
Modelling and Analysing an Identity Federation
Protocol: Federated Network Providers Scenario?

Maurice H. ter Beek1, Corrado Moiso2, and Marinella Petrocchi3

1 ISTI–CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
2 Telecom Italia, Via Reiss Romoli 274, 10148 Torino, Italy

3 IIT–CNR, Via G. Moruzzi 1, 56124 Pisa, Italy

Abstract. We continue our work on modelling and analysing security
issues of an identity federation protocol for convergent networks. This
protocol was proposed by Telecom Italia as a solution to allow end users
access to services on the web through different access networks, with-
out explicitly providing any credentials, while the service providers can
trust the user’s identity information provided by the access networks and
access some user data. As an intermediate step towards a full-blown for-
mal security analysis of this protocol, we specify one specific user scenario
in the process algebra Crypto-CCS and verify its vulnerability w.r.t. a
man-in-the-middle attack with the model checker PaMoChSA.

1 Introduction

We continue work initiated in [1] by formally specifying one specific user scenario
of the identity federation protocol for convergent networks introduced in [2] and
by analysing the possibility of a man-in-the-middle attack. We use Crypto-CCS,
a CCS-like process algebra with cryptographic primitives [3, 4], in combination
with the Partial Model Checking Security Analyser PaMoChSA [5] developed
by the Security group of IIT–CNR.

The protocol proposed in [2] permits end users to access services through dif-
ferent access networks (e.g. mobile and fixed ones), without explicitly providing
any credentials, while the application level can trust the identity and authentica-
tion information provided by the access networks. As a result, service providers
(SPs) identify a user by using the authentication procedure performed by the
network provider. After identity federation, a single sign-on suffices for a user to
access all services belonging to the same “circle of trust” of SPs while keeping
personal data private. This is an advantage over introducing (and remembering)
one’s credentials time and again. The protocol may thus grant users anonymous
access to services and at the same time allow the application level to limit access
to authorised users. Moreover, without knowing who the user is, SPs can still
obtain her/his location or age or charge her/his account.

In Section 2 we sketch our scenario. We then describe our analysis approach in
Section 3, after which we formally specify our user scenario in Section 4. A small
security analysis is presented in Section 5. Section 6 contains our conclusions.
? This work has been partially funded by the EU project Sensoria (IST-2005-016004).

2 The Case of Federated Network Providers

The protocol of [2] uses a token injector mechanism to translate the identity and
authentication information provided by a secure access network to the Internet
application level (of a lower security level). The token injector thus plays the
identity provider role described in the Liberty Alliance specifications [6].

We consider a user scenario with two network operators, a Mobile Operator
MO and a Fixed Operator FO, both of which have implemented the token injec-
tor mechanism and have established a trusted relation with a SP, for instance a
travel site. The user is a customer of both operators, has an active registration
on the travel site and has already federated her/his account on the travel site
with her/his profile on each of the operators (i.e. two federations have been ac-
tivated: one between the SP and the MO accounts and one between the SP and
the FO accounts). During the process of federation, the token injector generates
an opaque-id (or pseudonym) for the user and sends it to the SP. This opaque-id
is then stored on the repositories associated to the token injector and to the
SP and it is exchanged in all communication between the operators and the SP,
so as to identify the user in a secure way. Consequently, the user can access
the travel site by mobile phone (GPRS) or by PC (ADSL) without introducing
credentials. Instead, the network authentication is forwarded to the travel site,
which identifies the user. Even though the SP does not know the user’s mobile
phone number, the opaque-id enables it to use the operators service (as SMS
gateway) to nevertheless exchange or request information about the user. The
architecture of this federated network providers scenario is sketched in Figure 1.

Fig. 1. Federated network providers scenario in convergent networks.

3 Modelling and Analysis Approach

We adopt the approach of [4] based on the observation that a protocol under
analysis can be described as an open system in which some component has an
unspecified behaviour (not fixed in advance). One then assumes that, regardless
of this behaviour, the system works properly (i.e. satisfies a certain property).
In our scenario, one can imagine a hostile adversary trying to achieve some kind
of advantage w.r.t. the honest participants. Such an adversary is added to the
specification of the protocol in the next section as a component with a behaviour
defined only implicitly by the semantics of the specification language.

2

We assume the adversary to act in Dolev-Yao fashion [7] by using a set of
message manipulating rules that model cryptographic functions. A message en-
crypted with the public key of one of the participants cannot be decrypted by
anyone but the person who knows the corresponding private key. As is com-
mon, we adopt a black-box view of cryptography by assuming all cryptographic
primitives involved in the network protocol to be perfect. To analyse whether a
system works properly, at a certain point the adversary’s knowledge is checked
against a security property. If the intruder has come to know information it was
not supposed to know, then the analysis has thus revealed an attack w.r.t. that
property, i.e. a sequence of actions of the adversary that invalidates the property.

First, we fix some notation related to the security primitives we deal with.
Sending message msg from sender A to receiver B over the ith communication
channel ci is denoted by ci A 7→ B : msg. We use the following security primitives:

pki, pk−1
i public and private key of agent i

{ }pk−1
i

message signed by agent i
{ }pki

message encrypted by public key of agent i
{ }KEY message encrypted by symmetric key KEY
ni

j nonce related to j generated by i

A nonce is a parameter that varies with time, e.g. a special marker intended
to prevent the unauthorised replay or reproduction of a message.

A model defined in Crypto-CCS consists of a set of sequential agents able
to communicate by exchanging messages. Inference systems model the possible
operations on messages and therefore consist of a set of rules of the form r =
m1 · · ·mn

m0
, with premises m1, . . . ,mn and conclusion m0. An instance of the

application of rule r to closed messages m1, . . . ,mn is denoted m1 · · ·mn `r m0.
The control part of the language consists of compound systems and its terms

are generated by the grammar (only constructs used below are presented):

S := S1 ‖ S2 | A compound systems
A := 0 | p.A | [m1 · · ·mn `r x]A;A1 sequential agents
p := c!m | c?x prefix constructs

where m1, . . . ,mn,m are closed messages or variables, x is a variable and c is a
channel. Informally, the Crypto-CCS semantics used below are:

– c!m: a message m sent over channel c;
– c?x: a message m received over channel c which replaces variable x;
– 0: a process that does nothing;
– p.A: a process that can perform an action p and then behave as A;
– [m1 · · ·mn `r x]A;A1 (the inference construct): if (by applying an instance

of rule r with premises m1, . . . ,mn) a message m can be inferred, then the
process behaves as A (where m replaces x), otherwise it behaves as A1.

– S1 ‖ S2: the parallel composition of S1 and S2, i.e. S1 ‖ S2 performs an
action if either S1 or S2 does. It may perform a synchronisation or internal
action, denoted by τ , whenever S1 and S2 can perform two complementary
send and receive actions over the same channel.

3

The language is completely parameteric w.r.t. the inference system used. The
inference system that is used below to model our scenario is shown in Figure 2.

x y
Pair(x, y)

(pair)

Pair(x, y)
x (1st)

Pair(x, y)
y (2nd)

x pk−1
y

{x}
pk−1

y

(sign)

{x}
pk−1

y
pky

x (ver)

x KEY
{x}KEY

(enc)

{x}KEY KEY
x (dec)

x
x (check)

Fig. 2. Inference system for the federated network providers scenario.

6. IdP/TI creates SAML Assertion with <AuthnStatement>

Service
Provider

(SP)

Fixed
Operator

(FO)

Mobile
Operator

(MO)

User
Client
(U)

1. Request of registration+federation

2. Search repository for
 token associated to U

YES

NO

14. SP stores the received info

13. HTTP Request (POST)

12. U fills in the "form"

 which must be provided by the U, via a "form"

 directly accesses the service (step 15)
10. Case 1. SP needs no further info and the U

10. Case 2. SP needs specific profile info from the service,

15. HTTP Response (200−OK,access.jsp)

11. HTTP Response (200−OK,"form")

in the Request
"Inject" SAML <Response>

7. c. SAML Assertion may also contain <AttributeStatement>

 d. IdP/TI inserts SAML Assertion in SAML <Response>

8. HTTP Request (POST) http://www.SP.com/registerTravel.jsp + SAML <Response>

9. SP receives, in SAML <Response>, also the token

Local elaborations

4. Retrieve
 token and
 goto step 6

3. Token
 found?

4. a. Verify authentication of Client on basis of IP address
 b. IdP/TI generates token (opaque−id)

5. Send token

Store token

Fig. 3. Message sequence chart of federated network providers.

4

Rule (pair) builds the pair of two messages x and y. Rules (1st) and (2nd)
return the components of a pair. Rule (sign) digitally signs a message x by
applying the secret key pk−1

y of agent y. Rule (ver) verifies a digital signature
{x}pk−1

y
by applying the public key pky of signer y. Rule (enc) encrypts a message

x by applying the symmetric key KEY. Rule (dec) decrypts a message {x}KEY

by applying the symmetric key KEY. Finally, rule (check) performs checks on
the correctness of authentication statements and on the freshness of nonces.

4 Specification of Federated Network Providers Scenario

The federated network providers scenario that we formalise involves a user U, a
service provider SP and two federated network providers: a fixed operator FO
and a mobile operator MO. Our starting point is when U initiates the process of
federated registration with SP through MO. From [2] we inherit the assumption
that all communication between FO and MO is secure: we consider them to
share a secret key KEYFM. The process is lined out in detail in Figure 3.

SAML [8] is an XML standard to exchange information on authentication
and authorisation data between security domains intended to implement mech-
anisms for single sign-ons. A SAML assertion declares a subject authenticated
by a particular means at a particular time. For our purposes, it contains a field
Subj with the token idU identifying U, a field Auth Stat with an authentication
statement asserting that U was authenticated (and the mechanism by which
s/he was), and a field Attr Stat = 〈attr list, nIdP

U 〉 with a list of attributes of U
related to her/his service accesses and a nonce to avoid replay attacks.

To avoid dealing twice with the same process of token generation, we propose
a formalisation that slightly enriches the procedure presented in [2, 6]: as soon
as one of the two network providers receives a request from U , it searches its
repository for a token already associated to U. If this token is found, then it is
retrieved and the procedure continues as in the federated registration scenario.
Otherwise it is generated and immediately sent to the other federated network
provider, where it is stored for subsequent interactions between U and SP :

c0 U 7→ MO : r
cMF MO 7→ FO : {idU,U}KEYFM

c1 MO 7→ SP : {r,SAML assertion}
K−1

MO

c2 SP 7→ U : {ok/ko}
K−1

SP

Next we specify this federated network providers scenario in Crypto-CCS.
This specification is more expressive than the one in standard notation given
above, because all operations and security checks on the various messages are
explicitly modelled. Each process is parameterised by the terms or variables it
has in its knowledge (from the beginning or because it received them earlier).
U0(r)

.= c0!r.c2?xsign. send request, receive signature,
[xsign KSP `ver xacc].0 verify signature and stop

SP0(0) .= c1?xm.SP1(xm) receive SAML assertion+ request and goto next state

5

SP1(xm) .= [xm kIdP `ver xp] verify signature,
[xp `2nd xenc] extract encryption,
[xenc KEY `dec xdec] decrypt,
[xdec `1st xpair] extract pair: token + Auth Stat,
[xdec `2nd xnIdP

U
] extract nonce,

[xpair `1st xidU
] extract token,

[xpair `2nd xauth] extract Auth Stat,
[xauth `check xauth] test correctness Auth Stat,
[xnIdP

U
`check xnIdP

U
] test freshness nonce,

[xidU xnIdP
U

`pair (xidU , xnIdP
U

)] build pair to store,
cS !(xidU , xnIdP

U
) store token + nonce pair,

[access k−1
SP `sign xsign] prepare signature to

c2!xsign.0 grant access and stop
MO0(0, nMO

U , idU,KEYFM) .= c0?xr. receive request and
MO1(xr, n

MO
U , idU,KEYFM) goto next state

MO1(xr, n
MO
U , idU,KEYFM) .= [idU U `pair (idU,U)] create pair,

[(idU,U) KEYFM `enc {(idU,U)}KEYFM] encrypt pair,
cMF!{(idU,U)}KEYFM

. send token to FO,
[idU auth `pair (idU, auth)] create pair,
[(idU, auth) nMO

U `pair ((idU, auth), nMO
U)] create pair,

[((idU, auth), nMO
U) KEY `enc {((idU, auth), nMO

U)}KEY] encrypt pair,
[xr {((idU, auth), nMO

U)}KEY `pair (xr, {((idU, auth), nMO
U)}KEY)]create pair,

[(xr, {((idU, auth), nMO
U)}KEY) k−1

MO `sign xsign] sign pair,
c1!xsign.0 send SAML assertion + request and stop

FO0(KEYFM) .= cMF?xenc receive encryption,
[xenc KEYFM `dec xdec] retrieve decryption,
cS !xdec.0 store token + identity pair and stop

For the sake of readability, we did not fully spell out the digital signatures (i.e. we
just applied the private key to the message to be signed). Moreover, we assumed a
direct communication channel between SP and U in order to grant/deny access,
while in reality all communication passes through IdP. The whole process is
described by U0(r) ‖ MO0(0, nMO

U , idU,KEYFM) ‖ FO0(KEYFM) ‖ SP0(0).

5 Verification of a Security Property

As an intermediate step towards a full-blown security analysis of the protocol,
we verified the vulnerability of our federated network providers scenario w.r.t. a
man-in-the-middle attack. Such an attack is an adversary’s attempt to intercept
and modify messages between two trusted participants, in such a way that nei-
ther participant is able to find out that their communication channel has been
compromised. We used model checking to verify whether the specification of the
insecure channel between MO and SP can withstand such an attack. In [1] we
already verified that the insecure channel between IdP and SP can.

The analysis boils down to verifying the following property: whenever SP con-
cludes the protocol apparently with MO, it was indeed MO that executed it. To

6

this aim, we introduced two special actions in the specification: commit(SP,MO)
and run(MO,SP). The former represents the fact that SP has indeed terminated
the protocol with MO, while the latter represents the fact that MO indeed
started communicating with SP. We then translated the property into requiring
run(MO,SP) to always precede commit(SP,MO). We did the same to test for pos-
sible misbehaviour or interceptions of communications between MO and FO, by
introducing the actions commit(FO,MO) and run(MO,FO) in the specification.

We used the model checker PaMoChSA v1.0 [5] to verify this. We considered
an adversary X and set its initial knowledge to the set of public messages that
it knows at the start of the protocol, i.e. the public keys of MO, FO and SP
and its own public and private key denoted by pkX and pk−1

X . With as input the
specification, the logic formula (commit(SP,MO) and (not run(MO,SP))) or
(commit(FO,MO) and (not run(MO,FO))) and the intruder’s initial knowledge
{pkX , pk−1

X , pkMO, pkFO, pkSP}, the result of the analysis was No attack found.
To verify the logic formula specified above, the tool set out to find a run of the

protocol with the following characteristic: At the end of the run, the adversary ei-
ther knows message commit(SP,MO), but it does not know message run(MO,SP)
(i.e. SP is convinced to have finished talking with MO, while in reality MO has
never started talking with SP), or it knows message commit(FO,MO), but it
does not know message run(MO,FO) (i.e. FO is convinced to have finished talk-
ing with MO, while in reality MO has never started talking with FO). Since
the tool did not find such a run we conclude that, at the conceptual level, the
network protocol is correct w.r.t. the analysed security property.

6 Conclusion

The result of the security analysis presented above, together with the one pre-
sented in [1], strengthens our confidence in the formal specifications of the sce-
narios presented in these two papers. In particular, it leads us to believe that we
correctly inserted digital signatures, encryption and nonces into the protocol.

References

1. ter Beek, M.H., Moiso, C., Petrocchi, M.: Towards Security Analyses of an Identity
Federation Protocol for Web Services in Convergent Networks. In: Proc. AICT’07,
IEEE Computer Society (2007)

2. Bonifati, M., De Lutiis, P., Moiso, C., Morello, E., Sarchi, L.: Identity Federation
for Services in Convergent Networks. In: Proc. ICIN’06. (2006) 109–114

3. Focardi, R., Martinelli, F.: A uniform approach for the definition of security prop-
erties. In: Proc. FM’99. Volume 1708 of LNCS., Springer (1999) 794–813

4. Martinelli, F.: Analysis of security protocols as open systems. Theoretical Computer
Science 290(1) (2003) 1057–1106

5. IIT–CNR: Partial Model Checking Security Analyzer PaMoChSA v1.0 (2007)
6. T. Wason et al.: Liberty ID-FF Architecture Overview v1.2 (2005)
7. Dolev, D., Yao, A.: On the Security of Public Key Protocols. IEEE Transactions

on Information Theory 29(2) (1983) 198–208
8. OASIS Security Services: Security Assertion Markup Language SAML v2.0 (2005)

7

