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Abstract
A noise-insensitive Euclidean distance function is derived for theMaxNG algo-

rithm. This is a dependent-component-analysis source-separation algorithm based
on the maximization of a nongaussianity measure, and has recently been devel-
oped for a noiseless mixture model. It is shown that, in the case of observations
corrupted by signal-independent stationary Gaussian noise, the probability den-
sity function of the output process can be easily made independent of noise if it
is approximated via the Parzen-windows method with Gaussian kernels. The role
assumed by the aperture parameter is shown to be similar to the one of the regular-
ization parameter in any inverse problem.

1 Introduction
Blind separation of dependent sources is becoming an actively researched area for the
interesting applications that can be envisaged for this relatively new signal processing
approach.

An algorithm based on the maximization of nongaussianity (MaxNG) proposed by
Caiafa and Proto [1] has given very promising results in the field of remote-sensed im-
age analysis [2]. Based on some considerations in information geometry, these authors
conjecture that an efficient blind separation of dependent sources can be obtained by
locally maximizing the Euclidean distance between a standard Gaussian and the pdf of
the transformed data vector. No theoretical proof is provided yet, but the effectiveness
of the algorithm has been demonstrated experimentally.

Despite its ability to efficiently separate dependent sources, MaxNG shows a poor
robustness against noise. This can be due to the fact that the algorithm has been derived
from a noise-free mixturemodel, thus assuming a biased estimate of the nongaussianity
measure.

In this note, I introduce uniform, signal-independent Gaussian noise in the data
model and show that, by following theMaxNG strategy from this standpoint, it is very
easy to alter the distance function in order to make it less sensitive to noise.

The derivation of the new nonaussianity measure is provided in Section 2, and an
intuitive interpretation is attempted in Section 3 where the aperture parameter of the
Parzen-windows approximation is shown to act as a regularization parameter.
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2 A noise-insensitive nongaussinity measure
Let us assume the usual linear, instantaneous noisy mixture data model with M ob-
served channels, P source processes and N data samples:

x(t) =As(t)+n(t). (1)

with the usual meaning for all the symbols. Let the noise process n(t) be zero-mean,
i.i.d., Gaussian, signal-independent. Let us assume that the data x(t) have already been
sphered and that a unit vector d is available, through which the noiseless data would
give a copy of one of the source processes, say, sk. When applied to the noisy data, this
would give

y(t) = dTx(t) = dTAs(t)+dTn(t) = sk(t)+n′(t). (2)

Let us now consider the measure of nongaussianity assumed by the MaxNG blind
separation algorithm presented in [1].

!(d) = ["(y)− py(y)]2dy (3)

where " is the standard Gaussian pdf and y is the random variable obtained as in (2).
MaxNG tries to estimate a vector d by maximizing function !. This means that the
nongaussianity of variable y is maximized. Actually, in the noisy situation described
by (1), the presence of the noise process biases the estimation. Indeed, the pdf py(y) in
(3), for the hypothesis of signal independent noise, will be:

py(y) = psk+n′(y) = [psk ∗ pn′](y), (4)

where the asterisk denotes convolution. It is now clear how the presence of pn′ in (3)
produces a biased estimate, as the statistics of n′ depend on d. The problem is now to
modify function ! in order to make it insensitive to noise. Since, for fixed d, p y can
be estimated from the output samples dTx and pn′ can be derived from the statistics of
n, we can try to obtain psk by deconvolution. Taking the Fourier transform of (4), we
have

p̃y(#) = p̃sk (#) · p̃n′(#), (5)

then
p̃sk(#) =

p̃y(#)
p̃n′(#)

, (6)

from which the desired pdf can be obtained by inverse transformation.
Let us now see the forms assumed by py and pn′ . For py, we follow the same strat-

egy adopted in [1] to estimate the output pdf, namely the nonparametric approximation
based on Parzen windows:

py(y) ≈
1
Nh

N−1

$
t=0

"

[
y− y(t)

h

]
, (7)

where h is the standard deviation of the Gaussian kernels used as window functions.
For pn′ , it is easy to see that it is zero-mean Gaussian with variance dT%d, where % is
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the covariance matrix of theM-dimensional process n:

pn′(y) =
1√
dt%d

"

[
y√
dT%d

]
(8)

To estimate function psk on the basis of Equation (6), we need to evaluate the char-
acteristic functions p̃y(#) and p̃n′ (#) from their density counterparts in (7) and (8),
respectively. This is an easy task, since the Fourier transform of a Gaussian is still a
Gaussian. For the characteristic function of the output variable, we have

p̃y(#) =
1
Nh

N−1

$
t=0

"̃y(t)(#), (9)

with
"̃y(t)(#) = he−

1
2 h
2#2e− j#y(t). (10)

Similarly, for the output noise, we have the following characteristic function:

p̃n′(#) = e−
1
2d

T%d#2 . (11)

From Equations (6) and (9)-(11), we easily obtain

p̃sk (#) =
1
N
e−

1
2 (h

2−dT%d)#2
N−1

$
t=0

e− j#y(t) (12)

whose inverse transform is

psk (y) = 1
2&

1
N

√
2&

h2−dT%d ·$
N−1
t=0 e

− (y−y(t))2

2(h2−dT %d)

= 1
N
√
h2−dT%d

$N−1t=0 "
[

y−y(t)√
h2−dT%d

]
. (13)

Taking signal-independent Gaussian noise into account thus simply means to mod-
ify the aperture of the Parzen windows. The distance to be maximized, instead of (3),
now becomes

!(d) = ["(y)− psk(y)]
2dy (14)

where psk is evaluated from (13). This does not imply any significant increase in com-
putational needs.

3 Discussion
Let us consider the intuitive meaning of the result in (13). In the noiseless case, we es-
timate the unit vectors d as the local maximizers of function !(d) in (3). The presence
of noise makes the estimate biased because the transformation of the sphered data does
not yield the source pdf, but a blurred version of it. The entity of the blur is proportional
to the standard deviation of the noise process. A deconvolution is particularly simple
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to perform when the noise is Gaussian and the output pdf is estimated via the Parzen
method with Gaussian kernels. In this case, an important role is played by the aperture
parameter h. Reducing h2 by a quantity dT%d means to try to recover the smoothing
caused by the noise on the output pdf. If the noise is very strong, however, the esti-
mation of psk as in Equation (13) becomes too “spiky”, due to the excessively narrow
windows used. The reasons of this phenemenon are also clear by observing Equation
(6). Having a strong noise component means to let p̃n′ go to zero faster than p̃y, thus
making the result unstable. In the limit, when noise becomes so strong that dT%d≥ h2,
Equation (13) becomes meaningless. Parameter h thus plays the role of a regulariza-
tion parameter. It establishes a compromise between an assumed smoothness of the
source pdf and the oversmoothing caused by the presence of noise. Normally, h is
established on the basis of the number N of samples available (see [1]). If the output
sequence, however, is made by a source sequence plus Gaussian noise, a reduction of
h can recover the excessive smoothness of its pdf when compared to the pdf of the
noiseless variable. For increasing noise, parameter hmust be increased too, to avoid an
incorrectly rough estimation of the source pdf. Increasing h, however, means to gain
in stability but losing in resolution. As always, a compromise between the reliability
of the data and the reliability of the prior information is needed. If prior information
is generically “smoothness”, its prevalence over the data means oversmoothing, that is
loss of resolution. The situation is illustrated visually in Figures 1 and 2, for two differ-
ent levels of noise. In these figures, the Parzen windows approximated pdfs are shown,
as obtained from two noiseless sequences of 10,000 samples uniformly distributed be-
tween 0 and 1. Along with these plots, there are also the plots related to the same
sequences corrupted by Gaussian noise, with and without the correction in Equation
(13). The aperture h used for the original sequences is 0.084. For the case of Figure
1, the noise standard deviation was 0.05, corresponding to an SNR of about 15dB. The
pdf estimated from the noisy sequence with the same aperture is apparently smoother
than the original. Conversely, the estimate corrected via (13) (h = 0.067) coincides
almost prefectly with the estimate in the noiseless case. In Figure 2, the differences
are more evident since the noise standard deviation is now 0.08 (SNR≈ 11dB). In this
case, the original slope in the flanks of the estimated pdf is well recovered by the pro-
posed correction, but the resulting aperture (h= 0.026) is too small to get a sufficiently
smooth estimate in the interval 0−1.
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Figure 1: Parzen windows pdf approximation, 10,000 samples uniformly distributed
in the range 0-1. Line 1: noiseless sequence, h = 0.084. Line 2: noisy sequence,
SNR= 15dB, h= 0.084. Line 3: noisy sequence, SNR= 15dB, h= 0.067.

Figure 2: Parzen windows pdf approximation, 10,000 samples uniformly distributed
in the range 0-1. Line 1: noiseless sequence, h = 0.084. Line 2: noisy sequence,
SNR= 11dB, h= 0.084. Line 3: noisy sequence, SNR= 11dB, h= 0.026.
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