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Abstract

The problem of estimating the scale factors related to blindly separated rel-
ative abundance maps is addressed. The nature of the quantities looked for is
such that their sum must be everywhere equal to one. Exploiting this property,
the problem is solved within the framework of a linear noisy mixture model, with
signal-independent and zero-mean noise.

1 Introduction
A common problem in blind source separation is that the unmixed signals are normally
affected by scale and permutation ambiguities. Whereas permutation is often unim-
portant, in some applications a quantitative analysis is essential. This is the case, for
example, of the analysis of the endmember configuration in remote-sensed hyperspec-
tral images where the relative endmember abundances have been extracted blindly.

MaxNG, a dependent component analysis separation method proposed in [1], has
demonstrated its effectiveness in solving the very problem of spectral unmixing from
hyperspectral remote-sensed data. In [2], it is also demonstrated that, since the relative
abundances must sum up to one everywhere, the problem of scale ambiguity can be
solved in terms of the covariance matrix of the unmixed variables.

In this report, I reformulate this problem within a noisy model, assuming that the
noise is signal-independent and has a known covariance structure. The result is similar
to the one shown in [2], but contains the covariance matrix of the output noise. More-
over, the residual ambiguities highlighted in that paper are solved by relying again on
the only source constraint. The analysis of the pure pixels, which was envisaged as the
tool to solve these ambiguities, is considered here as an additional resource to make
the result more robust against spectral variability and other nonidealities affecting the
practical problem.

In Section 2, I complete the result shown in [2] by including the output noise co-
variance matrix. The effects of sphering and data reduction are also highlighted. In
Section 3, the problem of the residual ambiguities is solved by evaluating the mean
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source values and a residual global scaling. These results are discussed in Section 4,
where a possible use of pure pixels is hypothesized as a check for the validity of the
previous results. For conveninece, in Appendix A, I entirely included a short note
where the use of pure pixels was discussed with reference to a noiseless model. The
notation used is different from the one adopted in the rest of this report, but the issues
raised could well be useful for future developments.

2 Exploiting the source constraint within a noisy model
Let us follow the derivation ofMaxNG from the usual linear instantaneous model with
additive independent noise:

x(t) =As(t)+n(t). (1)

Before continuing, it is worth specifying the sizes of the arrays that appear in Equation
(1). The data vector x and the noise vector n have as many components as the number
N of the sensor bands. The source vector s has size P, the number of hypothesized
endmembers in the hyperspectral image. Actually, the number of endmembers is very
likely to be unknown, so let us assume that P is larger than the number of endmembers
and smaller than the number N of frequency bands. In any case, this will be shown to
be unessential in our case. Equation (1) holds true for all the values of t between 1 and
the number T of pixels in the hyperspectral image. The N×P mixing matrix A and
the noise process are assumed pixel-independent. The noise covariance matrix will be
denoted by N.

The first step in MaxNG is data sphering. The data set used in the separation pro-
cedure is

x̃= !− 1
2VT (x− x̄) = !− 1

2VTA(s− s̄)+!− 1
2VTn, (2)

where x̄ and s̄ are the mean data and source vectors, respectively. In hyperspectral
imaging, the number of frequency bands is always very large (many tens or hundreds
of channels). The sphering of the data described by Equation (2) is useful to both
obtaining unit-norm centered data and reducing their dimensionality. The guide to this
dimension reduction is the data covariance matrix Rxx.1 We choose a numberM ≥ P
of effective channels. This choice can be guided by an evaluation of the spectrum of
matrixRxx. The size of the sphered data vector x̃ isM if ! in Equation (2) is a diagonal
matrix containing the M largest eigenvalues of Rxx and the N×M matrix V contains
theM related eigenvectors.

MaxNG finds P vectors of size M, di, whose application to the sphered data gives
an estimate of the centered source vector (s− s̄).

yi = dTi x̃= dTi !− 1
2VTA(s− s̄)+dTi !− 1

2VTn. (3)

If we assume that the output variables, yi, are not contaminated by residual interfering
sources, we have

yi = hi(si− s̄i)+"i, i= 0, . . .P−1, (4)
1The noisy ICA approaches, e.g., [3], require a quasi-sphericization based on matrix (R xx −N). For

dependent component analysis, I did not find any theoretical reason to prefer this strategy. The performances
of the two options should be assessed experimentally.
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where hi is the specific scale factor for the i-th endmember abundance and, with no loss
of generality, no permutation is assumed. The variables "i are the components of the
output noise vector, whose covariance matrix is

#= DT!− 1
2VTNV!− 1

2D. (5)

where D is a P×M matrix whose columns are the vectors di appearing in Equation (3).
When a quantitative analysis on the relative abundances has to be performed, an

estimation of the scale factors hi is needed. To this end, we exploit the property for
which the relative endmember abundances must sum up to 1 at each pixel. Let us set
qi = 1/hi. Equation (4) can be rearranged as follows:

qi(yi−"i) = (si− s̄i), i= 0, . . .P−1. (6)

Thus, the centered source constraint becomes (see [2])

P−1

$
i=0

qi(yi−"i) = 0. (7)

Of course, this is a stochastic constraint for the presence of the output noise samples,
and cannot be enforced directly. We can try to minimize the expectation of its square
instead:

E






[
P−1

$
i=0

qi(yi−"i)

]2

 = E
{
$P−1
j=0 $

P−1
i=0 qi(yi−"i)(y j−" j)q j

}
=

= $P−1j=0 $
P−1
i=0 qiE

{
(yi−"i)(y j−" j)

}
q j =

= qT (Ryy+#)q, (8)

where q is the P-vector with elements qi, and the last equality holds true if the output
noise and the output variables yi are uncorrelated. It is clear that the minimum value
of (8) is reached when q is the eigenvector of (Ryy+#) related to the eigenvalue with
minimum magnitude.

3 Estimating the original sources
By finding the minimum-magnitude eigenvalue of (Ryy+#) and the related eigenvector
q, the scale factors are determined up to a global coefficient %. Thus, an expression
similar to (6) holds true:

%qi(yi−"i) = (si− s̄i), i= 0, . . .P−1, (9)

where the factors qi are the known elements of q. To estimate the original endmember
abundances, we still need to evaluate % and the P mean source values s̄i.

From Equations (2) and (3), we have

dTi !− 1
2VTx−dTi !− 1

2VT x̄= dTi !− 1
2VTAs−dTi !− 1

2VTAs̄+dTi !− 1
2VTn, (10)
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from which

dTi !− 1
2VT (x−As−n)−dTi !− 1

2VT x̄= −dTi !− 1
2VTAs̄, (11)

and, by virtue of Equations (1) and (4),

dTi !− 1
2VT x̄= his̄i. (12)

Thus
s̄i = qidTi !− 1

2VT x̄. (13)

The mean source values have thus been found up to a common scaling factor. From
Equations (9) and (13),

%qiyi +%qidTi !− 1
2VT x̄= si +%qi"i. (14)

The form on the left-hand side is thus a noisy estimate of the i-th source up to a coeffi-
cient %, which is now the only quantity to be estimated in order to solve our problem.
Let us enforce the source constraint again. From Equation (14), we have

%
P−1

$
i=0

[
qiyi +qidTi !− 1

2VT x̄−qi"i
]

= 1. (15)

Considering that the output noise has zero mean, if we average the expression in brack-
ets over all the pixels, we find

% =
1

E
{
$P−1i=0

[
qiyi +qidTi !− 1

2VT x̄
]} , (16)

or, if we introduce again the dependence on the pixel index t,

%=
T

$P−1i=0 qi$
T−1
t=0 yi(t)+T $P−1i=0 qidTi !− 1

2VT x̄
=

1

$P−1
i=0 qidTi !− 1

2VT x̄
, (17)

since the means of the centered estimates yi are obviously zero. This completes the
recovery of the original sources.

4 Discussion
Formally, the developments reported in Sections 2 and 3 solve perfectly the problem of
scale disambiguation in blind spectral unmixing. However, if the simplifying assump-
tions made to derive theMaxNG strategy are considered, it is immediate to understand
that thingsmay not work so ideally. The basic assumption was to have a space-invariant
mixing matrix, which is a very rough approximation of reality, especially in remote
sensing. This aspect could be faced by analyzing small terrain patches, but in this case
the risk is to lose statistical significance. Moreover, even in ideal situations, it is un-
likely to get a separation with zero residual interference, thus the validity of the above
relations is compromised.
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The only constraint used to estimate the scaling, however, has been the sum of the
original relative abundances at each pixel. An effort should be made in order to take
further properties into account. In particular, we know that all the source values lie
in the range [0, 1], and this could be exploited to strengten the estimation of the scale
factors.

Let us suppose we have a pixel where all but one abundances are zero. This is
referred to as a pure pixel. Of course, the only nonzero abundance in a pure pixel
must be 1. Ignoring the noise term, having si = 1 means that the multiplying factor
%qi in the left-hand side of (14) is perfectly determined. Assuming space invariant
scale factors, and the availability of at least one pure pixel per endmember, we can also
reconstruct the abundance values in all pixels from Equation (14).

For the presence of the output noise, however, an estimate based on a small number
of pure pixels is not robust. We should be able to identify a large number of pure pixels
and then to perform an average of the corresponding results. This and other issues
are discussed in Appendix A, and can be used to complement the results obtained
through the derivation shown above. In particular, I would like to stress that pure
pixels, if correctly identified, can give us valuable local information to assess the spatial
variability of the endmember spectra and, in general, can be assumed as control points
for all the results obtained via global calculations.
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A Amemo on endmember estimation from scale-ambiguous
separated sources (9 January 2006)

Let us assume the usual linear, instantaneous noiseless data model to hold true:

x(x,y) =As(x,y) (18)

Let us also assume that some separation method has estimated the sources, as usual, up
to scaling and permutation:

ŝ(x,y) =Wx(x,y) =WAs(x,y) = DPs(x,y) (19)
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where D is a diagonal scaling matrix, in general with distinct scale factors for different
sources, and P is a permutation matrix, unimportant for our purposes. Note that, if
the endmembers are considered as pure elements, then assuming a mixing matrix A
independent of the pixel (x,y) is a very rough approximation. Thus, we should expect
that the scale factors affecting the estimated endmember percentages ŝ(x,y) will also
depend on location. A looser interpretation of endmembers could refer to image com-
ponents having similar frequency spectra. Each of them is represented in a column
of matrix A. Also in this case, however, and even if the linear model is retained, the
mixing matrix will be space-variant, due to both intrinsic spectral variability of natural
or man-made elements and the errors normally made in deriving the reflectivity values
at different frequencies and locations.

Let us consider a single estimated endmember, that is, a generic element of vector
ŝ. From Equation (19), we get

ŝi(x,y) = dk(x,y)sk(x,y) (20)

where index k is a generic element of an unknown permutation of indices {i}, and the
dependence on location of the unknown scale factor dk has been made explicit. Apart
from the latter problem, we know that the original endmembers, si(x,y), sum up to
1 in any pixel, for the interpretation we gave them, but this does not help us in their
estimation when, as normally happens, factors dk are different for different k’s. Indeed,
the following equation

$
i
ŝi =$

i
disi (21)

makes the permutation ambiguity unimportant, but does not allow us to normalize the
ŝi’s in order to make them sum up to 1, unless the scaling factors are known (possibly
in any pixel). This is a basic ambiguity of any blind source separation strategy, when
no suitable source priors are available, and, as such, is not solvable when no additional
information is introduced.

Let us suppose that, at some location (x̄, ȳ), all the original classes but the k-th are
zero. This means that the area in the corresponding pixel is covered by a single element
(we are in a pure pixel), and it will be sk(x̄, ȳ) = 1. Equation (21) now becomes

$
i
ŝi(x̄, ȳ) = dk(x̄, ȳ)sk(x̄, ȳ) (22)

Then, if the separation has been performed correctly as in (19), we will also have

ŝk(x̄, ȳ) = dk(x̄, ȳ) (23)

That is, we will be able to evaluate the scaling factor affecting source k at location
(x̄, ȳ). If the scaling factors do not vary significantly with position, it will be possible to
extend endmember normalization to mixed pixels, provided that at least one pure pixel
per endmember can be identified in the separated source maps. In this case, indeed, all
the scale factors being known, at each pixel we can write

s̃i(x,y) =
ŝi(x,y)/di

$k ŝk(x,y)/dk
(24)
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and
$
i
s̃i(x,y) = 1 (25)

We are, of course, in an ideal case. Endmember spectral variability is very common
and often severe, especially in highly complicated environments. Moreover, a perfect
separation as in Equation (19) will not be possible, and, in any case, noise will be
present. If we are able to identify a large number of pure pixels per class, however,
values dk(x̄, ȳ) evaluated as in (23) could be taken as indices of the spatial variability of
the mixing matrix. Provided that these values are not excessively dispersed, Equation
(24) can still be applied to average values, possibly dividing the endmember maps into
more or less homogeneous regions. Having a sample of scale factors available can also
be useful to perform a statistical analysis of some type.

Identifying a pure pixel in an actual case could be not as easy as described for the
above ideal situation. We can expect that, for a good and low-noise separation, a pixel
where the sum of all but one endmembers does not exceed a fixed small fraction of the
remaining endmember is a good candidate to be a pure pixel. Equations (22)-(25) could
thus be also useful for such a kind of pixels and, for reduced scaling factor variance,
could also be extended to mixed pixels.

Identifying pure pixels in the source maps could also be useful to estimate the
endmember spectra. Note that, in hyperspectral imaging, the size of vector x(x,y) is
normally much larger than the number of endmembers. This also means that matrix
A has many more rows (related to spectral components) than columns (related to end-
members), and that the separation is commonly performed after reducing strongly the
dimensionality of the data set, for example, by a PCA preprocessing step. Evaluating
a separation matrixW, thus, is not tantamount to estimate the endmember spectra, at
least not immediately.

However, if we have a list of pure pixels available, that is, if we know that in a
certain location (x̄, ȳ) and for a certain endmember iwe have si(x̄, ȳ)= 1 and sk(x̄, ȳ)= 0
for any k $= i, from (18), we can write

x f (x̄, ȳ) = ai · s(x̄, ȳ) = ai, f si(x̄, ȳ) = ai, f (26)

where ai is the i-th row of matrixA and ai, f is the (i, f )-th element of matrixA, that is,
the f -th spectral component of the i-th endmember reflectivity. Also in this case, this is
only ideally true, but analyzing the results for a suitable collection of pure pixels could
give a useful feedback on the actual endmember spectral variability. For well-behaved
environments and data, this could also lead to evaluate sorts of “average endmember
spectra”.
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