers to data generated by sensors as a consequence of
measurements repetitively performed in the physical environment, and they are repre-
sented as time series. Sensor data is modelled by representing each type of sensor with
an Abstract Data Type (ADT); the ADT interface includes signal processing functions
to be used on the sensed data. For instance, the ADT of a temperature alarm sensor may
include functions like getTemp() and detectAlarmTemp(threshold) which
respectively return the measured temperature and the measured temperature when it
is above the specified threshold. Note that signal processing functions are scalar and
return a single value. Cougar obtains time series by repetitively executing these func-
tions: once a value is obtained from the function, it is appended to the time series and the
function is invoked again to obtain the next value. Relational operators are used to ma-
nipulate stored data, while sequence operators are used to deal with time series. Stored
data and sensor data can be combined by using joins that take as input a relation and a
sequence. This type of join is implemented by waiting on the sequence for a new record
and checking if some record in the relation can be matched with the new record in the
sequence. Query processing in Cougar is performed by adopting a three-layers architec-
ture. The first layer is composed of sensor nodes. Sensor nodes have a lightweight query
execution engine that is capable of executing signal processing functions (included in
the corresponding ADT interface). Sensor nodes are grouped into clusters and a node is
assigned to be the cluster leader. The second layer is composed of cluster leaders. They
coordinate and execute aggregate operators on data produced by their cluster nodes and
send the results to the database front-end. The database front-end is the third layer. It
performs query processing on sensor data received by cluster leaders and stored data,
and sends the results to the user interface.

Note that Cougar cannot process aggregates over time windows [13]. The reason is
that sensor data are obtained by scalar signal processing function. Once a single value
is obtained by a function, the query execution processes this data along with other data
produced in the same time frame by the same function in other cluster nodes. Note also
that Cougar can relate data acquired by different nodes (for instance to compare the
temperature measured in two different rooms) by exploiting the query processor on the
front-end of the network database. This is achieved with a centralized approach which
allows for a lightweight query processor on the nodes, but, on the other hand, requires
that data traverse the entire path from the sensor nodes to the front-end, an approach
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which is not optimized for energy efficiency. Query optimization also encounters some
limitations since the opportunity of in-network query processing is only exploited for
execution of aggregates and signal processing functions.

In TinyDB a query is formulated in a computer (base station) connected to a sink
node of the sensor network. The base station parses the query and generates an op-
timized query execution plan. The query plan is sent to all the nodes which should
process it (potentially the entire network). The dissemination of the query plan sets up
a routing tree (the Semantic Routing Tree) in the network which is used to collect sen-
sor data at the sink. Each involved node autonomously processes the query and sends
its results back to the sink node. TinyDB assumes the existence of a single (logical)
table Sensors, containing data produced by the transducers of each node in the net-
work, which is used to formulate queries. The table Sensors is filled assuming that
time is divided into epochs: in each epoch every node produces a new single logical
record for the table (hence the number of records produced in an epoch is equal to the
number of nodes in the network). The information contained in a record includes the
epoch, the identifier of the generating node, the values produced by the transducers in
the node, and optionally additional node-dependent constants values (for instance the
node’s coordinates). The table Sensors is distributed across all nodes of the network:
each node can access only its own records and has no access to records produced by
other nodes. A query on the table Sensors is executed by each node involved in the
query independently of each other (every node has a copy of the query). A query is pro-
cessed repetitively every epoch, and it accesses only the data produced in the current
epoch. Records that qualify the query are sent toward the sink node along the semantic
routing tree. TinyDB can process aggregate queries on data produced in the same epoch
by several sensors (spatial aggregates). Aggregate queries are executed hierarchically
[24] along the routing tree. For instance in a query requesting the average temperature
of a given area, a node contributes by aggregating the temperature it measured with
the temperature received from its child nodes in the tree, thus minimizing the overall
amount of data transmitted in the network.

TinyDB has inspired several new works related to the database approach in wireless
sensor network, and it is currently the most used tool for real applications. Its approach
however, presents some limitations. TinyDB cannot execute queries that relate and com-
pare data acquired by different nodes (for instance, check if temperature in room 1 is
greater than that in room 2). This is due to the fact that the table Sensor is distributed
across all nodes of the network. Each node exclusively owns a partition of the table (a
single record per epoch) and processes the query just on that partition. A node (leav-
ing out of consideration hierarchical aggregation) has no knowledge of data acquired by
other nodes and cannot compare its data with an other node’s data. TinyDB also presents
some disadvantages concerning the optimization of queries. Given that the same query
plan is processed autonomously in several nodes, the generation of an optimized query
plan at the base station is done on global assumption valid for all nodes. Specifically, it
is not possible to exploit statistics of individual sensors (or group of sensors). Consider
for instance a query that requests to check if the temperature is lower than τ and the
luminance greater than λ. Suppose that statistics say that in a certain node (or group of
nodes) the temperature has high probability to be lower than τ . In this case it might be
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convenient to first check the predicate on the temperature (because it is very selective)
and then, just the few times that it is true, switch the light transducer on and check the
other predicate. This predicate ordering would save energy in this case, but it would be
inefficient in nodes where predicate on the luminance is the most selective. The TinyDB
approach is very effective when several nodes (almost all nodes) have to perform the
same task (process the same query), but it becomes less effective in applications where
different portions of the network have to perform different tasks and when it is neces-
sary to relate data produced in different zones of the network.

3 Overview of the proposed approach

The MaD-WiSe system [20] allows interaction with a wireless sensor network as a tra-
ditional database management system. In a traditional database system queries are used
to search for data contained in a persistent storage repository. In a wireless sensor net-
work, the data base consists of the environmental data that can be measured/acquired
by the transducers available on the sensor nodes. Queries instruct nodes on the manage-
ment, filtering and processing of the data acquired from the environment. The wireless
sensor network and the software running on the nodes are the means that allow data to
be acquired when needed from the environment, exactly in the way that a traditional
database software allows data to be accessed on disks. In a wireless sensor network
data is not stored anywhere: environmental data is acquired by transducers of the nodes
when needed, in accordance with the query that the network is being processing. A new
data is available every time a transducer is activated.

The environmental data base can be considered as a set of data streams, where new
data can be potentially available at any time. Accordingly a wireless sensor network can
be seen as a distributed data stream managements system. Every node of the network
has access to different environmental data. These data can be accessed, processed, and
cross-related using distributed query processing techniques [21, 10, 26].

The MaD-WiSe system consists of a set of modules that implement a distributed
stream management system on a wireless sensor network.

A part of the MaD-WiSe modules run on the nodes of the wireless sensor network
(network side) and the other part of the modules run on a client node (a laptop, a palm-
top, etc.), connected to the wireless sensor network through a sink node. See Figure
1

The client side sub-system is composed of a query parser, an execution plan opti-
mizer, and a query manager. The query parser takes an SQL-like query and translates it
into an initial distributed query execution plan. Operators of the query execution plans
are allocated on the nodes involved in the query execution. The query optimizer then
generates a semantically equivalent query execution plan which organizes the nodes in-
volved in the query execution, the operations to be executed, the transducer activations,
and the radio communications in order reduce energy consumption and increase net-
work lifetime. The query manager disseminates the optimized query execution plan in
the network and receives the results obtained from in-network query execution.

The sensor side of MaD-WiSe is organized into three layers, as depicted in Figure 1.
The layers interact through well defined interfaces and are autonomous with respect to
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Fig. 1. The architecture of MaDWiSe.

each other. Each layer can be replaced with a new (different) implementation provided
it complies with the existing interfaces.

The Network layer sits on top of the standard MAC layer of TinyOS [3]. It of-
fers both connectionless and connection-oriented communication services. At network
startup a distributed protocol assigns to each sensor a tuple of virtual coordinates which
is used by a multi-hop geographic routing protocol [14]. The network layer also im-
plements an application-driven energy efficiency protocol for the connection-oriented
service [7].

The Stream System Layer offers abstraction mechanisms for data access by means
of data streams. It can be thought of as the equivalent of a file system on a sensor
network, the main difference being that, in the latter, data is continuously produced as
a consequence of acquisition from transducers, communications between nodes, and
data processing. As we will extensively discuss in Section 5, there are three types of
streams: sensor, remote, and local streams. A sensor stream is connected to a transducer
and it carries data originated from the transducer. For this reason the sensor streams are
read-only. A remote stream is a data channel between two distinct sensors: writing to
a remote stream happens on one sensor while reading from the stream happens on the
other sensor. A local stream is local to a sensor in the sense that writing to and reading
from the stream can only be requested by code running on the same sensor. The Stream
System offers functionalities to create/remove streams as well as read and write records
from/to existing streams. Data rates can be associated with sensor streams and remote
streams. In the first case data rates determine at which speeds transducers associated
with sensor streams should be activated to acquire data. In the second case, data rates
are used by the network layer to optimize the radio scheduling: radio is switched on
only when a data should be sent trough a remote stream [7]. Sensor stream can also
be on-demand. In this case transducers are not activated at a fixed rate, rather, they are
activated only in response to an explicit read request on the stream.

The Query Processor Layer implements the query processor of a distributed data
stream management system over the Stream System layer. It can be programmed by the
client-side subsystem in order to take part in a distributed query execution. Queries are
defined in terms of operations connected by streams. Operations are basically primi-
tives of the query algebra (see Section 6) which are applied to streamed relations im-
plemented by the streams of the Stream System Layer. Note that in our model there
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are significant differences with respect to traditional relational algebra operations and
relations. Relations (tables) are mainly static collections of records while streams are
flowing records. Correspondingly, operators do not act on static relations but on contin-
uously flowing data. In addition, given the limited resources available to sensor nodes
(in terms of memory, processing power, and energy), data is processed on-the-fly when
they arrive, using pipelined execution and avoiding as much as possible the storage of
temporary data. This requires the use of non-blocking operations, and to exploit the
inherent time ordering of data records. Although nodes could temporarily store data for
later use, we avoid this to meet memory constraints.

To rigorously deal with these aspects we defin a data model (Section 5), based on
streams, and a query algebra (Section 6), based on the relational algebra, both specifi-
cally addressed to distributed query processing in wireless sensor networks.

An example of query that can be executed by MaD-WiSe is the following:

SELECT roomB.Temperature
FROM roomA, roomB
WHERE roomA.Temperature > roomB.Temperature and
roomA.Temperature > 50
EVERY 10000

The query involves nodes in roomA and roomB. When the temperature in roomA
is greater than 50 and also greater than the temperature in roomB, the temperature of
roomB is given. This test is executed every 10 seconds. An optimized execution of this
query, as that shown in Figure 2, requires actions in sensors of roomA and roomB to
be correctly orchestrated. Every 10 seconds the node in roomA reads the temperature,
it checks whether this value is greater than 50, and in this case it sends the temperature
value to the node in roomB. Then the node in roomB reads the temperature, it checks
if its temperature value is below the temperature of roomA and, in this case, it sends its
temperature value to the base station. We will see that by exploiting the proposed data
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model, query algebra, and architecture, we can express, optimize, and process a query
like this.

4 Query Language

The query language used in MaDWiSe is named MW-SQL and shares its basic con-
structs with SQL. However sensor network peculiarities and the distributive nature of
the database implementation introduce some differences.

MW-SQL allows users to express queries to manipulate, filter, and organize se-
quences of tuples generated by the sensors. MW-SQL relies on the concept of source
to present the user with an abstraction of a sequence of tuples arriving from a precise
origin.

As discussed below, sources have attributes that the user may refer in the query.
MW-SQL queries are expressed through query statements having the form:

SELECT select-list
FROM source
[ WHERE condition ]
[ EPOCH samples [ SAMPLES ] ]
[ EVERY rate ]

A MW-SQL query selects the attributes (including temporal aggregates) specified
by select-list from all tuples that satisfy a certain condition from the indicated source.
Optionally, a query can request a sampling rate (rate) and an epoch duration (samples).
A sampling rate specifies at which rate transducers should acquire data, in millisec-
onds. The epoch duration specifies how many samples are considered when processing
temporal aggregation in queries. Keyword SAMPLES may be used but is redundant. A
missing WHERE clause imposes no condition on tuple selection.

In the rest of this section we describe the main constructs of MW-SQL. Detailed
specification of MW-SQL can be found in [20].

4.1 Sources

The FROM clause in the MW-SQL query statement defines a source of data tuples to
be considered when generating query results. The SELECT clause expresses which
of the attributes of the source are relevant for the query as a comma-separated list of
attribute names. As a special case SELECT * means that all attributes are significant
and none must be discarded.

The ultimate data sources for any query computation are transducers. We call such
elementary sources basic sources. Conceptually, for each transducer TR available on
sensor A there exists a basic source named A.TR with two attributes named Timestamp
and A.TR, where A is a numeric sensor id and TR identifies a transducer. For example
the transducer can be Light, Temperature, Audio, MagnetismX, MagnetismY, Accel-
erationX, or AccelerationY, subject to the actual availability of the transducer type on
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the sensor. For instance, if a light transducer is available on sensor 1 the user may re-
fer source 1.Light with attributes <Timestamp, 1.Light> 3. Attribute Timestamp is a
timestamp value for the reading contained in the other attribute. In the query

SELECT *
FROM 4.Light
EVERY 10000

the FROM clause refers basic source 4.Light while the SELECT clause indicates that
both Timestamp and 4.Light are significant attributes and must be maintained in the
query outcome.

A complex source is a source constructed by combining together several other
sources (basic or complex) by means of join, spatial aggregation, and union operations.

Join: Joining sources means combining their tuples on the basis of a common times-
tamp value. The resulting source has all the attributes of the component sources with the
exception that attribute Timestamp is replicated only once. A complex source obtained
by joining several sources can be expressed as a comma-separated list of the source
names. For instance in

SELECT 2.Temperature, 3.Temperature
FROM 2.Light, 2.Temperature, 3.Temperature
WHERE 2.Light > 20

we join basic sources 2.Light, 2.Temperature and 3.Temperature and request attributes
2.Temperature and 3.Temperature to appear in the query output. The complex source
defined in the FROM clause has attributes Timestamp, 2.Light, 2.Temperature, and
3.Temperature and we only select two of them. Note that the meaning of the above
query is substantially different from standard SQL. In SQL the above query whould
have computed a simple cartesian product, rather than a join on the Timestamp attribute,
given that an explicit join condition is not defined.

Spatial aggregation: Aggregation of data produced by a group of sensors is a very
significant capability in wireless sensor networks. It allows the reduction of data that is
sent to the sink. For instance one might want to compute the average, the maximum, or
the minimum of the temperatures measured in different locations in a large room.

In MW-SQL spatial aggregates are expressed by using a functional notation in the
FROM clause as the aggregation name (max, min or avg) followed by a parenthesized
comma-separated list of basic sources or spatial aggregation sources. Consider

SELECT *
FROM avg(1.Temperature, 2.Temperature, 3.Temperature)
EVERY 1000

3 Note that 1.Light is used both to denote the name of the basic source and the name of one of
the attributes
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We request an average spatial aggregation of the basic sources 1.Temperature, 2.Tem-
perature and 3.Temperature and request sampling to occur once every second. The basic
sources involved in the spatial aggregation must be of the same type i.e., they must all
sample the same quantity (temperature in this case). It would not be legal (nor mean-
ingful) to have a clause like

FROM max(1.Temperature, 2.Temperature, 3.Audio)

Aggregation is actually performed computing the desired function (max, min or av-
erage) on the sampling attributes from the basic sources, retrieved from tuples with the
same timestamp value. The attributes of a spatial aggregation include the Timestamp
and the name of the sampled attribute, deprived of any numeric prefix. For the previous
example query the attributes of the aggregation source would be <Timestamp, Tem-
perature> . Note also that spatial aggregation can be nested to obtain more complex
queries.

Union: Sometimes it is useful to sequentially put in a single source the values read by
different sensors. This can be obtained by using unions of sources. The query

SELECT *
FROM union(1.Temperature, 2.Temperature, 3.Temperature)

acquires temperature values from sensors 1, 2 and 3. The acquired values are se-
quentially returned by the query.

Note that the union of all nodes’ readings is equivalent to the behavior of TinyDB
[25], which employs a unique table (sensors) containing a record for every node per
sampling period.

4.2 Topological selection of sources

A useful construct that can be used in the FROM clause is the functional area(). Each
sensor is assigned coordinates that indicate its position in the two dimensional space.
Functional area(x1, y1, x2, y2) takes 4 arguments indicating the top-left and bottom-
right corners of a rectangle as illustrated in Figure 3. The functional must be qualified
by a basic source type name and is used to denote all basic sources of the given type of
all sensors located within the rectangle boundary. Assuming the area with (100,20) and
(300,80) as corners contains sensors 4, 5 and 7

SELECT *
FROM area(100, 20, 300, 80).Light

is a shorthand for

SELECT *
FROM 4.Light, 5.Light, 7.Light

Observe that the functional area() can be combined with aggregates and joins pos-
sibly having different basic source types, as in:
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Fig. 3. Specifying a region in the area(x1,y1,x2,y2) functional.

SELECT *
FROM avg(area(100, 20, 300, 80).Light),

area(100, 30, 200, 60).Temperature

Another shorthand consists in keyword all to represent all existing sensors. Hence
for a sensor network with sensors 1, 2, 3 and 4 the clause FROM all.Light is equivalent
to FROM 1.Light, 2.Light, 3.Light, 4.Light

4.3 Temporal Aggregates

The select-list in the SELECT clause normally consists of a comma-separated list of
attribute names from the source. It is also possible to request that temporal aggregates
be calculated on some of the attributes of the source. Four different temporal aggregates
are supported: max, min, average and count, indicated by the functionals max(), min(),
avg() and count() respectively. The argument to the functionals must be one of the
attributes from the source defined by the FROM clause (see Section 4.1). When tem-
poral aggregates are requested the SELECT clause must contain a comma-separated
list of aggregate functionals and optionally the Timestamp attribute. Different temporal
aggregates can be requested on the same attribute.

In the query

SELECT min(1.Light), max(1.Light), avg(2.Temperature)
FROM 1.Light, 2.Temperature
EPOCH 10 SAMPLES
EVERY 2000
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we request the minimum and maximum temporal aggregates over the light values from
sensor 1 and the average temporal aggregate over the temperature from sensor 2.

The EVERY and EPOCH clauses can be used to specify a sampling rate and the
number of consecutive samples on which to calculate temporal aggregation. In the pre-
vious query we request that samples be taken every 2 seconds and that aggregation be
performed every 10 samples (i.e., every 20 seconds).

4.4 Source Naming and Creation

MW-SQL has a virtual source creation statement that can be used in conjunction with
the query statement:

CREATE SOURCE source-name
AS source-definition

In the simplest form such statement can be used to assign a name to anything that
can appear in the FROM clause of a query statement. Note that virtual sources can
also be nested. Definitions of virtual sources are maintained at the base station and they
are translated in the appropriate combination of basic and complex sources during the
query plan generation.

An example of virtual source definition is the following:

CREATE SOURCE RoomA
AS 1.Temperature, 1.Light

A query can simply use the defined source as in

SELECT RoomA.Light
FROM RoomA
WHERE RoomA.Temperature > 40

to retrieve the light readings of sensor 1 (located in room A) whenever the correspond-
ing temperature readings exceed 40.

5 The data model for query processing

A MW-SQL query is translated into a query execution plan expressed in terms of simple
operators which manipulate the data acquired by sensors. In this section we define the
model of data manipulated by these operators. Section 6 will then discuss the operators
of the query algebra.

A natural way to imagine data processed by a wireless sensor network is that of
a stream or sequence of tuples. Various models were recently proposed to model and
process streams of data. A brief survey on data stream management is given in [18].
Sequences are modeled as finite ordered sequences of records in SEQ [28], while in
[22] they are considered as possibly infinite ordered sequences records and the problem
of non-blocking queries on sequences is also studied. In AURORA [5] a stream is mod-
eled as an append only sequence of tuples. Data come from a variety of external data
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sources and no direct control is possible on the ordering and regularity of data arrival.
In Borealis [4] the model is extended by allowing tuples deletion and replacement in
addition to insertions. In STREAM [9] a stream is considered as a sequence of data that
arrive online. Once a data is accessed and processed it is discarded. No control on the
sources of the streams is possible.

The above mentioned models address most of the issues for generic data stream
management. However, given their generality, they do not consider some peculiar as-
pects that are critical for data management and processing in wireless sensor networks.
Before giving our definition of streams for wireless sensor networks we will first discuss
these aspects.

5.1 Peculiarities of streams in wireless sensor networks

Sensor networks perform the two main tasks of data acquisition from the environment
and later data processing. However real environments produce continuous (and poten-
tially infinite) flow of data, which do not need to be acquired and processed entirely.
Rather, the sensor network decides if and when data should be acquired by the trans-
ducers on the basis of the received queries. The main reason for restricting data acqui-
sition to a subset of samples is that activation of transducers and data processing have a
cost in terms of energy consumption, and they should be done only when really needed.
From this point of view, considering streams as append only sequences, or as sequences
controlled by some external sources is unsatisfactory. In fact, controlling the way in
which data are obtained and injected in a stream is a very important aspect here.

In a wireless sensor network data are initially acquired by the transducers of a subset
of nodes. After a local (pre-)processing, data may be sent to other nodes to be further
processed or combined with data coming from other nodes. All of these steps imply
access to tuples of data travelling along the data streams. Note however that the the task
of accessing a tuple is drastically different depending on where the tuple comes from.
For instance, if the tuple is to be acquired from a transducer, the cost of accessing it in-
cludes the cost of activating the transducer itself. On the other hand, if a tuple is located
on another node its access requires using the radio interfaces. This has a significant
impact on the definition of the cost model used for optimizing queries, and should be
made explicit in the data model. In our model the cost is estimated by considering the
number of tuple accesses and the access modality, an approach which is rather different
to that used in traditional databases which use the number of disk accesses and the size
of temporary results to determine the cost of a query.

Another important issue is related to the use of storage resources which in the sen-
sors are quite scarce. Since the storage of windows of tuples is memory demanding and
may be impractical in many cases we opt for on-the-fly processing of stream tuples, that
is, tuples are processed as soon as they arrive and they are discarded soon afterwards.
This means that tuples must be processed using non-blocking operations that should not
rely on the possibility of arbitrarily buffering data.



MaD-WiSe: a Distributed Query Processor for Wireless Sensor Networks 15

5.2 Modeling streams in wireless sensor networks

The data model of MaDWise is consistent with the observations of the previous section.
The data base (data acquired in the real world) is seen as a set of streams of tuples.
In our model data generated externally are not passively injected in a stream, rather the
stream itself maintains the information that specifies when data should enter the stream,
for instance by having the associated transducer or the radio communication interfaces
activated when needed.

We define three different types of streams to model the different tuple access modes:
sensor streams, which represent streams of data acquired by the transducers, remote
streams, which model streams of data sent by a source node to a destination node, and
local streams, which represent streams of data generated by execution of local oper-
ations and sent as input of other local operations. These three types of streams model
data acquisition (sensor streams), data transmission (remote streams) and pipelined pro-
cessing on a single node (local streams). As discussed in the next sections, this allows
the design of a cost model and of a query optimizer which distinguish the various types
of streams and generate a query execution plan that minimizes the energy consumption
of the wireless sensor network.

A generic stream is defined as follows:

S = (sd, t)

where sd is the stream descriptor, which specifies the nature (sensor, remote, or
local) and update modality of the stream. The stream descriptor has a different structure
for the various types of streams, as detailed in the next sections. The flow of tuples in
a stream is modeled by a single dynamically changing tuple t. A stream maintains the
last received tuple and every new tuple overwrites the previous one, thus forcing an
on-the-fly processing of the tuples. Clearly, in a real implementation, data transmission
trough streams and data processing might incur in some delays and a small buffer can be
used to store the incoming tuples. However, this has mainly implementation advantages
rather than modelling advantages. The extension to a fixed length buffer of tuples is
straightforward and we do not discuss it in this paper.

The dynamically changing tuple t has a set of application specific data fields A1,
. . . , An, associated with a set of values v1, . . . , vn. Hereafter we will use notation
(A1 = v1, . . . , An = vn) to denote a tuple and to emphasize its type and its value.
A tuple that contains no data (because it is not yet available) is denoted with (A1 =
void, . . . , An = void) or with the compact form void.

As an implementation note, we anticipate that we use an event-driven approach to
process data. When a tuple is available on a stream (not matter the type of stream and
the access modality) an event is fired, which wakes-up the operation waiting for it. This
implements a continuous query processor, where long-life queries are executed to peri-
odically monitor external environment: current tuple is processed, then the operation(s)
implementing the query waits for the next tuple to be available.

In the following we will discuss the tree types of data streams in more detail.
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5.3 Sensor streams

Sensor streams are used to sample environmental data. A sensor stream receives tuples
of data acquired by the associated transducer

We have considered three different modes for updating the tuple of a stream:

1. In periodic update mode the transducer is activated with a fixed period to update the
stream. We sometimes call sampling period or sampling rate the interval between
two consecutive transducer activations.

2. In on-demand update mode the transducer is activated as a consequence of a read
request and causes the stream update.

3. In asynchronous activation mode the tuple is updated when some external asyn-
chronous event occurs.

For instance, periodic updates can be used to collect temperature readings every 10
seconds. On-demand updates can be used by the query processor to obtain light read-
ings only when temperature readings of another stream are above a certain threshold.
Asynchronous updates can be used to detect asynchronous environmental events.

The stream descriptor sd of a sensor stream is

sd = (n id, TR, update mode)

where n id is the identifer of the node hosting the stream, TR is the name of the
transducer associated with the stream, update mode indicates the update mode of the
stream tuple.

The update mode of a sensor streams is decided at query plan generation and query
optimization on the basis of the query and of the role of the stream in the query. In case
of periodic activation, the update mode takes the form p = nn, where nn indicates an
activation interval in milliseconds. In case of on-demand activation, the update mode
will be od, and for asynchronous activation it we will be as.

The dynamically changing tuple t of a sensor stream always has the form

t = (TS = ts, TR = v)

and, of course, can also be void. The attribute TR is the name of the associated
transducer, v is the last value acquired by the transducer, and ts is the timestamp indi-
cating when the transducer was activated to acquire the value v.

For instance, the sensor stream

((20,Temp,p = 1000), (TS = 123,Temp = 27))

is located on Node 20, the temperature transducer is activated every second, and the
current (last) reading is 27 degrees and it has been measured at timestamp 123.

The unique possible operation on sensor streams is read. Initially the tuple t is set
to void.

The read operation returns the read tuple and sets t to void if t is different than void,
otherwise it waits for the tuple acquisition, returns the acquired tuple and sets t to void.
In on-demand sensor streams the transducer activation (and then the tuple acquisition)
is executed (on-demand) when the read operation is invoked.
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5.4 Remote streams

A query is generally processed cooperatively by a group of nodes of the network. This
implies that in some cases it is necessary that partial query results produced by a node
be sent to another node in order to complete the query execution. For this purpose we
make use of remote streams, where the source and destination ends reside on different
nodes.

Communication between nodes is obtained through their radio interfaces. Radio ac-
tivation is one of the primary causes of energy consumption, so it should be carefully
managed as well. Suppose that a node acquires the temperature every ten seconds, and
then sends it to another node. In this case the remote stream, used to transfer the tem-
perature readings, will transport data at most every 10 seconds. Accordingly, activation
of the radios along a communication path can be synchronized to transfer data from the
source to the destination, every 10 seconds.

In our definition, remote streams hold the expected data rate of the stream. This
information is extracted from the query and used in the query plan generation and opti-
mization to synchronize the radio activity of the network.

An energy efficient radio communication protocol that uses this type of information
to efficiently synchronize the radio activity along multi-hop communication channels is
proposed in [7].

The stream descriptor sd of a remote stream is defined as

sd = (sn id, dn id,p = nn)

,
where sn id and dn id are the source and destination nodes, respectively, and nn

is the transmission period in milliseconds. The dynamically changing tuple t can be a
generic tuple t = (A1 = v1, . . . , An = vn), or void.

For instance, the remote stream

((10, 15,p = 1000), (TS = 30,Temp = 27,Light = 40))

has source Node 10, destination Node 15, data are sent every second, and the (last)
tuple that traversed the stream is (TS = 30,Temp = 27,Light = 40).

Two operations are defined on a remote stream: the read operation, which can be
executed on the destination node, and the write operation, which can be executed on
the source node.

If the tuple is void the read operation waits for a tuple to be received, then sets it
back to void and returns the tuple. If the tuple is not void it returns the tuple and sets it
to void. The write operation sends a tuple toward the destination node. The sent tuple
will overwrite the value of the tuple at the destination.

5.5 Local streams

Local streams model data transfers between operators located on the same node. They
are used to connect operators residing on the same node in such a way that pipelined
executions of operation can be achieved.
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Note that, although remote streams could be used to this purpose, we prefer to dis-
tinguish local streams from remote streams, given their substantial difference in func-
tionality. Furthermore remote and local streams have different costs in terms of en-
ergy consumption. Local streams mainly consume memory resources, while their en-
ergy consumption is negligible. On the other hand, the energy consumption of remote
streams is predominant for the cost evaluation of a query execution plan. The distinction
between local and remote streams makes it easier to cope with these issues.

The stream descriptor sd of a local stream is:

sd = (n id)

where n id is the node where the stream is located. The dynamically changing tuple
t is the last tuple sent through the stream. Similarly to remote streams, the tuple t can
be a generic tuple t = (A1 = v1, . . . , An = vn), or void.

For instance, the local stream

((17), (TS = 91,Magnetometer = 39,Light = 40))

is located on Node 17, the last tuple that traversed the stream is the tuple (TS =
91,Magnetometer = 39,Light = 40).

Both the read and the write operations can be executed on a local stream by the
node where the stream is located.

Also for local streams, if the tuple is void the read operation waits for a tuple to be
seen on the stream, then sets it back to void and returns the tuple. If the tuple is not
void it returns the tuple and sets it to void. The write operation overwrites the current
value of the tuple.

6 Operators of the query algebra

The operators of the query algebra supporting MW-SQL are inspired by the relational
algebra [15]. However traditional relational operators are set-oriented and deal with set
of homogeneous tuples, while our operators deal with streams of tuples according to
the data model defined in Section 5. These operators have a strictly pipelined behavior
that avoids the use of temporary buffers for producing results, and exploit the features
of the specific types of streams used as operators input or output.

Operators take one or two streams as input and one stream as output, plus some
operator specific parameters. With a few exceptions, operators can take any type of
stream as input or output.

We define three basic operators, selection, projection, and union. In addition, we
provide a special definition for the join operators (which relate tuples arriving on differ-
ent streams) for the spatial aggregates (used to aggregate tuples produced by different
streams), and for the temporal aggregates (used to aggregate data that arrive sequen-
tially in a stream).
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6.1 Selection

The semantics of the selection operator is equivalent to the relational selection. The
selection operator puts in the output stream the tuples that satisfy the given predicate.
More formally:

SO ← σp(SI) =
while(true){

t = SI .read();
if p(t)

SO.write(t);
}

where p is a predicate on the tuples t arriving on the input stream SI . The type of
the streams SO and SI must be the same.

Predicate p has the form Ai op Aj or Ai op const, where Ai and Aj are attributes
of the tuple t, op can be =, <,≤, >,≥, and const is a constant.

The selection operator processes tuples coming from the input stream on-the-fly, as
soon as they are available. It executes an infinite loop that waits for a new tuple t to be
available in the input stream and writes it in the output stream if the tuple satisfies the
given predicate.

6.2 Projection

The projection operator, similarly to the corresponding relational operator, produces
output tuples which contain a subset of the elements contained in the input tuples.

SO ← πA1,...,An
(SI) =

while(true){
tI = SI .read();
tO = (A1 = tI(A1), . . . , An = tI(An));
SO.write(tO);

}

where the attributes A1, . . . , An are a subset of the attributes of the tuples of the
input stream SI .

The projection operator processes tuples coming from the input stream as soon as
they are available. It executes an infinite loop that waits for a new tuple tI to be available
in the input stream and writes the tuple tO, which contains a subset of the element of
tI , in the output stream.

6.3 Union

The union operator reads tuples from two input streams and writes them in a single
output stream. It is defined as
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SO ← ∪(SI1 , SI2) =
parallel{

while(true){
t = SI1 .read();
SO.write(t); };

while(true){
t = SI2 .read();
SO.write(t); };

}

The union operator executes two parallel infinite loops. Each loop reads an input
stream. The tuple read from either stream is immediately written in the output stream.

Clearly, the name and the type of the attributes of the tuples of the two input streams
SI1 and SI2 should be the same.

6.4 Join

Applying the traditional join operator on streams imply using potentially infinite buffers
to maintain all tuples received from the streams. In fact, according to the definition of
the relational join operator, a tuple received from one of the input streams might need
to be joined with any tuple successively received from the other stream. However, in
the wireless sensor network context, it is not particularly interesting relating any arbi-
trary pair of tuples received from two streams. Rather, it is very useful to relate tuples
generated at the same instant (or approximatively the same instant) by different trans-
ducers and/or nodes. For example, one may be interested in comparing the temperature
acquired in two adjacent rooms of a building. For this reason we define a join operator
that relates tuples having the same timestamp TS.

Assuming that the sensor network is able to synchronize the clocks of the nodes
with an acceptable precision (and consequently the timestamps), the join operator for
a wireless sensor network checks if the last tuples read from the input streams have
the same timestamps and, so it writes the tuple obtained by their combination in the
output stream. In this respect, the join operator requires that the input streams have the
timestamp TS attribute.

For every new tuple read on one of the input streams the join operator checks if the
last tuple read from the other stream has the same timestamp. This operation is clearly
non-blocking and its execution requires only single-position buffers. Given that in some
cases tuples may incur in delays during query processing, the join operator could also
maintain a very small buffer containing the last n tuples arrived on each stream, where
n can be estimated from the average delay and the quality of service offered by the
wireless sensor network.

The definition of the join operator is the following:

SO ←�� (SI1 , SI2) =
parallel{

while(true){
tI1 = SI1 .read();



MaD-WiSe: a Distributed Query Processor for Wireless Sensor Networks 21

if tI1 .TS = tI2 .TS {
t = tI1 |(tI2 \TS)
SO.write(t); }

};
while(true){

tI2 = SI2 .read();
if tI1 .TS = tI2 .TS {

t = tI1 |(tI2 \TS)
SO.write(t); }

};
}
The join operator executes two parallel infinite loops, each reading one input stream.

When a new tuple arrives on either stream, the join checks whether the last tuple re-
ceived on the other stream has the same timestamp. In this case it concatenates the two
tuples onto a new one, taking care not to replicate the attribute TS, which is contained
in both tuples.

6.5 Sync-Join

In the previous definition of the join operator the two input streams are read indepen-
dently of each other.

Hence, if several tuples arrive at the first stream before a tuple arrives on the second,
all but the last readings in the first stream will be useless, but they will consume energy
resources (due to transducers or radio activations). For instance consider the following
query:

SELECT *
FROM 1.Light, 1.Temperature
WHERE 1.Temperature > 200
EVERY 10 SECONDS

The above query retrieves the light and temperature readings only when the temper-
ature is above the specified threshold. By the previous join definition, this query can be
processed by using two periodic sensor streams associated with Light L and tempera-
ture T , respectively, and using the query execution plan given in Figure 4. In the query
Temperature and light transducers are both activated every 10 seconds, and whenever
the temperature is below the specified threshold no temperature tuple is sent to the join
operator and the current light reading is lost, since it cannot be matched. Activating the
light transducers when the temperature is below the threshold is useless and introduces
and unneeded energy consumption. Suppose that the above query is used to detect an
alarm situation. If the probability that the temperature is above the specified threshold
is very low, the above query plan consumes energy for unnecessary light readings.

The query can be processed more efficiently by defining L as an on-demand sensor
stream and by using a special implementation of the join operator that requests the
activation of L only when a tuple arrives on the other stream. We call sync-join this
implementation of the join operator:
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Fig. 4. Using the join operator, both sensor streams T and L should be periodic. Using the sync-
join, the L sensor stream can be on-demand, i.e. it is activated only when needed

SO ←��sync (SI1 , SI2) =
while(true){

tI1 = SI1 .read();
tI2 = SI2 .read();
if tI1 .TS = tI2 .TS {

t = tI1 |(tI2 \TS)
SO.write(t); }

}

The sync-join operator executes a single infinite loop reading the input stream SI1 .
When a tuple from SI1 is received, then the second stream is read. After a tuple is
received on the second stream, the timestamps of the two tuples are compared and if
they are the same then the output tuple is written on the output stream. The sync-join
operator has a master-slave behavior: stream SI1 is the master and slave stream SI2 is
read only when a tuple is received from the master.

6.6 Spatial aggregates

Spatial aggregates compute an aggregation of values acquired by a group of sensors. Ex-
amples of spatial aggregates are the maximum temperature and the average temperature
measured in the rooms of the first floor of a building. We call them spatial aggregates
since they can be used to compute a summary information of a phenomenon occurring
in an area where the sensors are located.

One important feature of the aggregation is that a group of values is compressed into
a single value. This is particularly important in wireless sensor networks applications
where the amount of data exchanged between nodes should be minimized. For this rea-
son the aggregation should be computed in the network by the nodes themselves, thus
minimizing the consumed energy and by eliminating the hot spots (that is nodes that
perform most of the computation). As suggested in other works [11, 25] an aggregate
computation can be decomposed in a combination of simple operators organized in a
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tree. Leaf nodes represent values that have to be aggregated and internal nodes are op-
erators that compute partial states of the aggregation, by using values to be aggregated
and/or partial states computed by children. The root node of the tree computes the final
aggregation.

To simplify the strategy, we have defined simple binary operators to compute aggre-
gations. The spatial aggregation of a group of sensors is obtained by building a binary
tree. Each binary operator receives partially aggregated information, or yet to be aggre-
gated information, and returns partially or completely aggregated information.

For some types of aggregations, like maximum or minimum, the aggregation can
be obtained in a straightforward way without particular care of the management of
the partial state. We just need a binary operator max (respectively, min) and produce a
binary tree as shown in Figure 5a. Every node computes the max (or the min) between
the value acquired locally and the maximum (or the minimum) computed by its child.
The computed aggregate is passed to the parent node.

For other types of aggregation some care is needed in order to correctly report partial
state upwards from the leaves to the root of the binary tree. For instance in spatial
averages the partial state is given by the sum of the values to be aggregated and the
number of values that have been summed. The average is computed in the root of the
tree dividing the sum of the values by the number of values. This is achieved using two
operators: one computes the sum and counts the values and it is used in the intermediate
nodes of the binary tree, and the other operator is used at the root and divides the sum
by the number of values. We have called the two operators partial average pavg and
final average favg, respectively. Figure 5b shows an example where the average light
measured by a group of sensors is computed. The pavg operator produces a tuple of
type (TS, Light, #), where the Light attribute contains the sum of the light readings,
and # contains the number of values that were summed. The favg operator produces
a tuple of type (TS, Light), where the Light attribute contains the computed average.
Other aggregates might need other types of partial state information to be transferred
across the nodes of the tree.

Clearly, given a group of nodes, an aggregate can be computed by organizing and
connecting the nodes in various ways. Even if the computed aggregate is the same, the
cost for computing the aggregation may vary significantly depending on the order in
which the aggregate is computed. In fact, the cost of communication between two nodes
depends on their distance, which affects the number of intermediate nodes required for
the multi-hop communication. In section 8 we will discuss how the query optimizer
can produce a query plan consisting of a communication tree that minimize the energy
consumption.

The definition of a generic binary operator for computing spatial aggregates is the
following:

SO ← agg(SI1 , SI2) =
parallel{

tI1 = void
tI2 = void
while(true){

tI1 = SI1 .read();
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Fig. 5. Example of query execution plans for the spatial maximum a) and for the spatial average
b). Spatial average uses two different operators: pavg (partial average) and favg (final average)

if tI2 ! = void {
t = output tuple(tI1 , tI2);
tI1 = tI2 = void;
SO.write(t); }

}
while(true){

tI2 = SI2 .read();
if tI1 ! = void {

t = output tuple(tI1 , tI2);
tI1 = tI2 = void;
SO.write(t); }

}
}

Also in this case there are two parallel infinite loops that read the two input streams.
When a new tuple arrives on an input stream the operator looks for a tuple coming from
the other input stream. If it arrives then the operator combines the two input tuples to
generate the output tuple. The way in which the output tuple is generated varies for
different aggregation operators.

6.7 Temporal aggregates

Another useful operation is the aggregation of values acquired over a time interval by
the same transducer. For instance, one might be interested in computing the average or
the maximum temperature measured during the day by a thermistor located in a room.
We call these kind of operators temporal aggregates. As for spatial aggregates, also
temporal aggregates are particularly important in wireless sensor network applications,
given their property of reducing the amount of information that needs to be transferred
from the source nodes. For instance computing the average daily temperature requires
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only one single value per day to be transmitted, provided that the temporal aggregate is
computed by the node performing temperature acquisition.

In order to define temporal aggregates we introduce the concept of epoch. An epoch
is a time window where several events (such as transducer activations) occur. Epochs
are consecutive non overlapping fixed size time intervals associated with individual
queries. Every epoch contains all tuples whose timestamp falls within the corresponding
interval.

More formally, suppose that the evaluation of a query starts at time t0, and that
the epoch duration for that query is te. The i-th epoch of that query is the interval
Ei = (tistart, t

i
end], where tistart = t0 + i · te and tiend = t0 + (i + 1) · te.

Temporal aggregates are computed by grouping together tuples that have times-
tamps falling in the same epoch.

The definition of a the temporal aggregation operator is the following:

SO ← t0, teγagg1(A1),...,aggn(An)(SI) =
i = 0; //current epoch
ps1 = . . . = psn = init; //initializing partial states
while(true){

tI = SI .read();
if ((tI(TS)− t0)/te) = i

ps1 = ps agg1(tI(A1), ps1); . . . , psn = ps aggn(tI(An), psn);
else{

t = (TS = t0 + i · te, A1 = agg1(ps1), . . . , An = aggn(psn));
SO.write(t);
ps1 = ps agg1(tI(A1), init); . . . , psn = ps aggn(tI(An), init);

}
}

The temporal aggregation operator groups together tuples belonging to the the same
current i-th epoch, which is determined by using t0, te, and the epoch counter i. If cur-
rent epoch has not yet finished, partial states for the requested aggregates agg1, . . . , aggn

are computed. When the epoch ends,the operator computes the final aggregate and de-
posits the result in the output stream. Then it computes the first partial state for the
next epoch. The output tuple generated at the end of the epoch contains the computed
aggregate and the timestamp set to the end of the epoch.

7 The cost model

Traditional databases evaluate the cost of a query plan by estimating the number of ac-
cessed records, the number of disc accesses, or the size of temporary results. In wireless
sensor networks however these metrics are generally not significant and query optimiza-
tion should rely on cost models based on other metrics. In particular, given that network
lifetime plays the most important role, a query should be optimized with respect to the
energy required.
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In the following we define criteria to evaluate the cost of a query by considering the
energy required to process it.

We measure the cost of a query execution plan by evaluating the power P needed
to process it, that is the energy E consumed per unit of time (P = E/t). During the
execution of a query, each operator receives a record from one or more streams and,
depending on the operator semantics, it sends a record through another stream. Ac-
cordingly, given that the query execution activity is dominated by records traversing
streams, we measure the cost by considering the energy required to send records across
streams. The cost required by an operator to process a data received from a stream is in
fact negligible with respect to the cost of sending data in a stream.

Let E(S, s) be the energy required to send a single record of size s across the stream
S. Let f(S) be the frequency of records traversing the stream S. The cost of stream S,
that is its power, is:

P (S) = f(S)E(S, s)

The cost of a query execution plan, say QEP , is the sum of the cost of its streams.
Let S be the set of streams contained in the query execution plan QEP . The cost of
QEP is

P (QEP ) =
∑
S∈S

P (S)

In order to evaluate the previous expressions, we need to know 1) the energy re-
quired to send a record across each stream and 2) the frequency of records that traverse
each stream. We will discuss these issues in the following.

7.1 Energy required for sending a record

The energy required to send data across a stream depends on the type of stream con-
sidered. The cost of sensor streams is dominated by the energy required to sample a
value with the associated transducer. The cost of a local stream is that needed to store
the records in the temporary buffer. The cost of a remote stream is dominated by the
activity of the radio interfaces of the nodes in the multi-hop path from the source node
to the destination node.

Since the records of sensor streams have fixed size and layout, the cost of a record
that traverses the stream is independent of the size of the record and it solely depends
on the transducer used. Given a sensor stream SS associated with transducer TR, we
have:

E(SS, s) = energy per sample(TR).

Table 1 shows the energy consumption for a single sample from various transducers
of the sensor board MTS, all produced by Crossobow [1].

For what concerns local streams the energy required to store a record in main mem-
ory is negligible with respect to the cost incurred by the other types of stream. Thus we
can reliably consider a zero cost in this case. Given a local stream LS we have
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Transducer Energy per Sample (mJ)
Thermistor 0.0000891

Accelerometer 0.03222
Magnetometer 0.2685

Table 1. Energy required for a sample from various transducers of MTS310CA boards.

E(LS, s) = 0.

In case of remote streams the situation is a bit more complex. Transmission of a
tuple along a remote stream requires that the nodes involved in the corresponding multi-
hop path collaborate to forward the tuple toward the destination node. Determining the
cost of using a remote stream depends on the specific radio communication strategy
used in the underlying network.

For instance, [17] proposes a protocol based on preamble sampling, where nodes pe-
riodically switch their radio on to check if a message is coming. An incoming message
is detected by listening for a specific preamble signal. When the preamble is detected
the radio is kept switched-on for the entire duration of the message. The cost of peri-
odic radio sampling is negligible with respect to the cost of maintaining the radio in
receive mode. The B-MAC protocol [27] makes similar assumptions on the radio ac-
tivity, and it is comparable from the energy consumption perspective. [7] proposes an
energy-efficient multi-hop communication protocol that synchronizes the radios of the
nodes in a multi-hop channel, so that their radios are switched on only when needed.
This method can be combined with the preamble sampling technique to further reduce
the cost.

According to these protocols, we disregard the cost of listening (that is, preamble
sampling), thus we assume with a reliable approximation that only transmissions incur
in costs. This is also compliant with the cost model proposed in [16], where it is assumed
that the nodes are synchronized, so that the destination node starts listening just when
the sending node begins transmitting.

The transmission cost includes the cost payed by the sender, the cost payed by the
receiver, and the cost payed by the internal nodes to forward the message. Let Et(s)
be the energy required for transmitting a record of size s over the radio interface, and
Er(s) be the energy required for receiving it. Thus the energy required to send a record
of size s over a remote stream RS along a n hops path can be approximated by

E(RS, s) = n(Et(s) + Er(s))

The above equation does not take into account interferences in the network and
other issues that can affect the actual energy consumption. This energy estimation is just
meant to judge the quality of a query execution plan, rather than precisely computing
the actual consumed energy. For a more rigorous estimation of the energy consumption
using specific communication protocols, we refer to the articles where the protocols
were proposed and analyzed [17], [27], [7].

As an example we consider the energy consumption required to transmit and to
receive a record of 50 bytes of the MICA2 and MICAz motes [1] shown in Table 2.
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Mote Et/Er Energy per record (mJ)
MICA2 Et(50) 1.478169643
MICA2 Er(50) 0.528729911
MICAz Et(50) 0.1494225
MICAz Er(50) 0.161445

Table 2. Energy required for sending and receiving data on MICA2 and MICAz motes.

Operator f(SO)

SO ← π (SI) f(SI)
SO ← σpred(SI) f(SI) · Pr(pred = true)

SO ←�� (SI1 , SI2) min{f(SI1), f(SI2)}
SO ← ∪(SI1 , SI2) f(SI1) + f(SI2)

SO ← agg(SI1 , SI2) min{f(SI1), f(SI2)}
SO ← t0, teγ (SI) 1/te

Table 3. Frequency for local and remote streams connecting various operators

Statistics on the number of hops between two nodes can be obtained or estimated at
the base station where the queries are submitted and optimized. In many cases this num-
ber is proportional to the distance between two nodes [8]. Therefore, we can express the
energy needed to send a record of size s across a remote stream S, where source and
destination nodes have distance d as:

E(S, s) = d · c · (Et(s) + Es(s)),

where c is a tuning parameter that depends on the density and transmission range of the
nodes in the network.

7.2 Frequency of records in streams

The frequency of records across streams depends on the periodicity of the data acquisi-
tion of the sensor streams, and on the specific operators used to connect streams.

In case of sensor streams, we distinguish between periodic and on-demand streams.
In a periodic stream Sp with period p data are acquired and sent with frequency f(Sp) =
1/p. An on-demand stream is intended to be used as input to a sync-join operator as
in SO ←��sync (S, Sod), where Sod, is the on-demand sensor stream. We have that
f(Sod) = f(S) given that a record is requested from Sod every time a record arrives
from S.

The frequency of local and remote streams depends on the operators that write in
the streams and on the stream(s) where that operators read. The various possibilities are
summarized in Table 3.

The output stream frequency of a projection operator is the same as the input stream
of the operator. In case of the selection operator, the frequency of the output stream is
that of the input stream multiplied by the probability that the selection predicate is true.
This probability depends on the phenomenon measured. For instance, if the selection
is used to filter an alarm situation, the probability that the predicate is true will be very
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low. The frequency of the output of a join is the minimum of the frequencies of the
input streams: the output record is produced only when a tuple is available from both
input streams at the same time. The frequency of the output of an union is the sum of
the frequencies of the input streams: as soon as a record is received on either stream it
is written to the output stream. The frequency of the output of a spatial aggregate is the
minimum of the frequencies of the input streams: as for the join the output aggregate
is produced only when a record is available from both input stream at the same time.
Finally, the frequency of the output of a temporal aggregate is equal to the inverse of
the epoch interval (period) te.

8 Query optimization

Given a MW-SQL query there are several semantically equivalent query execution plans
(defined in terms of combinations of operators of the query algebra and streams) that
can be used to process it. Different query plans typically imply different query execution
costs, thus the task of the query optimizer is to choose the query plan with the minimum
cost.

In this paper we consider an algebraic optimization approach, that is based on trans-
formation rules transforming a query plan into a semantically equivalent one with a
lower cost. The final query plan is obtained by applying successive transformations to
an initial query plan built from the MW-SQL query.

We will also discuss some issues related to the ordering of the operators, which can
be affected by the transformation rules. Operators can be ordered according to topo-
logical considerations to favor communications along short paths, and according to the
selectivity of selections and to the cost of data acquisition.

In the remainder of this section we use the following notation.
Each operator in a query plan is executed on a specific node. This is denoted by as-

sociating a superscript with each operator. When the superscript is not specified or when
it is ” ”, the localization of the operator is not important. For instance, ��j indicates that
the join operator is executed on Node j, while �� indicates that the localization of the
join operator is not relevant.

With the exception of sensor streams, we do not explicitly denote the streams types
used to connect operators. Remote streams are implicitly used when two operators are
located on different nodes, and local streams are implicitly used when two operators are
located on the same node. For instance, in σi

p(��
j (A,B)), i �= j, the join operator is

connected to the selection with a remote stream, given that they are located on different
nodes.

We use letters A, B, and C to denote generic expressions composed of combinations
of various operators. We use ξ∗ to denote an expression composed of a possibly empty
sequence of unary operators π and σ.

When expressions are associated with a superscript, it means that the most external
operator is executed on the indicated node. For instance, the most external operator in
Aj is executed in node j. We denote the most external operator of an expression by
Root(A). We denote with Attr(A) the attributes returned by the expression A, that is
the attributes of the output stream of A.
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��3

σ3
1.L<5 ��3

1.L 2.L 3.L

and

��3
sync

��2
sync 3.L

σ1
1.L<5 2.L

1.L

Fig. 6. An example of two equivalent query plans.

We also denote sensor streams using S̆, and we (optionally) use a superscript to
denote the node where it is located. In addition, when a sensor stream is used on the
right side of a sync-join we always mean that it is an on-demand sensor stream.

8.1 Transformation rules

Several transformation rules proposed in the literature to optimize traditional database
query execution can be applied in our context. For instances rules to push-down selec-
tions and projections, and selectivity-based ordering of selections are very useful since
they contribute to reduce the amount of data to be transferred upward in a query plan.
This implicitly reduce the amount of data traversing remote streams, and, in turn, it
reduces the amount of radio activity and of energy consumed.

Here we discuss some transformation rules that are particularly useful in our context
since they make optimal use of the data model and of the operators that we have defined.

An important feature of our approach is the possibility to use on-demand sensor
streams, which acquire data only when requested. Their usage in conjunction with
sync-joins and selections can reduce the energy required to acquire data. Consider the
following query:

SELECT *
FROM 1.Light, 2.Light, 3.Light
WHERE 1.Light < 5
EVERY 1000

Two possible equivalent query plans that process the previous query are shown in
Figure 8.1. The query plan on the left acquires light readings from nodes 1, 2, and 3
every second. Node 1 sends all acquired data to Node 3 where data is filtered before
being passed to the join. Node 2 also sends all acquired data to Node 3 to be joined with
data acquired by Node 3. Obviously, acquisitions from nodes 2 and 3 are not necessary
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when light on Node 1 is above 5, but they consume energy. In addition, data acquired
by Node 1 and Node 2 are always sent to Node 3, even if they are not needed.

A more efficient query plan is shown on the right. This query plan acquires light
every second on Node 1. Node 1 itself filters acquired data and it sends the data to
Node 2 only when needed. Node 2 executes a sync-join where the left stream is a remote
stream and the right stream is an on-demand sensor stream which acquires light in Node
2. Data is acquired by the on-demand stream only when a record is received from the
remote stream. The result of the sync-join is sent to Node 3 through a remote stream
and it is used as input to another sync-join. In turn Node 3 acquires the light reading
only when a data arrives from Node 2. Summarizing Node 1 systematically acquires
data every second. Suppose now that the probability that light on Node 1 is below 5 is
very low. Under this assumption, transmissions of data from Node 1 to Node 2, from
Node 2 to Node 3, and acquisitions of light readings in Node 2 and 3 are very rare and
a lot of energy is saved.

The observations on the previous example help us to define some useful transfor-
mation rules.

1. Sync-join and on-demand streams should be used whenever possible.
2. Given that a sync-join requires a sensor stream on the right side, trees representing

query plans should be unbalanced to the left (Left Deep Join Trees). In this way,
the chance that a sensor stream (a leaf node) is found as the right argument of a join
is increased.

3. Unary operators such as selections, projections, and temporal aggregates (which
reduce the amount of data being forwarded) should be moved as close as possible
to the node where data is acquired.

Transforming a join into a sync-join: According to our previous observations we
define rules that transform a join into a sync-join. The idea is that if a periodic sensor
stream is on the right side of a join, the join can be transformed into a sync-join and
the sensor stream into an on-demand sensor stream. If there are some unary operators
between the sensor stream and the join, the unary operators can be moved after the join
(to process the output of the join) and the transformation can still take place. Note that
even if the unary operators are moved up, this is not a problem, given that the sensor
stream is activated only if needed.

Formally the transformation rule is the following:

��k (B, ξ∗(S̆h)) where ξ∗ �= ∅ ∨ k �= h

ξ̃h(��h
sync (B, S̆h))

(1)

where ξ̃h is obtained from the sequence ξ∗, where each πX is transformed to πX∪Attr(B),
and all elements are localized on Node h.

If the sensor stream is on the left side of the join we can use the following rule,
which exploits the commutative property of joins:

�� ((ξ∗(S̆h), B)) where B is not a sensor stream

ξ̃h(��h
sync (B, S̆h))

(2)
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Obtain Left Deep Join Trees: The following rule rearranges the joins in a query plan
to obtain a left deep join tree, and facilitate transformation of joins into sync-joins by
means of the previous rules.

�� (Ah, ξ∗(�� (Bk, Cj)))

ξ̃j∗(��j (��k (Ah, Bk), Cj))
(3)

where ξ̃j∗ is obtained from ξ∗ by transforming all πX into πX∪Attr(A), and all
elements are located on Node j.

This rule can be profitably used with standard rules to push down selections and
to order joins and selections so that the most selective selections are performed first,
reducing the amount of data traversing the tree.

Moving unary operators close to the source of data: Unary operators are moved
close to the source of the data, as suggested by the third observation, by using the
following rules in addition to traditional push-down transformation rules.

πh
X(Ak) where h �= k

πk
X(Ak)

(4)

σh
c (Ak) where h �= k

σk
c (Ak)

(5)

t0, teγ
h
{agg1(a1),..,aggn(an)}(A

k) where h �= k

t0, teγk
{agg1(a1),..,aggn(an)}(A

k)
(6)

8.2 Query optimization example

Let us suppose that we submit the following MW-SQL query:

SELECT *
FROM 1.Magnetism, 2.Acceleration, 3.Temperature
WHERE p1(1.Magnetism)
and p2(2.Acceleration)
and p3(3.Temperature)
EVERY 1000

where p1, p2, and p3 are some predicates on magnetism, acceleration and tempera-
ture readings, respectively, with probability Pr(p1) = 0.01, Pr(p2) = 0.05, Pr(p3) =
0.1, respectively.

Figure 7 shows three possible equivalent query plans that can be used to process the
above query.

QP1, on the left, is obtained by applying the left deep join trees rule. It first acquires
all specified data and then joins them before applying the three selections on the last
node. This requires that all magnetism readings be sent to Node 2 and joined with the
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Query plan QP1: Query plan QP2: Query plan QP3:

σ3
p1(1.M.)

σ3
p2(2.A.)

σ3
p3(3.T.)

��3

��2 3.T.

1.M. 2.A.

��3

��2 σ3
p3(3.T.)

σ1
p1(1.M.) σ2

p2(2.A.) 3.T.

1.M. 2.A.

σ3
p3(3.T.)

��3
sync

σ2
p2(2.A.) 3.T.

��2
sync

σ1
p1(1.M.) 2.A.

1.M.

Fig. 7. Three possible execution plans for the same query: QP1, on the left, is obtained applying
”left deep join tree” rule on an initial query plan; QP2, in the middle, is obtained from QP1
by applying push-down of selections, and allocation of selection on the node where data are
generated; QP3, on the right, is obtained from QP2 by transforming joins into sync joins.

acceleration readings. The result of the join is sent to Node 3 where it is joined with the
temperature reading and then the three selections are applied.

QP2, in the middle, is obtained from QP1 by using the selections push-down rule
and their allocation on the node where data are generated. In this query plan all data
must be acquired. However, magnetism is sent to Node 2 only if it satisfies p1. The join
on Node 2 is thus executed only if both p1 and p2 are satisfied and in this case the result
is sent to Node 3. The join in Node 3 is executed only if all three predicates are true,
and in this case the result is sent to the sink.

QP3, on the right, is obtained from QP2 by using rules for transforming joins into
sync-joins. In this case, magnetism is always acquired. It is sent to Node 2 if it satisfies
predicate p1 and in this case the acceleration is also acquired and joined with the mag-
netism. If p2 is satisfied, the result is sent to Node 3 and temperature is acquired. If p3

is satisfied the result is eventually sent to the sink.
Costs for these query plans are analyzed in Table 4 where all actions relevant for

cost estimations, according to Section 7, are listed together with their required energy.
The frequency of these actions and the corresponding power are listed separately for
the various query plans. The total cost for every query plan is reported as well. For
simplicity, in this example, we suppose that all remote streams consist of single hop
paths. In next section we will discuss the case of multihop paths.

As reported in the table, the cost of QP2 is approximatively 1/3 of QP1. Cost of
QP3 is a slightly better than QP2. This means that the expected lifetime of a network
running QP2 or QP3 is about 3 times longer than the lifetime expected when running
QP1. The lower cost of QP2 with respect to QP1 is due to the reduced number of
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QP1: QP2: QP3:

Action Energy(mJ) Freq. Power Freq. Power Freq. Power
Acquire M. 0.2685 1 0.2685 1 0.2685 1 0.2685
Send M. 0.31087 1 0.31087 0.01 0.00310 0.01 0.0031
Acquire A. 0.03222 1 0.03222 1 0.03222 0.01 0.00032
Send M.A. 0.31087 1 0.31087 0.0005 0.00016 0.0005 0.00016
Acquire T. 0.00009 1 0.00009 1 0.00009 0.0005 4.46E-08
Send M.A.T. 0.31087 5.0E-5 1.55E-05 5.0E-5 1.55E-05 5.0E-5 1.55E-05
Total Cost: 0.92256 0.30408 0.2721

Table 4. Costs of the three executions plans in Figure 7. We suppose that selectivity of selections
is as follow: Pr(p1) = 0.01, Pr(p2) = 0.05, Pr(p3) = 0.1. We also suppose that all remote
streams consist of single hop paths.

communications that it requires. The lower cost of QP3 with respect to QP2 is due to
the combined reduction of communications and acquisitions.

The performance improvement of QP3 with respect to QP2 is very limited. How-
ever, we will show in the next section that the use of sync-joins, as produced for QP3,
with appropriate ordering of operators can provide significant performance improve-
ments.

8.3 Ordering of operators

In the previous section we have seen that QP3 is the best query plan among the consid-
ered ones. However, several other equivalent query plans maintaining the same struc-
ture of QP3 can be obtained by changing the order of the operators in the tree. Figure 8
shows three different query plans with the same structure but with a different order of
the operators.

Operators can be ordered according to different criteria, leading to different perfor-
mance depending on the query and the statistics about data and node distribution.

Here we discuss three different ordering criteria. Operators can be ordered so that
i) more selective selections are pushed down in the tree; ii) less selective operators are
pushed down in the tree; iii) cost of remote connections is minimized.

The first criterion give precedence to very selective predicates to filter immediately
useless data, thus reducing communications and data acquisitions by means of sync-
joins.

The second criterion gives precedence to low cost acquisitions. High cost acquisi-
tions are thus executed with low probability since they are high in the tree, and the data
collected at the lower levels of the tree must pass the selections first.

The third criteria reduces the communication costs by choosing an ordering of the
operators and their allocation to the nodes such that the multihop communication paths
are shortened.

Examples of the application of these criteria are given in Figure 8. Differently from
the previous section multihop paths are taken into account here.

In QP3 operators are ordered according to criterion i), criterion ii) is used in QP4,
and criterion iii) is used in QP5.
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Query plan QP3: Query plan QP4: Query plan QP5:
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Fig. 8. Three possible execution plans for the same query using joins. Below each execution
plan is shown the geographical placement of nodes and the remote streams connecting the nodes
(remote streams are labeled with their number of hops). In QP3 predicates and joins are ordered
according to selectivity; in QP4 they are ordered according to the cost of acquisition, and in QP5
they are ordered according to topology.

The costs of QP3, QP4, and QP5 are given in Table 5. It is seen that the cost of
QP4 (0.068 mJ) is one order of magnitude smaller than the cost of QP3 (0.27 mJ). The
cost of QP5 (0.058 mJ) is slightly smaller than the cost of QP4. This means that the
expected lifetime of a network running QP4 or QP5 is about 5 times longer than the
lifetime expected when running QP3.

However, this is not a proof that ordering according to the topology of the network is
always the best solution. The results can vary depending on the selections selectivity and
on the acquisitions costs. In general, there is not a best ordering strategy. The optimizer
must generate different orderings according to the various criteria and choose the one
providing the best performance. As shown in our example, this may lead to performance
improvements of orders of magnitude.

However we observe that that the ordering according to the topology of the network
is always useful in those cases where the number of acquisitions and communications
cannot be reduced. This is the case of queries without selection predicates or queries
with spatial aggregates.
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QP3:
Action Energy(mJ) Freq. Power
Acquire M. 0.2685 1 0.2685
Send M. 0.31087 0.01 0.00311
Acquire A. 0.03222 0.01 0.00032
Send M., A. 0.62174 0.0005 0.00031
Acquire T. 0.00009 0.0005 4.46E-08
Send M., A., T. 1.24347 0.00005 6.21E-05
Total Cost: 0.2723
QP4:
Action Energy(mJ) Freq. Power
Acquire T. 0.00009 1 0.00009
Send T. 0.62174 0.1 0.06217
Acquire A. 0.03222 0.1 0.00322
Send T., A. 0.31087 0.005 0.00155
Acquire M. 0.2685 0.005 0.00134
Send T., A., M. 0.62174 0.00005 3.11E-05
Total Cost: 0.06841
QP5:
Action Energy(mJ) Freq. Power
Acquire T. 0.00009 1 0.00009
Send T. 0.31087 0.1 0.03109
Acquire M. 0.2685 0.1 0.02685
Send T., M. 0.31087 0.001 0.00031
Acquire A. 0.03222 0.001 0.00003
Send T., M., A. 0.31087 0.00005 1.55E-05
Total Cost: 0.05838

Table 5. Cost of the query plans QP3, QP4, and QP5. Differently from Table 4 here the number
of hops for remote streams is not supposed to be always 1. In this case ordering according to
selectivity is clearly better

Consider for instance the query plans QP7 and QP8 (shown in Figure 9) of the
following query:

SELECT *
FROM avg(1.Temperature,2.temperature, 3.Temperature)
EVERY 1000

In QP7 operators are ordered so that shorter communications paths are used. As
reported in Table 6 the cost of QP7 is about 4 times smaller than that of QP6. If the
number of nodes involved in the query is high further improvements can be expected.

9 Conclusions

In this paper we have presented a comprehensive and consistent approach to query
processing in wireless sensor networks.
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Query plan QP6: Query plan QP7:
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Fig. 9. Two possible execution plans for the same query using spatial aggregates. They differ
on the ordering of operators. Below each execution plan is shown the geographical placement
of nodes and the remote streams connecting the nodes. Remote streams are labeled with their
number of hops. The operators order in QP7 provides the shortest paths.

QP6: QP7:

Action Power Action Power
Acquire 1.T 0.00009 Acquire 3.T 0.00009
Send 1.T 0.31087 Send 3.T 0.31087
Acquire 2.T 0.00009 Acquire 1.T 0.00009
Send avg(1.T,2.T) 0.62173 Send avg(3.T,1.T) 0.31087
Acquire 3.T 0.00009 Acquire 2.T 0.00009
Send avg(1.T,2.T,3.T) 1.24347 Send avg(3.T,1.T,2.T) 0.31087

Total Cost: 2.17634 0.9328698
Table 6. Cost of the query plans shown in Figure 9.

To provide efficient support to query execution we have defined, analyzed, and dis-
cussed the aspects related to data modeling, query algebra, and query optimization. Our
approach offers many alternatives for processing a query and provides several oppor-
tunities for query optimization. In particular our approach allows the selection of an
optimal query execution plan for a given query, according topology of the network,
data statistics, and types of transducers. We show that accurate query optimization may
provide a reduction of the query execution cost of some orders of magnitude.

The proposed approach maintains separate the aspects related to communication,
data acquisition, data representation, and data processing, and it gives the opportunity
to experiment new strategies related to each of these aspects without affecting the entire
system design. In particular a new communication protocol, a new type of transducer,
a new query processor can be used still being able to use the features of the other
components.
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