
An Analysis of TCP Startup over an
Experimental DVB-RCS Platform

Alberto Gotta

DIST-University of Genoa and CNIT
University of Genoa Research Unit,

Via Opera Pia 13, 16145 Genoa (Italy)
alberto.gotta@isti.cnr.it

Francesco Potortı̀, Raffaello Secchi

Information Science and Technology Institute ”Alessandro Faedo”,
Italian National Research Council (C.N.R.),

Via G. Moruzzi, 1, San Cataldo, I-56124 Pisa (Italy)
{potorti,raffaello.secchi}@isti.cnr.it

Abstract—Satellite systems are evolving towards higher avail-
able bandwidths and dynamic allocation based on instantaneous
traffic rates offered at the stations, so called BoD (bandwidth on
demand) channel sharing. This trend is coupled with more and
more powerful error correcting schemes, like those adopted in
the recent DVB-S2 standard, which promise to make the channel
virtually immune from packet errors. These factors combine
so that most TCP connections would send all of their data
during the Slow Start phase. We investigate the performance
of TCP during startup on recent BoD system by observing and
explaining the behavior of different TCP flavors on different
systems when transmitting data over a Skyplex satellite system.
We make recommendations for choosing and improving TCP
implementations and for future BoD allocation schemes.

I. INTRODUCTION

In order to improve TCP performance over satellite chan-
nels, many aspects of networking should be investigated.
Data link protocols, application protocols, router buffer size,
queuing disciplines and proxy location are just some of the
issues to consider when facing the design of TCP network over
satellite links [1]. Nevertheless, we show that simple mecha-
nisms, such as that enforced by TCP stack implementations
of FreeBSD kernels, may have an overwhelming impact on
overall networks performance.

Recent and future satellite systems are characterized by
quasi-ideal loss characteristics and broadband links. Conse-
quently, in the first place congestion - as opposed to packet
loss due to link errors - dominates the TCP dynamics, and in
the second place the delay-bandwidth product is very large. As
a consequence of these two effects, TCP sessions are typically
concluded within the slow start phase, without incurring any
packet loss.

The performance of the slow start phase is then extremely
critical as far as network performance is concerned, but this
issue has not received adequate attention from the research
community, especially concerning experimental measurements
on recent platforms. Moreover, the slow start phase is slowed
down in BoD (Bandwidth on Demand) systems, which are
currently emerging in the market.

In fact, the bandwidth is assigned on the basis of the
stations’ requests, which in turn depend on the current trans-
mission rate and possibly of transmission backlog of each

station. Requests from the stations need 250 ms propagation
delay on geostationary satellite networks, and the allocation
needs 250 ms to be broadcasted to the stations, meaning that
assignments are always late with respect to incoming traffic
by at least 500 ms, to which management overheads should
be added. Since the throughput in the slow-start phase of TCP
increases at each RTT, the allocated bandwidth is always less
than the offered traffic, which accounts for the very long slow-
start phase we observed in BoD systems.

In [2] we have measured and compared the improvement
introduced by TCP variants and options (TCP Westwood
and SACK option) in recent Linux kernels, by means of
experiments on Skyplex, a commercial DVB-RCS satellite
platform. [3] [4] do a simulative analysis of TCP behavior
on BoD satellite systems. In this work we complement that
analysis with measurement focusing on the startup behavior
of Linux 2.6 (with and without SACK option) and FreeBSD
implementations of NewReno TCP on the Skyplex platform.

II. THE SKYPLEX PLATFORM

The measurements reported in this paper are carried out in
an experimental satellite network based on Skyplex technology
by Eutelsat [5], which relies on a subset of DVB-RCS features.
In Skyplex, IP packets are inserted into a Mpeg-2 transport
stream and transmitted to the satellite through Time Division
Multiple Access (TDMA) uplinks using DVB-RCS format
from small traffic terminals. On board of the satellite (HotBird
6), these signals are demodulated, regenerated and forwarded
in the downlink in DVB-S format.

The HotBird 6 satellite is equipped with four Ka band
transponders, whose footprint covers the most of the european
area. The control and management is centralized: the control
center, located in Lario (Italy), is in charge to generate
messages sent to the traffic terminals used for acquisition and
synchronization, and compute and broadcast the burst time
plan (BTP) for the assignment of the capacity to the terminals.

In order to meet user requirements, the satellite bandwidth
(about 36 Mbps) can be divided in Low Rate channels (LR
at 2.112 Mbps) and High Rate channels (HR at 6.226 Mbps),
having each channel a TDMA structure that allows a config-
urable number of time slot per frame. Our experimental testbed



consists of an LR carrier with a TDMA frame of 48 time slot.
The slot assignment is dynamic (BoD). The bandwidth is

requested periodically by each terminal to the network control
center on the basis of its own instant need, and the time slot
are assigned in a best-effort mode. However, a minimum of
guaranteed bandwidth equivalent to one slot per frame (44
kbps), used for signalling and user data, is reserved to each
traffic terminal.

III. TCP MEASUREMENTS OVER SKYPLEX

First experiments with Linux reveal that, on the first connec-
tion to a given destination, performance is severely hindered
because of the first congestion event at the end of the slow-
start phase, which causes the loss of several segments that
TCP takes a long time to recover. Performance on subsequent
connections is good if the cached value of the slow start
threshold has not yet expired.

Instead, experiments with FreeBSD show good performance
on all connections, because recent FreeBSD kernels perform
an estimation of the bandwidth-delay product and prevent
the congestion window from exceeding the estimated value,
and completely prevent packet loss, at least in our setting.
This method produces a slight underutilization of the satellite
channel, while providing excellent startup performance even
on the first connection. This behavior is highlighted in the
figures, which show how Linux TCP, with and without SACK
option, and FreeBSD TCP behave on a Skyplex link.

It is apparent from the figures that the inner workings
and the overall performance of these three TCP flavors differ
substantially:

• Linux without Sack fills up the bottleneck buffer (during
phase 2) and experiments many packet losses when the
buffer overflows; the subsequent fast recovery phase is
not fast enough to avoid a timeout (phase 4) and a very
slow Slow Start phase, that retransmits a high number of
packets already transmitted, whose duplicate ACKs do
not contribute to increasing the congestion window.

• Linux with Sack behaves much better, essentially because
the Slow Start phase is fast thanks to the selective ac-
knowledgments; the resulting throughput is, on average,
as fast as the channel permits, even if the flow of packets
is very irregular.

• FreeBSD uses an algorithm for estimating the bandwidth
available to the TCP connection and the latency of the
channel, and uses these estimates to cap the rate of packet
transmission; the resulting behavior, in this simple case
where a single connection occupies the whole channel, is
almost as efficient on average as Linux and in addition
the packet rate is extremely regular, without even a lost
packet and with an RTT only slightly higher than the
minimum.

We made several more experiments and we are able to
explain why the behaviors are different, and to make recom-
mendation to increase the performance of the various TCP
flavors or recommend one. We also plan to make experiments
on different platforms, such as Mac OS and Windows, and

Linux 2.6 with SACK disabled

Data sent
Ack received

0 50 100 150 200 250 300 350
0

5

10

15

20

time [s]

Mb
yte

s

Linux 2.6

Data sent
Ack received

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

time [s]
Mb

yte
s

FreeBSD 5.4

Data sent
Ack received

0 10 20 30 40 50 60 70
0

2

4

6

8

10

time [s]

Mb
yte

s

compare them with those we already have, in order to offer a
wide view on the current TCP flavors available to the users.

REFERENCES

[1] M. Allman, D. Glover, and L. Sanchez. RFC 2488: Enhancing TCP Over
Satellite Channels using Standard Mechanisms, January 1999.

[2] N. Celandroni, F. Davoli, E. Ferro and A. Gotta. TCP performace
measured over wireless integrated networks with high delay-bandwidth
products. In proc. of ASMS 2006, May 2006. Herrsching am Ammersee,
Germany.

[3] M. Sooriyabandara and G. Fairhurst. Dynamics of TCP over BoD satellite
networks. Int. Journal of Satellite Comunication and Networking, 21(4-
5):427–449, Jul 2003.

[4] M. Karaliopoulos, R. Tafazolli and B. Evans. On the interaction of TCP
with BoD in GEO broadband satellite networks. In proc. IEEE Globecom
2002, November 2002. Taipei, Taiwan.

[5] E. Feltrin, E. Weller, E. Martin and K. Zamani. Design, Implementation
and Performance Analysis of an On Board Processor-Based Satellite
Network. In ICC04, June 2004.


