
Sensoria
016004

Software Engineering for Service-Oriented
Overlay Computers

D3.3.a: An Overview of Techniques for Behavioural
Properties

Lead contractor for deliverable: ISTI-CNR
Author(s): Lúıs Caires (FFCUL), Artur Zawłocki(WARSAW), Andrea Corradini (PISA), Franco
Mazzanti (ISTI), Michele Loreti (UNIFI), Hanne Riis Nielson (DTU)

Due date of deliverable: August 31, 2006
Actual submission date: August 31, 2006
Revision: Final
Dissemination level: PU

Contract start date: September 1, 2005 Duration: 48 months
Project coordinator: LMU
Partners: LMU, UNITN, ULEICES, UWARSAW, DTU,
PISA, DSIUF, UNIBO, ISTI, FFCUL, UEDIN, ATX,
TILab, FAST, BUTE, S&N, LSS-Imperial, LSS-UCL

Integrated Project funded by the
European Community under the
“Information Society Technologies”
Programme (2002—2006)

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

Executive Summary

The main goal of WP3 is to coordinate the partners efforts towards the development of qualitative analysis
methods for global services. In particular, this deliverable reports on the research activity carried on
during the first 12 months by the SENSORIA partners in the advancement of the state of art for a wide
spectrum of techniques suitable for the description and analysis of the behavioral properties of services.

Twelve original contributions have emerged as result of this research activity. In the following sec-
tions of this document an overview is given of the performed activity and the results are described with a
limited level of technical details . The full details of the contributions can be found in the twelve papers
mentioned in the final ”Relevant Sensoria Publications and Reports” Section.

016004 (Sensoria) 2

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

Contents

1 Introduction 4

2 Spatial Logic based Analysis of Distributed Systems 4

3 A Categorical Formalism for Specification of Distributed Component Systems 7

4 An Experimentation with State and Event based Temporal Logics 10

5 MoMo: A Modal Logic for Mobility 12

6 Type based Analysis of Service Reconfiguration 14

7 Approximating the control structure of processes 15

8 Graph Transformation Systems 17

9 Conclusion and further plans 18

10 Relevant Sensoria Publications and Reports 19

016004 (Sensoria) 3

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

1 Introduction

The main goal of WP3 is to coordinate the partners efforts towards the development of qualitative analysis
methods for global services. While security and trust related issues are specifically analyzed in Task
3.1 (and presented in Deliverable 3.1.a), and issues related to the migration (or mobility) of clients
and resources are analyzed in Task 3.2 (and presented in Deliverable 3.2.a), Task 3.3 is oriented to the
development of techniques for describing and analyzing the dynamic behavioral properties of distributed
services.

In this first period of the project (months 1-12) the various partners efforts have been concentrated in
the advancement of the state of the art for a wide spectrum of techniques suitable for the description and
analysis of the behavioral properties of services.

Temporal logics, and modal logics (which allow to mix temporal and other structural/spatial opera-
tors), are two of the promising techniques which have been investigated in several directions by several
partners. The SENSORIA advancements in this area are presented in Sections 2,3,4,and 5. The design
and experimentation with these logics is often being backed up with the development of prototypes al-
lowing to experiment the verification of logical properties. Some preliminary results in this sense are
already referenced in this report; further results will be reported as part of the activity of Task 3.4 and
Task 3.5

Flow analysis, and type based analysis are representatives of a different approach more aimed to
the static enforcement of correctness (sometimes maybe w.r.t. to approximations of the system under
analysis) of distributed services rather than to the dynamic verification of them. The ongoing work on
these techniques is presented in Sections 6 and 7.

Graph Transformation Systems are a flexible formalism for the specification of the operational be-
haviour of complex systems. Some activity has been done on the theoretical foundations of this technique
with the plan of applying it for the modeling of a subset of the SENSORIA Core Calculus. This approach
is presented in Section 8.

The activity done so far actually spawns in several directions and covers a wide range of techniques.
This is quite natural for this first period of the project where the partners activities are more oriented
to the analysis of the fitness of the various techniques in which they have greater expertise with respect
to the class of problems in which SENSORIA is interested. For the next SENSORIA period (months
13-30), as one or more common SENSORIA languages (Core Calculus) will become stably defined it is
expected they will provide an attractive playground for the investigated techniques allowing to achieve a
greater and common focus with respect to SENSORIA goals for the qualitative evaluation of systems.

2 Spatial Logic based Analysis of Distributed Systems

The overall framework

Logical characterizations of concurrent behaviors have been introduced for a long time now. A basic
result in the field, due to Hennessy and Milner, is the characterization of behavioral equivalence in
process algebras as indistinguishability with respect to a modal logic. Such results are important not
only theoretically, but also because of their influence in the design of practical specification languages
for software systems. HML characterizes behavioral equivalence in the sense that two processes are
strongly bisimilar if and only if they satisfy exactly the same formulas.

More recently, Spatial Logics for Concurrency have been proposed with the aim of specifying dis-
tributed behavior and other essential aspects of distributed computing systems. In general terms, these
developments reflect a shift of focus in concurrency research, that has been building up from the last
decade on, from the study of centralized concurrent systems to the study of general distributed systems.
While centralized processes may be accurately modeled as pure objects of behavior, in distributed sys-
tems, and in particular service based systems, many other interesting phenomena besides pure interaction,
such as location dependent behavior, and resource usage policies, must be also considered.

016004 (Sensoria) 4

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

In technical terms, while more traditional modal logics for concurrency characterize pure behaviors,
usually modeled by labeled transition systems, or synchronization trees, spatial logics aim to characterize
the dynamics of computing systems with a rich spatial structure. Such systems have been usually mod-
eled by a process calculus where some constructors are understood as spatial constructors. Such spatial
constructors may give rise to appropriate spatial observations in the logic, enabling a spatial logic to talk
about behavior in space. Another important ingredient of spatial logics, highlighted in other structural
logics such as Reynolds-O’Hearn separation logic, is their resource awareness in the sense that spatial
operators are able to separate, count, and identify resources; this sometimes seems to add an intentional
character to these logics.

The work done

In this stream we have been following a few parallel research directions.
A first line of research concerns the use of spatial logics to express properties of rich type systems, in

which, in addition to behavioral properties akin to those enforced in related type systems, such as session
types, we may also be able to express resource usage patterns, dynamic ownership of resources, and
independence. The formal definition and analysis of sophisticated type systems for concurrent or dis-
tributed process models tend to get, to our opinion, involved and sometimes a bit ad-hoc when properties
such as those mentioned above are in the scope of the intended type system. This observation suggests
that the purely syntactic approach to show soundness of typing, as initially advocated by Felleisen and
Wright, may not scale so well when fairly complex computational models are involved, because of the
consequent increase in complexity of the global invariants required by a classical subject reduction proof
for such models. We are therefore investigating how spatial logics may be used to organize the com-
bination of semantic and syntactic techniques both in the definition of types and in the construction of
compositional proofs of soundness. We already have obtained promising results, in the form of a new
type system for service based systems, able to enforce resource usage policies, and dynamic ownership of
service references [2005-FMCO]. For this type system we have been able to provide a soundness proof
based on semantic reasoning, where types are interpreted as logical properties (expressed in a spatial
logic), and the intended safety properties are expressed as a logical predicate, in the spirit of the logical
relations technique. A detailed publication describing the work carried out in this are is expected to be
finished before month 12.

The second research stream concerns the development of tools and proof techniques for logics whose
expressive power builds on the combination of behavioral and spatial observations. Here, we have been
developing model checking algorithms and tools appropriate for distributed systems expressed in a ver-
sion of the pi-calculus against an expressive spatial logic. The main output of this activity is the Spatial
Logic Model Checker [2005-SLMC], which has been under development for a couple of years now and
of which a new version was recently released. The process language now considered is the polyadic
pi-calculus with choice and parametric recursion, while the logic is a rich spatial logic including recur-
sively defined properties. The logic can be seen as an extension of the MPW logic developed for the
pi-calculus, of which a model-checker is included in the Mobility Workbench Tool suite. However, in
our case, the logic is also able to talk about system structure, hidden names, and dynamic evolution of
spatial structure. An example of the source language accepted by our tool is shown below. The example
concerns a token passing system where five server nodes are connected in a ring. A node may either pass
the token to its neighbor, or remove itself from the ring. For this system we may automatically prove
many properties. For example, the query:

“check System|= always ring;”

establishes that the system always keeps a ring structure. The property of “being a ring” is defined as
shown below, using a combination of spatial modalities and recursion.

016004 (Sensoria) 5

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

/* TOKEN RING SYSTEM */

defproc Exit(inCh,outCh) =
select {[outCh=inCh].0; outCh!(inCh).0};

defproc IdleNode(inCh,outCh) =
inCh?(newInCh).TokenOwner(newInCh,outCh)

and TokenOwner(inCh,outCh) =
select {

tau.Exit(inCh,outCh);
outCh!(outCh).IdleNode(inCh,outCh)};

defproc System =
(new l1,l2,l3,l4,l5 in

(IdleNode(l1,l2) |
IdleNode(l2,l3) |
IdleNode(l3,l4) |
IdleNode(l4,l5) |
TokenOwner(l5,l1)));

/* PROPERTIES */

defprop exiting(inl,outl) =
1 and (((inl != outl) or <>0) and < outl!(inl) > 0);

defprop node(inl,outl) =
1 and
(exiting(inl,outl) or
(maxfix X(inLnk).

((< inLnk?(newInLnk) > X(newInLnk))
or ((<> exiting(inLnk,outl))

and (< outl!(outl) > X(inLnk)))))
(inl));

defprop ring =
0 or
(hidden lnk.
(minfix Y(x).

(node(x,lnk) or
(hidden y. (node(x,y) | Y(y)))))

(lnk));

check System |= always ring;

We have also been investigating logical characterizations of distributed behaviour [2006-DEQ]. In
particular, we have addressed the tensions between intensionality and extensionality of spatial observa-
tions in distributed systems, having shown that there are natural models where extensional observational
equivalences, defined from standard barbed congruence, may be characterized (in the same sense that
bisimilarity is characterized by Hennessy-Milner Logic) by spatial logics including the composition and
void operators. Our results support the claim that spatial observations, perhaps surprisingly, do not need

016004 (Sensoria) 6

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

to be always considered intensional, even if expressive enough to talk about the structure of systems. We
expect to extend our results in order to support reasoning and analysis of richer computational models,
in particular service based systems.

Attached papers

[2005-SLMC] Hugo Vieira, Lúıs Caires and Ruben Viegas;The Spatial Logic Model Checker User’s
Manual v1.0, Technical Report of Departamento de Informatica, FCT/UNL. November 2005.
Short abstract The Spatial Logic Model Checker is a tool allowing the user to automatically verify
behavioral and spatial properties of distributed and concurrent systems expressed in a pi-calculus. The
algorithm implemented (currently using on-the-fly model-checking techniques) is provably correct for
all processes, and complete for the class of bounded processes [2], an abstract class of processes that
includes the finite control fragment of the pi-calculus. The tool itself is written in ocaml, and runs on any
platform supported by the ocaml distribution.

[2006-DEQ] Lúıs Caires and Hugo T. Vieira.Extensionality of Spatial Observations in Distributed
Systems, proc. 13th Int. Workshop on Expressiveness in Concurrency (EXPRESS’06). June 2006.
Short abstract: We discuss the tensions between intensionality and extensionality of spatial obser-
vations in distributed systems, showing that there are natural models where extensional observational
equivalences may be characterized by spatial logics, including the composition and void operators. Our
results support the claim that spatial observations do not need to be always considered intensional, even
if expressive enough to talk about the structure of systems. For simplicity, our technical development is
based on a minimalist process calculus, that already captures the main features of distributed systems,
namely local synchronous communication, local computation, asynchronous remote communication, and
partial failures.

Sensoria integration and future plans.

Further extensions to the Spatial Logic Model Checker are foreseen, building on introducing extensions
to HD automata to cope with spatial structure, in cooperation with UNIPI (Gianluigi Ferrari, Ugo Mon-
tanari). Concerning the second line of work, we would like to use our results to inspire new logics for
service-based systems. A particular concern here is not only in expressiveness issues, but also in the mo-
tivation of new ways of expressing and specifying distributed behavior and location aware computation.
With regard to the work on spatial type systems, we would like to investigate the relations between our
approach and others being developed in SENSORIA relative to the typing resource usage, in particular
the work of Massimo Bartoletti, Pier-Paolo Degano and Gianluigi Ferrari (UNIPI), in particular in what
sense our techniques may be used to obtain compositionality of typing, something which seems required
in the context of open-endedness present in service based systems. We would also like to consider how
resource control policies, modeled by spatial usage protocols, could also be imposed through the use of
spatial types in the Service Core Calculus (SCC) being developed within SENSORIA.

3 A Categorical Formalism for Specification of Distributed Component
Systems

The overall framework

Our aim within Task 3.3 is to develop a formalism, consisting of a specification logic and a seman-
tic model, for specification of systems built from distributed components, in which both structural and
behavioural properties can be expressed. Ultimately, the system should be presented as a so calledinsti-
tution (the notion of an institution is a formalisation of the concept of logical system in the language of

016004 (Sensoria) 7

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

category theory, due to Burstall and Goguen) which would allow us to reuse well-established institution-
independent tools for constructing specifications and implementations in a modular way.

Service-Oriented Architectures can be viewed as distributed systems of loosely coupled components,
running concurrently and coordinating their activities. Compared to traditional component systems, in
service-oriented architectures more emphasis is put on dynamicsystem reconfiguration, due e.g. to the
discovery of new services or failures of the previously existing ones. A formalism for specification of
service-oriented systems should therefore allow for describing the evolution of the system’s structure in
time: addition of new components, removal of the old ones, changes in component interconnections.

The most natural choice is to use the first-order logic for description of the system’s configuration.
One can then quantify over components and express properties such like:

Every session component in the system is associated with exactly one service provider com-
ponent and exactly one client component.

Adding the temporal aspect allows one to express properties of joint component execution:

Service requests are handled in the FIFO order

or concerning component reconfiguration:

Sending a request involves creating a new message component. The channel component
connecting the client and the service is destroyed after the session is closed.

There exist several specification formalism based on the first-order temporal logic. Typically, the so
called “state-as-algebra” approach is adopted. That is, a component system is represented by a transition
system with states labelled with algebras (or first-order structures) representing the system’s structure.
Transitions may be labelled with mappings or relations that allow one to keep track of the identities of
system components. Dynamic reconfiguration can be represented in terms of transitions between global
system states.

A crucial feature of any specification formalism is the possibility of building complex specifications
(as well as implementations, in case the formalism in question can also describe how an implementation
of a specification is built) in an incremental, modular way. In this respect, adopting the global, mono-
lithic system view, as in the state-as-algebra formalisms, does not seem to be a good choice. Instead,
we propose to represent a component system as a collection of transition system models of individ-
ual components, together with relations between those models that represent component interactions.
Technically, a model of a system is a diagram in an appropriate category of component models. Such
models, or implementations, can be built incrementally, by adding more components that depend on the
previously existing ones.

Previously existing formalisms with categorical semantics, such as Fiadeiro’s CommUnity, allow one
to specify systems with a fixed structure. Moreover they lack the desirable features of first-order logic,
such as quantification or counting of components (the same can be said of various spatio-temporal logics
based on process-algebras).

The work done

The formalism we propose is equipped with a categorical semantics. In [2006-Zawa], we start with a
particular category of component models. Roughly, the models are labelled transition systems extended
in a straightforward way with state-dependent attributes. For such models a suitable modal logic is
proposed. Formulae of this logic describe behaviour of individual components.

A well-known categorical principle is to represent complex systems ascategorical diagramsin a
suitable category of component models. Behaviour of a system can be then represented as a limit object
of the corresponding diagram, i.e. a categorical construction that produces a minimal component model
having all the components of the diagram as subcomponents. Component interconnection can be repre-
sented by sharing of common subcomponents. In [2006-Zawa] we propose to represent complex systems

016004 (Sensoria) 8

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

as categorical diagrams of previously defined component models. The component logic is extended ac-
cordingly: to the modal logic for individual components we add several new syntactic constructs for
expressing the structure of the system. In particular, we add the possibility of quantifying over compo-
nents and binding them to variables, thus introducing elements of the first-order logic. In the resulting
logic, temporal modalities and structural operators can be freely interleaved.

The semantics of the logic is defined in such a way, that formulae are evaluated in various sub-
diagrams of the whole model diagram. Such sub-diagrams represent many alternative component con-
figurations – there may be no single ”universal” configuration involving all possible components, but
still one can describe various local configurations, involving only some of the components. Moreover,
new components may appear in a configuration and the old ones may terminate. This allows us to model
system reconfiguration.

We show that the formalisms inherits the expressive power of the first-order temporal logic. In partic-
ular, this means that the logic is incomplete, i.e., the set of valid formulae is not recursively enumerable.

In [2006-Zawb] we generalize the semantics somewhat by using a more general notion of component
models. An important contribution of the paper is the formalisation of the specification logic as an
institution. This opens the possibility to consider structured and architectural specifications of service-
oriented systems.

Attached papers

[2006-Zawa] A. Zawłocki,Diagram Models for Interacting Components, Submitted. Extended abstract
presented on 3rd International Workshop on Formal Aspects of Component Software, FACS’06, Prague,
Czech Republic, September 20-22, 2006.
short abstract: We present a semantic model and a logic for systems of concurrent components. Fol-
lowing the categorical approach, we define a category of component models in which limits can be used
to construct systems from simpler components. A novel idea is to use diagrams, not just limit objects,
as models of component systems. We also propose a logic that allows one to specify both behavioural
and structural aspects of systems: temporal operators and structural predicates can be freely interleaved.
Finally, we present an example specification of a system of interacting components.

[2006-Zawb] A. Zawłocki,An Institution for Interacting Components. Submitted. Extended abstract
presented on 18th International Workshop on Algebraic Development Techniques, WADT’06, La Roche
en Ardenne, Belgium, 1-3 June 2006.
short abstract: In this paper we propose a formalism for the specification of systems built from interact-
ing components. We define a notion of a system model consisting of a categorical diagram of models for
individual components. For such diagram models we propose a logic in which it is possible to specify
both the temporal and the structural aspects of component configurations by freely interleaving tem-
poral operators of the branching-time temporal logic with the constructs from the first-order logic. In
particular, it is possible to describe dynamic system reconfiguration, for instance the creation or termi-
nation of system components. We formalise the diagram logic as an institution and provide an example
specification.

Sensoria integration and future plans.

Our formalism can be used to provide an alternative model-theoretic semantics for service ontology
developed within Task 1.1 (Service Description), and service composition, developed within Task 1.2
(Service Composition). Moreover, the formalism we develop can be specialized to various notions of
services, in principle it should be applicable to variants of the core calculus emerging from WP2. Fi-
nally, by presenting our formalism as an institution we can use institution-independent refinement and
verification techniques for specifications, which is relevant for Task 3.4 (Refinement and Verification
Techniques).

016004 (Sensoria) 9

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

In months 13–30 we plan to continue the work on foundational aspects of component system specifi-
cation and develop some proof methods for our logic (in spite of the incompleteness result). Finally, we
plan to develop some larger examples of specifications of service-oriented systems, using our formalism.

4 An Experimentation with State and Event based Temporal Logics

The overall framework

Most of the specification languages used to describe the dynamic behaviour of systems are either state-
based or event-based. In the first case the description of a system is centered around the internal proper-
ties of the states; i.e. a system is typically seen as an evolving set of global variables or object attributes.
In the second case the description of system is centered around the events occurring while moving from
one state to next, which typically describe the interactions and the communications occurring among the
system components and the external world.

When coming to the issue of describing the behavioral properties a system, this dichotomy is usually
reflected into the kind of logic in which the behavioral properties are expressed. From one side we have
state-based logics (CTL [1981-CE], CTL* [1986-EH], PTL [1980-PTL]), in which the basic predicates
of the logic are propositions related to the labelling of the states, typically expressing the fact that in a
state a certain basic property holds (e.g. an attribute or variable has a certain value). From the other side
we have event-based logics (ACTL, ACTL* [1990-DNV] , HML[1980-HM]), in which the basic con-
structs are expressions related to the labelling of the evolutions occurring between two states, typically
expressing the fact the during an evolution a certain event occurs (e.g. a synchronization between two
components, or the emitting of a signal).

Indeed both paradigms are important for the specification of a real system and recent object oriented
modelling languages allow to naturally describe in detail both aspects of the behaviour of a system.
For these kinds of models, a logic which allows to directly express both state-based and event-based
properties of the temporal behavior of a system is the most natural choice. Unfortunately most (if not
all) of the state of the art verification environments take one or the other of the two described modelling
approaches, failing to allow a comprehensive natural description of the system and their properties.

The work done

Our starting point is the full mu-calculus [1983-K], which is a powerful logic introduced by Kozen in
1983, which is known to subsume all the other both state based and event based logics, both in their
linear time and branching time flavour. The problems with full mu-calculus, however are of two kinds.
First, the complexity of the evaluation of a generic formula is exponential w.r.t. the size of the model,
and this tends to quickly cause the intractability of the evaluation. Second, the intuitive meaning of a
formula may become particularly hard to understand even for formulas with a few levels of recursion, and
this makes the logic unattractive from user friendliness point of view. For these reasons we have seen a
proliferation of many different logics which allowed from one side an efficient (in many cases also linear
) evaluation complexity, and from the other side more intuitive higher level logical operators which hide
the basic fixpoint primitives. The structure of the logic mu-UCTL [2005-GMaica] is essentially the mu-
calculus (in its original both modal and propositional aspects) extended with the well known higher level
operators like the Eventually, Always, Until operators (in the CTL / ACTL style). Moreover mu-UCTL
allows a detailed specification of both the basic properties that states or system evolutions should satisfy
due to its rich action and basic proposition expressions.

Experimentation with the logic mu-UCTL is being done in the context of the UMC [2006-MUG33]
prototype. UMC, with its UML-like modelling language and its state-event based logic is an experiment
in designing a logic, a language, and a verification system, allowing to easily express and verify both the
internal details of system configurations and the details of the events occurring during the system evolu-
tions. The evolution of the UMC prototype inside SENSORIA has been guided by the goal to support

016004 (Sensoria) 10

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

the potential features needed for the verification of service-oriented systems. Two new major versions
of UMC have been produced (version 3.2 and 3.3), leading to a richer logic, a more powerful model de-
scription language and to an improved user interface. ISTI is in the process of evaluating the applicability
of UMC for one of the suggested examples of the Telecom case Study (in particular in the Asynchronous
SOAP protocol definition [2006-BGMM]). The improvement of the possible interactions / integrations
of UMC with other tools used inside SENSORIA (as for example Hugo), is also being another relevant
direction of work. Currently UMC still has the form of a fastly evolving running prototype, mainly tai-
lored to the experimentation of verification/modelling ideas in the field of service-oriented computing,
and has not undergone the major effort needed in terms of stability/documentation/testing/user-support
required for an official public release.

Without showing all the details of the mu-UCTL grammar we will show here a few examples of
properties which can be described in our logics; in doing that we take as reference model a system
composed by a set of named active objects (obj1, obj2,...), where each object holds a set of local private
attributes, and where objects communicate through the sending of asynchronous signals or by performing
synchronous operation calls.

”For all execution paths in which no ”failure” signals are emitted by the system, we will eventually
reach a final status where the attribute ”status” of object ”main” will be the token ”done”.

min Z: ((FINAL and main.status=done) or
(not FINAL and [not failure] Z))

”It cannot happen that obj2 sends a ”response” signal to obj1, without having previously received a
”request” signal from it.”

not E[true {not obj1:obj2.request} U <obj2:obj1.response> true]

”It cannot happen that obj1 sends a signal to obj2, before without having first received obj2 from as
a result of an operation call to obj3”.

not E [true {not obj3:obj1.return(obj2)} U <obj1:obj2.*> true]

”As long as attribute x of obj1 is greater then 0, obj1 does not send signals or calls to obj2”.

not EF (obj1.x>0 and <obj1:obj2.*> true)

Attached papers

[2005-GMaica] S.Gnesi and F. MazzantiA Model Checking Verification Environment for UML State-
chartsProceedings XLIII AICA Annual Conference, University of Udine - October 2005, AICA.
short abstract: In this paper we present the state/event-based temporal logic mu-UCTL which is a
logic oriented towards a natural description of dynamic properties of UML models. This logic allows
to specify the basic properties that a runtime system configuration should satisfy and to combine these
basic predicates with logic and temporal operators which allow to take into consideration also the events
performed by the system when evolving from one system configuration to another. Doubly Labelled
Transition Systems are the semantic domain for mu-UCTL. The logic is supported by a prototypical
verification environment under development at ISTI built around the ”on the fly” UMC model checker.

[2006-BGMM] M.H. ter Beek and S. Gnesi and F. Mazzanti and C. Moiso,Formal Modelling and
Verification of an Asynchronous Extension of SOAP. ISTI Technical Report ISTI-2006-TR-19, June 2006
short abstract: Current web services are largely based on a synchronous request-response model that
uses the Simple Object Access Protocol SOAP. Next-generation telecommunication networks, on the

016004 (Sensoria) 11

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

contrary, are characterized by the need to handle asynchronous interactions among distributed service
components, e.g., to deal with events produced by the network resources. As these worlds are more
and more converging into a single application context, several solutions have been proposed to deal with
asynchronous events in the context of web services. In this paper we formalize and verify one such
approach, viz., an original asynchronous extension of SOAP, and draw some conclusions. The formal
model is specified as a set of communicating state machines. The semantics of the model is seen as a
doubly-labelled transition system, and its behavioural properties are expressed in the action- and state-
based temporal logic mu-UCTL and verified with the on-the-fly model checker UMC.

[2006-MUG33] F.MazzantiUMC 3.3 User GuideISTI Technical Report 2006-TR-33, September
2006.
short abstract: In this report we illustrate the version 3.3 of UMC, a prototype tool for the exploration,
analysis and on-the-fly model checking of the dynamic behaviour of UML-like models. Models are
described as collections of communicating objects. Objects belong to classes, whose dynamic behaviour
is described by statecharts. The logic supported by the tool is an extension of mu-ACTL and has the
power of full mu-calculus. The modelling language, the supported logic, the verification approach, and
the user interface are all described in detail.

Sensoria integration and future plans.

State and Event based logics seem well fitting the needs for the specification of the behavioral proper-
ties of service-oriented systems, and in particular for the analysis of communication protocols followed
during the service interactions, or for describing the intended behavior of a system at different levels
of abstraction. We can indeed imagine the analysis of a system one time occurring at low level and
inspecting the evolution of some specific object attribute during the lifetime of the system, and another
time occurring at a much higher lever inspecting for example just the system interaction with the external
world. Being able to perform these two kinds of analysis in the same uniform logical framework and
with the same tool is certainly a positive fact.

In the next 13-30 months we plan to use UMC for the analysis of one of telecom case studies, further
adapting the current prototype according to need that will arise as a result of the analysis. We also plan
to use the experience gained in the definition of the logics and its verification algorithm for evaluating
their applicability to the SENSORIA core calculi. Finally we will to take into consideration the issues
arising about a smoother integration of our prototypes with the other developed SENSORIA tools and
prototypes.

5 MoMo: A Modal Logic for Mobility

The overall framework

A well established and successful approach to modelling and verifying properties of concurrent systems
is the one based on process algebras and temporal logics: concurrent systems are specified as terms of
a process algebra while properties are specified as temporal logic formulae. Labelled transition systems
are associated to terms via a set of structural operational semantics rules and model checking is used
to determine whether the transition system associated to the term enjoys the property specified by the
temporal formula.

The success of the approach has stimulated research on these general models and has permitted
the development of general tools and results for minimization, animation, and axiomatizations and for
equivalence and model checking.

In the last decade, stimulated by new applications of network aware programming, several new for-
malisms based on process algebras but with new constructs for modelling network topology, name pass-
ing, resource usage and mobility have been proposed.

016004 (Sensoria) 12

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

The new primitives of these distributed nominal calculi, where together with actions, names and
resources play a central role, render it more difficult to use labelled transition systems and classical
operational semantics. To model distinguishing features of these calculi, likename scopingor process
and data distribution, transition labels are enriched to consider not only the actions a system can perform
but also the information about the state of the system. A disadvantage of this approach is that it needs to
be tailored on the specific calculus and cannot be easily generalized.

Each distributed nominal calculus defines its own structured set of transition labels and this does not
permit considering a common semantic framework that can be used as the base for defining common
tools, like spatial and temporal logics, for reasoning about systems specified using the different calculi.

The work done

To provide a general framework for describing the semantics of mobile calculi we introduce a variant of
LTS that we callMultiple Labelled Transition Systems(MLTS) [2006 -DNL] [2005-DL04] because they
are equipped with different transition relations that capture different aspects of system behaviour namely
actions execution,resources creation and consumptionandname revelation.

An MLTS consists of a set ofstates, a set ofresources, a set oftransition labelsand anaming
structure. States describe system configurations, the naming structure permits associating public (known
by the environment) names to each state. Resources model data (e.g. the values exchanged over a
channel), computational environments (e.g. the locations where processes can be executed) or network
links that can be used for interaction.

The interactions with the environment are modelled by means of three different transition relations:
computation relation, that describes the interaction with the environment;resource relationthat describes
resource usage; andrevelation relationthat describes the names revealed to the environment.

For modelling properties of MLTS, we have introduced a temporal logic that consists of a number
of basic operators to be used to describe specific properties/behaviours of mobile and distributed sys-
tems. Thus, together with the usual logical connectives and the operators for minimal and maximal
fixed points, we have operators for describing dynamic behaviours (temporal properties), for modelling
resource management (state properties), for keeping into account name handling (nominal properties),
and for controlling mobile processes (mobility properties).

To show the usefulness of our proposal we illustrate how MLTS can be used to describe the oper-
ational semantics of two formalisms with opposite objectives, namely KKlaim and the asynchronous
π-calculus. The former is a simplified version of Klaim. Klaim is an experimental programming lan-
guage that supports a programming paradigm where both processes and data can be moved across dif-
ferent computing environments and relies on the use of explicit localities. The latter one is the generally
recognized minimal common denominator of calculi for mobility.

Attached papers

[2006 -DNL] R. De Nicola and M. Loreti,Multi Labelled Transition Systems for Nominal Calculi and
their Logics(Submitted).
short abstract:To provide a general framework for describing the semantics of mobile calculi we in-
troduce Multi Labelled Transition Systems (LTS). These are generalization of LTS to deal with notions
of resources usage and creation and name revelation. A Modal Logic, which is inspired by Hennessy-
Milner Logic, is introduced for specifying and verifying properties of MLTS. To show usefulness of our
proposal we show how MLTS can be used to describe the operational semantics of two formalisms with
opposite objectives, namely Klaim and the asynchronous pi-calculus.

Sensoria integration and future plans.

For SOC, like for other formalisms, it is crucial to have tools for establishing deadlock freeness, liveness
and correctness with respect to given specifications. However for programs involving different actors

016004 (Sensoria) 13

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

and authorities it is also important to establish other properties such as resource allocation, access to
resources and information disclosure. For this purpose, the use of temporal logics like MoMo can be
used for specifying and verifying dynamic properties of distributed services running over a wide area
network.

In the months 13-30 we plan to use MoMo as the logic for reasoning about SENSORIA core calculi.
We plan to develop prototype tools for supporting automatic verification of MoMo specifications, and we
plan to extend MoMo for reasoning about systems whose implementation is not completely specified.

We want also define a methodology that permits refining specifications while preserving formulae
satisfaction.

6 Type based Analysis of Service Reconfiguration

The overall framework

In current object-oriented programming practice, composition-based modularization seems to have be-
come the most common structuring mechanism, reflecting a shift of programming style from a pure,
inheritance-based object-oriented style, towards the so- calledcomponent-basedor service-basedpro-
gramming idioms, which favor blackbox composition. Notwithstanding the proposal of many sophis-
ticated type safe approaches to module and class composition, the mechanism most frequently used to
structure object-oriented applications in thecomponent-orientedstyle is the ad-hoc assembly of webs of
objects (a.k.a. service providers), where individual elements refer to each other through references. In
previous work, we had presented a programming calculus with the aim to capture essential ingredients
of object-oriented component programming styles, such as explicit context dependence, subtype poly-
morphism at the level of both components and objects, late composition, and avoidance of inheritance
in favor of composition. A type system was also defined, with types assigned to (first-class) components
and objects, thus ensuring runtime safety of compositions. However, although in such a model compo-
nents may be dynamically composed, the structure of objects gets fixed once for all at instantiation time,
thus excluding any possibility of dynamic reconfiguration, which is a needed feature in high availability
systems such as service based ones.

The work done

In this line of research we have developed a new core component-oriented programming language
[2006-SCS], obtained by extending a lambda-calculus with imperative records with a minimal set of ar-
chitectural primitives. Moreover, we develop a type system that statically enforces, besides the absence
of usual runtime errors, consistency of component compositions and atomicity of dynamic reconfigura-
tion.

Our design is semantically motivated by considering a domain of configurators, components, and
objects; all such entities are first-class in our model. Intuitively, configurators correspond (by analogy) to
the usual notion ofmakefile. Essentially, each configurator contains a series of instructions (architectural
primitives) about how to assemble a component. It is expected that the soundness of any expressive
notion of dynamic reconfiguration will turn out hard to ensure by purely static typing means, if one also
wants to preserve object-level information hiding in the programming language. It is therefore important
to explore the language design space involving combinations of static and dynamic checking, we believe
to have isolated such an interesting combination. Thus, in our present proposal, type checking statically
ensures good behavior of configurators, that is, that components built from well-typed configurators
are architecturally consistent, and that objects instantiated from well-typed components are free from
runtime errors.

016004 (Sensoria) 14

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

Attached papers

[2006-SCS] Jõao C. Seco and L. Caires.Types for Dynamic Reconfiguration. Proceedings of the Euro-
pean Symposium on Programming ESOP 06, Lecture Notes in Computer Science 3924, Springer-Verlag,
2006.
short abstract: We define a core language combining computational and architectural primitives, and
study how static typing may be used to ensure safety properties of component composition and dynamic
reconfiguration in object-based systems. We show how our language can model typed entities analogous
of configuration scripts, makefiles, components, and component instances, where static typing combined
with a dynamic type-directed test on the structure of objects can enforce consistency of compositions
and atomicity of reconfiguration.

Sensoria integration and future plans.

The work on ”Type based analysis of Service Reconfiguration” will continue along the lines described
above. We intend to extend the framework developed until now, which abstracts away from concurrency
and distribution issues, and just focus on service composition, with concrete concurrency and distribu-
tion, and then with some form of behavioral types. While these issues may be tackled in the context
of our component calculus, it would be probably much more interesting to investigate static analysis of
reconfiguration in a service oriented calculus such as the one being proposed in WP2.

7 Approximating the control structure of processes

The overall framework

Recent years have seen an increased interest in applying static analysis techniques to highly concurrent
languages, in particular a variety of process calculi allowing concurrent processes to interact by means
of synchronization or communication. A common characteristic of many of these analyses is that they
are mainly concerned with properties of the configurations of the models and to a lesser degree with
properties of the transitions. In this work we focus on the transitions.

The work done

We study the classical approach of Data Flow Analysis where transfer functions associated with ba-
sic blocks are often specified as Bitvector Frameworks or, more generally, as Monotone Frameworks
[2006-HRNFN] — what these analyses have in common is that there are ways ofremovinganalysis in-
formation when no longer appropriate. We give the first account of an instance of an analysis problem
for Milner’s CCS where suitable generalizations of thegenandkill components of Monotone Frame-
works are used to define transfer functions that enable the construction offinite automatacapturing the
behaviour of processes — finiteness is achieved by incorporating ideas from yet another approach to
static analysis, namely Abstract Interpretation.

To illustrate the development consider the following CCS process modelling a (unary) semaphoreS:

S , g. p. S

First the process offers the actiong, then the actionp after which it starts all over again. Assume that it
operates in parallel with a processQ given by

Q , g. τ. Q + p. Q

that is willing to either perform the actiong (that will synchronize with ag action) or the actionp (that
will synchronize with ap action). After theg action some internal actionτ is performed and then the
process recurses; after thep action the process recurses immediately. The semantics gives rise to the
following infinite transition sequence:

016004 (Sensoria) 15

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

S | Q - p.S | τ.Q - p.S | Q - S | Q - · · ·

Each configuration is characterized by itsexposed actions: initially g, g andp are ready to interact but
only g andg actually do. In the resulting configurationp. S | τ.Q the actionsp andτ are exposed and
this time onlyτ can be executed, etc. Note that the actionp is exposed in the first configuration but
not in the second andp is exposed in the second but not in the first configuration. Thus once the actions
participating in the interaction have been selected they will cause some actions to become exposed (e.g.p)
while others no longer will be exposed (e.g.p). In our analysis this will be reflected in the definition of
transfer functions containing akill component as well as ageneratecomponent much as in the classical
Bit Vector Frameworks where the transfer functions take the simple form:

fblock(E) = (E \ killblock) ∪ genblock

Typically E is asetcontaining the data of interest as for example reaching definitions: which variable
definitions may reach a given program point.

The general situation is more complex as there might be several occurrences of the same action that
are exposed — indeed there might be an infinite number of such actions and as a consequence we shall
useextended multisets. In the classical Bit Vector Frameworks the generated and killed information is
always precise; in the present setting we shall need to approximate it. For the generated actions we shall
use anover-approximation as it is always safe to say that more actions are exposed. However, for the
killed actions we need anunder-approximation: it is always safe to remove fewer actions than necessary.

Based on this information the analysis constructs a finite automaton representing the control structure
of the process. Each state in the automaton corresponds to an extended multiset of exposed actions for a
configuration and the transitions of the automaton reflect the possible interactions between these actions.
For the processS | Q above we obtain the automaton

����
��
��

q0

����
q1

����
q2

�
�

��> Z
Z

ZZ~
�

g/g τ

p/p

where the initial stateq0 corresponds tog, g andp being exposed,q1 to p andτ being exposed andq2 to
p, g andp being exposed. The annotations on the edges then reflect the interactions being performed.

The analysis uses a simpleworklist algorithmto construct the automata. The initial state corresponds
to the exposed actions of the initial process and more and more states are added as the need arises. It
is crucial to reuse states whenever possible, that is, when they represent the same exposed actions as
otherwise the construction need not terminate; in order to handle this we borrow thewideningtechnique
from Abstract Interpretation.

Attached papers.

[2006-HRNFN] Hanne Riis Nielson and Flemming Nielson:Data flow analysis for CCS.Submitted for
Festschrift for Reinhard Wilhelm.
short abstract: This paper gives an overview of the approach to analyzing the control structure of CCS
processes.

Sensoria integration and Future plans.

The work is very central for the WP3 task on behaviours in that the analysis indeed extracts information
about the behaviour of processes. The work presented has been developed for CCS and it is planned to
extend it to more expressive calculi considered in the SENSORIA project and to apply it to processes for
services.

016004 (Sensoria) 16

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

8 Graph Transformation Systems

The overall framework

Graph transformation systems are a flexible formalism for the specification of the operational behaviour
of complex systems, that may take into account aspects such as object-orientation, concurrency, mobility
and distribution. In fact, graphs can be naturally used to provide a structured representation of the states
of a system, which highlights its subcomponents and their logical or physical interconnections. Then,
the events occurring in the system, which are responsible for the evolution from one state into another,
are modelled as the application of suitable transformation rules. Such a representation is precise enough
to allow the formal analysis of the system under scrutiny, as well as amenable of an intuitive, visual
representation, which can be easily understood also by a non-expert audience.

There are several approaches to graph transformation proposed in the literature, which differ in the
way the rules and their application to graphs are defined. Even if the simplest way to define graph
transformation is by resorting to standard set-theoretical notions, a more abstract, algebraic description
based on simple categorical constructions is often preferred, as it allows to reason about graphs and their
transformation abstracting out from the concrete identity of nodes and edges, and it makes easier the
proof of relevant properties.

The work done

There are two main categorical approaches used to describe the effect of applying a rule to a graph.
These are the double-pushout approach (DPO) and the single-pushout approach (SPO). Both approaches
use concepts of category theory to obtain an elegant and compact description of graph rewriting, but they
differ with respect to the kind of morphisms under consideration, the form of the rules, and the diagrams
the rewriting steps are based on.

In [2006-CHHK] we have proposed a new categorical approach to rewriting that combines the good
properties of both approaches and improves them by allowing to model cloning of structures in a natural
way. The new approach is called “sesqui-pushout (SqPO) rewriting”, because it can be placed, conceptu-
ally, halfway between the single-pushout and the double-pushout approach (sesquimeansone-and-a-half
in Latin). Differently from the DPO approach, SqPO rewriting is deterministic even if the rule to be ap-
plied is not left-linear, and it is able to modeldeletion in unknown context, a typical feature of the SPO
approach. Besides the basic definitions of the new approach, its precise relationship with the existing ap-
proaches has been investigated, and some first results about parallelism and local confluence have been
worked out.

In the classical theory of Petri nets, Condition/Event (C/E) Systems are safe nets where the enabling
condition for a transition requires, additionally, that no token is present in the post-set. Thus, at any time
a subset of all conditions are true (those holding a token), and firing a transition modifies this subset. In
[2006-CHS] we are developing a theory ofSubobject Transformation System. These can be seen as a
generalization of C/E Systems, where instead of having asub-setof the “conditions” we have asub-object
of conditions for a fixed object T in an arbitrary adhesive category. A subobject of T can be transformed
into another one by applying a rule of the system. This theory is a distilled, more restricted version of
the Double-Pushout Approach in an adhesive category, which has nevertheless several concrete instances
already studied in the literature.

Reflexive systems arise naturally in many areas where graph transformation techniques have been
applied with success, like biological and chemical systems, distributed and mobile computing, service
oriented architectures, and data type specifications. Moreover, the reflexive extension of many different
kinds of rewrite systems have been considered in the literature. In particular, dynamic nets have been
proposed as a mobile extension of Petri nets, expressive enough to model mobile calculi like pi-calculus
and join calculus. Dynamic nets are indeed strictly more expressive than Petri nets. Exploiting the
analogy between Petri nets and Graph Grammars, we propose a reflexive extension of Graph Grammars
(under the double-pushout approach), called Dynamic Graph Grammars (DynGGs) [2006-BM], whose

016004 (Sensoria) 17

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

productions can release fresh parts of the type graph and new rewrite rules. However, when posing the
question:

“Are Dynamic Graph Grammars more expressive than ordinary ones?”

our main result provides a negative answer: though DynGGs can offer a more convenient abstraction,
computationally speaking they are not more expressive than ordinary Graph Grammars.

Attached papers.

[2006-CHHK] A. Corradini, T. Heindel, F. Hermann, B. Koenig.Sesqui-pushout rewriting. In Proc.
Third International Conference on Graph Transformation (ICGT’06), LNCS, Springer, 2006. To appear.
Short abstract: Sesqui-pushout (SqPO) rewritingis a new algebraic approach to abstract rewriting in
any category.
SqPO rewriting is a deterministic and conservative extension of double-pushout (DPO) rewriting, which
allows to model “deletion in unknown context”, a typical feature of single-pushout (SPO) rewriting, as
well as cloning.
After illustrating the expressiveness of the proposed approach through a case study modelling an access
control system, we discuss sufficient conditions for the existence of final pullback complements and we
analyze the relationship between SqPO and the classical DPO and SPO approaches.

[2006-BM] R. Bruni, H. Melgratti. Dynamic Graph Transformation Systems. In Proceedings of
ICGT 2006, 3rd International Conference on Graph Transformation, LNCS, Springer, 2006. To Appear.
Short abstract: We introduce an extension of Graph Grammars (GGs), calledDynamic Graph Gram-
mars(DynGGs), where the right-hand side of a production can spawn fresh parts of the type graph and
fresh productions operating on it. The features of DynGGs make them suitable for the straightforward
modeling of reflexive mobile systems like dynamic nets and the join calculus. Our main result shows
that each DynGG can be modeled as a (finite) GG, so that the dynamically generated structure can be
typed statically, still preserving exactly all derivations.

Sensoria integration and Future plans.

Graph Transformation Systems are used, as specification and modeling formalism, in several work pack-
ages of SENSORIA (for example, T1.3: Service-Oriented Business Modelling, T3.3: Behavioural Prop-
erties, T5.1: Primitives for Service Level Agreement, T5.3: Dynamic Reconfiguration, and T7.1: Trans-
formation and Refinement Methods) The work described above is mainly concerned with foundational
aspects of graph transformation systems, improving the expressiveness of the formalism. As such, it will
potentially influence the use of GTS in other WPs of the project.

The work on the foundation of GTS will continue along the topics described above. The greater
expressive power of the new SqPO approach will be experimented by modeling a subset of the Core
Calculus.

9 Conclusion and further plans

The activity done so far actually spawns in several directions and covers a wide range of techniques.
This is quite natural for this first period of the project where the partners activities are more oriented
to the analysis of the fitness of the various techniques in which they have greater expertise with respect
to the class of problems in which SENSORIA is interested. For the next SENSORIA period (months
13-30), as one or more common SENSORIA languages (Core Calculus) will become stably defined it is
expected they will provide an attractive playground for the investigated techniques allowing to achieve
a greater and common focus with respect to SENSORIA goals for the qualitative evaluation of systems.

016004 (Sensoria) 18

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

Building on formalisms and techniques studied during the first year of the project, during months 13
to 30 we will therefore continue to develop logics and other formalisms for description and analysis of
behavioural properties of services. In particular, we will study temporal logics for expressing behavioural
properties of service oriented systems also as modelled in various service-oriented calculi/languages.
We will apply process calculi to the study of behavioural properties of web service composition and
compensations. Moreover, we will study some basic questions concerning the discriminating power of
the Spatial Logic, focusing on the equivalence on processes induced by the logic. We will also present
some related (un)decidability results. We plan to extend the MoMo logic for reasoning about systems
whose implementation is not completely specified. We want also to define a methodology that permits
refining specifications while preserving formulae satisfaction. Finally, we will develop a generic logical
system for specification of component systems, formalise it as an institution and apply it to description
of behavioural properties of services.

10 Relevant Sensoria Publications and Reports

GMaica S.Gnesi and F. MazzantiA Model Checking Verification Environment for UML StatechartsPro-
ceedings XLIII AICA Annual Conference, University of Udine - October 2005, AICA.

SLMC Hugo Vieira, Lúıs Caires and Ruben Viegas;The Spatial Logic Model Checker User’s Manual
v1.0, Technical Report of Departamento de Informatica, FCT/UNL. November 2005.

BGMM M.H. ter Beek and S. Gnesi and F. Mazzanti and C. Moiso,Formal Modelling and Verification of
an Asynchronous Extension of SOAP. ISTI Technical Report ISTI-2006-TR-19, June 2006

BM R. Bruni, H. Melgratti.Dynamic Graph Transformation Systems. In Proceedings of ICGT 2006,
3rd International Conference on Graph Transformation, LNCS, Springer, 2006. To Appear.

CHHK A. Corradini, T. Heindel, F. Hermann, B. Koenig.Sesqui-pushout rewriting. In Proc. Third
International Conference on Graph Transformation (ICGT’06), LNCS, Springer, 2006. To appear.

DEQ Luı́s Caires and Hugo T. Vieira.Extensionality of Spatial Observations in Distributed Systems,
proc. 13th International Workshop on Expressiveness in Concurrency (EXPRESS’069 June 2006.

DNL R. De Nicola and M. Loreti,Multi Labelled Transition Systems for Nominal Calculi and their
Logics(Submitted).

HRNFN Hanne Riis Nielson and Flemming Nielson:Data flow analysis for CCS.Submitted for Festschrift
for Reinhard Wilhelm.

MUG33 F.MazzantiUMC 3.3 User GuideISTI Technical Report 2006-TR-33, September 2006.

SCS Jõao C. Seco and L. Caires.Types for Dynamic Reconfiguration. Proc. of the European Sympo-
sium on Programming ESOP 06, LNCS 3924, Springer-Verlag, 2006.

Zawa A. Zawłocki, Diagram Models for Interacting Components, Submitted. Extended abstract pre-
sented on 3rd International Workshop on Formal Aspects of Component Software, FACS’06,
Prague, Czech Republic, September 20-22, 2006.

Zawb A. Zawłocki, An Institution for Interacting Components. Submitted. Extended abstract presented
on 18th International Workshop on Algebraic Development Techniques, WADT’06, La Roche en
Ardenne, Belgium, 1-3 June 2006.

016004 (Sensoria) 19

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

References

[1980-HM] M.Hennessy and R.MilnerOn observing nondeterminism and concurrency. Procs
ICALP 80 LNCS 85 295-309

[1980-PTL] D.Gabbay, A.Pnueli, S.Shelah and J.StaviOn the temporal analisys of fairnessProc.
ACM Symp. on Principles of programming Languages (1980) 163-173

[1981-CE] E.M. Clarke and E.A.EmersonDesign and synthesis of synchronization skeletons using
branching time temporal logicLNCS 131 pp 52-71

[1983-K] Kozen,D.Results on the Propositional mu-calculusTheoretical Computer Science 27
(North Holland 1983)

[1986-EH] CTLstar-E.A.Emerson and J.HalpernSometimes and not never revisited: On branching
versus linear time temporal logicJournal of the ACM (JACM), v.33 n.1, p.151-178, Jan.
1986

[1990-DNV] R. De Nicola and F.W. Vaandrager,Action versus state based logics for transition sys-
tems. Proceedings of the LITP spring school on theoretical computer science on Seman-
tics of systems of concurrent processes LNCS 469 1990.

[2005-DL04] Rocco De Nicola and Michele LoretiMoMo: A Modal Logic for Reasoning About Mo-
bility. Proc. of FMCO 2004, Revised Lectures, pp95-119, LNCS 3657, Springer, 2005.

[2005-FMCO] Luı́s CairesComposing Distributed Services with Spatial Types. Invited Talk at the For-
mal Methods for Components and Objects (FMCO 2005), Amsterdam, November 2005.

[2005-SLMC] Hugo Vieira, Lúıs Caires and Ruben Viegas;The Spatial Logic Model Checker User’s
Manualv1.0, Technical Report of Departamento de Informatica, FCT/UNL. November
2005

[2005-GMaica] S.Gnesi and F. MazzantiA Model Checking Verification Environment for UML Stat-
echartsProceedings XLIII AICA Annual Conference, University of Udine - October
2005, AICA.

[2006-CHHK] A. Corradini, T. Heindel, F. Hermann, B. Koenig.Sesqui-pushout rewriting. In Proc.
Third International Conference on Graph Transformation (ICGT’06), LNCS, Springer,
2006. To appear.

[2006-CHS] A. Corradini, F. Hermann, P. Sobocinski.Subobject Transformation Systems. Draft.

[2006-BM] R. Bruni, H. Melgratti.Dynamic Graph Transformation Systems. In Proceedings of
ICGT 2006, 3rd International Conference on Graph Transformation, LNCS, Springer,
2006. To Appear.

[2006-DEQ] Luı́s Caires and Hugo T. Vieira.Extensionality of Spatial Observations in Distributed
Systems, proc. 13th International Workshop on Expressiveness in Concurrency (EX-
PRESS’069 June 2006.

[2006-SCS] Jõao C. Seco and L. Caires.Types for Dynamic Reconfiguration. Proceedings of the
European Symposium on Programming ESOP 06, LNCS 3924, Springer-Verlag, 2006.

[2006-Zawa] A. Zawłocki, Diagram Models for Interacting Components, Submitted. Extended ab-
stract presented on 3rd International Workshop on Formal Aspects of Component Soft-
ware, FACS’06, Prague, Czech Republic, September 20-22, 2006.

016004 (Sensoria) 20

D3.3.a: An Overview of Techniques for Behavioural Properties (Final) August 31, 2006

[2006-Zawb] A. Zawłocki, An Institution for Interacting Components. Submitted. Extended ab-
stract presented on 18th International Workshop on Algebraic Development Techniques,
WADT’06, La Roche en Ardenne, Belgium, 1-3 June 2006.

[2006-BGMM] M.H. ter Beek and S. Gnesi and F. Mazzanti and C. Moiso,Formal Modelling and
Verification of an Asynchronous Extension of SOAP. ISTI Technical Report ISTI-2006-
TR-19, June 2006

[2006-MUG33] F.MazzantiUMC 3.3 User GuideISTI Technical Report 2006-TR-33, September 2006.

[2006 -DNL] R. De Nicola and M. Loreti,Multi Labelled Transition Systems for Nominal Calculi and
their Logics(Submitted).

[2006-HRNFN] Hanne Riis Nielson and Flemming Nielson:Data flow analysis for CCS.Submitted for
Festschrift for Reinhard Wilhelm.

016004 (Sensoria) 21

	Introduction
	Spatial Logic based Analysis of Distributed Systems
	A Categorical Formalism for Specification of Distributed Component Systems
	An Experimentation with State and Event based Temporal Logics
	MoMo: A Modal Logic for Mobility
	Type based Analysis of Service Reconfiguration
	Approximating the control structure of processes
	Graph Transformation Systems
	Conclusion and further plans
	Relevant Sensoria Publications and Reports

