
Planar trinet dynamics
with two rewrite rules

Tommaso Bolognesi
CNR/ISTI, Pisa, Italy

tommaso.bolognesi@isti.cnr.it
Abstract
We propose a deterministic network mobile automaton for the creation of planar trivalent networks
(trinets) based on the application of only two simple rewrite rules, and we enumerate and explore the
possible brownian dynamics of the control point. A useful behavioral complexity indicator is
introduced, called revisit indicator, exposing a variety of emergent features, involving periodic, nested
and random like dynamics. Regular structures obtained include 1-D graphs, oscillating rings, and the 2-
D, hexagonal grid. In two cases only, out of over a thousand we have inspected, a remarkably fair,
random-like revisit indicator is found, whose trinets exhibit a slow, square-root growth rate; some
properties of these surprising computations are investigated. Finally, one 2-D case is found that seems
to be unique in the way regularity and randomness are mixed.

Keywords. Digital physics, trivalent network, complexity indicator, elementary cellular automata, two-
dimensional Turing machine, turmite, emergent space, graph rewriting.

1. Introduction
Wolfram [W2002] supports the 'digital physics' view, according to which the ultimate laws of physics are of
computational nature, the entire history of our universe is the output of a small, possibly deterministic program, and all
simple and complex natural phenomena correspond to emergent properties of this universal computation. In particular,
he suggests that physical space could be a giant trivalent network that evolves according to few, simple rewrite rules.
Trivalent networks (trinets) are finite, undirected graphs where each node has exactly degree 3, that is, three
neighboring nodes. It is easy to realize that trinets are sufficient for 'implementing' graph structures of any complexity:
given a graph with unrestricted node degrees, the basic trick is to replace any node x of degree n by a cycle X of n nodes
of degree 3, each connected to one of x's neighbors. In particular, by letting k be the dimensionality of a graph G
whenever the number of nodes reachable from a generic node of G in at most r steps (edges) grows like r^k, examples of
regular trinets of dimensionality 1, 2 and 3, and of planar trinets with fractal dimensions between 1 and 2 are shown in
[W2002] (p. 477 and p. 509),

In general, graph rewriting involves nondeterminism, in the selection both of a rule and of a place where to apply it.
Various trinet rewrite rules, and policies for eliminating nondeterminism, are discussed in [W2002]. One solution is to
restrict to causal-invariant rewrite systems, which generate a unique partial order of rewrite events, regardless of the
order in which rules are applied. Another solution enriches the rewrite process by state information that records the 'age'
of nodes, and then always selects the rule and location that involves, say, the youngest nodes. Causal invariance is a
powerful and elegant concept, but the search for systems of rules that guarantee this property is hard, unless quite
restrictive sufficient conditions are adopted; and the mechanism of time stamps appears as unnatural as, say, the
synchrony assumption for the updating of an unbounded set of cells, as adopted by cellular automata. (See [W2002] for
a detailed description of these two approaches, which we have already assessed in [B2007a].)

A third solution for reducing nondeterminism is to adopt what Wolfram calls network mobile automata: these consist in
setting up a single active node, in letting rules replace clusters of nodes around it, and in moving control to an adjacent
node. However, despite looking at several hundred thousand cases, involving clusters with up to 4 nodes and 4 dangling
links, Wolfram reports that he has not been able to find automata with especially complicated behavior, which explains
why this model is relegated to a small note of the NKS book (p. 1040). In conclusion, none of the experiments on
network evolution described by Wolfram could fully replicate the success achieved by elementary cellular automata,
with their visually appealing, rich variety of emergent properties, and with their ability to create interacting particles, as
observed in the well known rule 110 computations.

The two, inter-related objectives of this paper are: (i) to further explore algorithms for the evolution of trinets, and (ii) to
identify visually effective complexity indicators and techniques that can help screening large spaces of trinet-based
computations. In pursuing the first objective, we have avoided the difficulties related with causal-invariance, and have
refrained from enriching the structure of trinets by state information. Rather, we have devised a trinet growth algorithm
along the lines of network mobile automata. In summary, the major differences with the approach (cursorily) mentioned
by Wolfram in his book are that:

Printed by Mathematica for Students

A third solution for reducing nondeterminism is to adopt what Wolfram calls network mobile automata: these consist in
setting up a single active node, in letting rules replace clusters of nodes around it, and in moving control to an adjacent
node. However, despite looking at several hundred thousand cases, involving clusters with up to 4 nodes and 4 dangling
links, Wolfram reports that he has not been able to find automata with especially complicated behavior, which explains
why this model is relegated to a small note of the NKS book (p. 1040). In conclusion, none of the experiments on
network evolution described by Wolfram could fully replicate the success achieved by elementary cellular automata,
with their visually appealing, rich variety of emergent properties, and with their ability to create interacting particles, as
observed in the well known rule 110 computations.

The two, inter-related objectives of this paper are: (i) to further explore algorithms for the evolution of trinets, and (ii) to
identify visually effective complexity indicators and techniques that can help screening large spaces of trinet-based
computations. In pursuing the first objective, we have avoided the difficulties related with causal-invariance, and have
refrained from enriching the structure of trinets by state information. Rather, we have devised a trinet growth algorithm
along the lines of network mobile automata. In summary, the major differences with the approach (cursorily) mentioned
by Wolfram in his book are that:

1. we have used an extremely small set of rewrite rules, consisting of only two elements,
2. we have restricted to planar trinets,
3. we have adopted a refined notion of control point -- the focus described below,
4. we have attributed more importance to the dynamics of the latter, whose steps are made also dependent on the

applied rewrite rule.
Furthermore, we have designed the algorithm around the manipulation of trinet duals -- a choice that has to some extent
facilitated the identification and exhaustive exploration of policies for control point movement.

In Section 2 we introduce our planar trinet growth algorithm, with its two rewrite rules, and its three parameters, one of
which, the threshold, induces a convenient classification of our computational space. In Section 3 we discuss a few
ways in which the overall character of a trinet computation can be visualized, and introduce a useful revisit indicator.
Based on this technique, we exhaustively explore our computational classes in Sections 4 to 9, which correspond to
increasing values of the threshold parameter, and describe the progressive appearance of various emergent features. In
Section 10 we summarize our results and discuss items for future work.

Similar to the space of (elementary) cellular automata, the space of trinet computations, as created by our algorithm,
offers such an abundance of aspects to be investigated that a single paper cannot cover all of them in depth. Then, the
purpose of this work is to provide a first exploration of the whole computation space, to identify all features that may
possibly emerge in it, and to single out the most interesting cases. We believe that these results shall trigger a number of
specific questions that we look forward to investigate in forthcoming papers.

2. The algorithm
A trinet is an undirected graph where each node has degree 3. Trinets may include loop edges and double edges, and, if
v is the number of vertices (nodes) and e is the number of edges, then 3v = 2e. The proof is simple. By definition, each
node is connected to three distinct edges, or to a loop edge and a 'normal' one. By charging three edges to each node,
via the incidence relation, we count each edge exactly twice, thus establishing the above equation. Note that a loop edge
contributes two units to a node degree. A consequence of the above equation is that v is a multiple of 2 and e is a
multiple of 3.

A graph is simple when it does not include loop edges nor double edges. Our algorithm shall only handle trinets without
loops, but possibly with double edges; we call them trinets with doubles (but we shall often omit the attribute). The
inclusion of loops introduces further difficulty -- but appears interesting too! -- , and is left for future investigation.
A graph is planar when it can be embedded on the surface of a sphere without edge crossings. An embedding partitions
the surface of the sphere into regions, and induces a dual graph (also planar), in which nodes correspond to regions and
edges connect the nodes representing adjacent regions. Note that there is an obvious one-to-one correspondence
between the edges of a planar graph and of its dual.

If T is a planar trinet with doubles, and D is its dual (see Figure 1, where the two graphs have, respectively, black and
white nodes), then:

Ë regions in T will be delimited by at least two edges, thus nodes in D have at least degree 2 (see, e.g., case (a));
Ë D may include both loops and doubles (cases (c) and (d));
Ë all the regions of D are triangles, formed by three distinct edges, and every edge is shared by two distinct triangles

(recall that one of them may be the external, 'infinite' triangle).
The latter fact is established by realizing that the dual of D is T itself, so that nodes of T, with degree 3, represent faces
of D, with three sides; and the two triangles sharing an edge in D are distinct essentially because there are no loop edges
in T.

Graph D may include degenerate triangles formed by three distinct edges but less than three nodes. For example, in
Figure 1, case (c), the loop edge in the dual graph delimits a finite triangle with two nodes only, while the infinite,
external region of the dual graph of case (d) is a triangle with just one node. (The inclusion of loop edges in trinets
would lead to degenerate triangles with two vertices and two edges only.) Note, finally, that a loop edge in D
corresponds to an edge in T whose removal disconnects the trinet (see cases (c) and (d)).

2 PlanarTrinetsWithTwoRewriteRulesV2.nb

Printed by Mathematica for Students

Graph D may include degenerate triangles formed by three distinct edges but less than three nodes. For example, in
Figure 1, case (c), the loop edge in the dual graph delimits a finite triangle with two nodes only, while the infinite,
external region of the dual graph of case (d) is a triangle with just one node. (The inclusion of loop edges in trinets
would lead to degenerate triangles with two vertices and two edges only.) Note, finally, that a loop edge in D
corresponds to an edge in T whose removal disconnects the trinet (see cases (c) and (d)).

a

b

c

d

Figure 1 - Four planar trinets (black nodes) and their duals (white nodes)

In our algorithm we shall handle planar graphs -- trinet duals -- with a specific embedding on the sphere. For doing this,
node adjacency information is not enough: we shall need to keep the list of triangles that form the embedding, as
described below.

Representation of spherical (planar) graph embedding
We take now a closer look at the representation and properties of the spherical (planar) graph embeddings manipulated
by the algorithm, as a basis for describing the algorithm itself and proving its invariant.

Definitions (oriented edge, oriented triangle, sphericity conditions, spherical set of oriented edge triples)
Let G(V, E) be a connected, undirected graph, where V is the set of v vertices and E is the set of e edges. Let ex(p, q)
denote an oriented edge, where exœ E is an adge incident to vertices p and q, and (p, q) is an ordered pair. A triple of
oriented edges is an oriented triangle (shortly, a triangle) when (i) it is formed by three distinct edges -- that is ex ≠ ey ≠
ez ≠ ex, and (ii) its elements can be arranged as in (ex(p, q), ey(q, r), ez(r, p)) thus creating a cycle of (at most) three
different nodes; which oriented edge appears first in the triple is irrelevant. Node symbols p, q, r are understood as
formal variables, some of which could be assigned the same actual node identifier, thus yielding degenerate triangles.
A set of t oriented edge triples, relative to sets V and E, is called spherical when it satisfies three sphericity conditions:

1. Every triple is an oriented triangle;
2. Every edge is shared by two distinct triangles, with associated node pairs appearing in opposite order -- that is,

ex(p, q) and ex(p, q)
3. v - e + t = 2 (Euler's formula) ·

Based on graph theoretic arguments, the following fact can be easily established.

Proposition
If G(V, E) is a connected, undirected graph, for which a spherical set of triples can be built, then G is planar, and every
node has at least degree 2. The triples then describe the counterclockwise (by arbitrary convention) traversal of the
border of the triangular regions of the spherical embedding of G. ·

In particular, the minimum degree 2 is a direct consequence of sphericity condition 1. And, based on conditions 1 and
2, one readily establishes that 3t = 2e, which, combined with Euler's formula, yields

e = 3v - 6
t = 2v - 4.

(If condition 3 is replaced by the more general Euler-Poincaré formula v - e + t = 2 - 2g, we have sufficient conditions
for embedding graphs on two-manifolds of genus g. For example, when v - e + t = 0 the graph can be embedded,
without edge crossings, on the torus, whose genus is 1.)

PlanarTrinetsWithTwoRewriteRulesV2.nb 3

Printed by Mathematica for Students

(If condition 3 is replaced by the more general Euler-Poincaré formula v - e + t = 2 - 2g, we have sufficient conditions
for embedding graphs on two-manifolds of genus g. For example, when v - e + t = 0 the graph can be embedded,
without edge crossings, on the torus, whose genus is 1.)

Initial configuration, rewrite rules and computation step
Initial configuration
The most elementary trinet with doubles is the 2-node, 3-edge graph shown in Figure 1.a; thus, all our computations
shall start from the corresponding triangular dual graph shown at its right, whose triangular, spherical embedding is:

triangles = {(e1(1, 2), e2(2, 3), e3(3, 1)),
(e1(2,1), e3(1, 3), e2(3, 2))},

One can indeed check that the above data structure satisfies the three sphericity conditions.

Rewrite rules

The two rewrite rules used by our algorithm are illustrated in Figure 2, where the transformation of dual graphs is
emphasized.

e1 e2

e3

e1 e2

e3q

r

p

e4

se6 e5

e1 e2

e3
q

r

p

s

e4e5

e1 e2

e3

e4e5

q

r

p

q

r

p

s

Figure 2 - Planar trinet rewrite rules: Refin (upper), Diags (lower)

In the context of our algorithm, these rules are called, respectively, Refin and Diags, since the former refines a triangle
by partitioning it into three new triangles, and the latter flips the diagonal of a rhombus. These are among the simples
rulest considered in [W2002] (p. 509), where their completeness is pointed out: they are sufficient for transforming any
planar trinet into any other (with Refin used both ways).

Our implementation of these rules operates on sets of oriented triangles. Rule Refin removes a triangle and creates three
new triples, by introducing a new node (s) and three new edges (e4, e5, e6):

removed triangle: (e1(q, r), e2(r, p), e3(p, q))
created triples: (e1(q, r), e4(r, s), e6(s, q)),

(e2(r, p), e5(p, s), e4(s, r)),
(e3(p, q), e6(q, s), e5(s, p)).

Rule Diags removes two triangles sharing an edge (e3), and introduces two new triples:
removed triangles: (e1(q, r), e2(r, p), e3(p, q)),

(e3(q, p), e4(p, s), e5(s, q)).
created triples: (e5(s, q), e1(q, r), e3(r, s)),

(e3(s, r), e2(r, p), e4(p, s)).
Again, p, q, r, s, are understood as formal variables, which may refer to the same actual node.

4 PlanarTrinetsWithTwoRewriteRulesV2.nb

Printed by Mathematica for Students

Computation step
The algorithm endlessly iterates an elementary computation step, starting from the inital condition described above. The
step is illustrated in Figure 3.

focus

r

pq

degree(p) < Threshold
OR

degree(q) < Threshold

yes no

trinetDual

p
q

apply Refin rule;
focus' = RefinCode (1-18)

apply Diags rule
focus' = DiagsCode (1-9)

pq
1

2

3

4

5
7

6

9

11

1

2

8

3

4 5

6

7

10

14

1315

12

17

16 9

818

RefinCode

DiagsCode

Threshold

r r

s

s

Figure 3 - The step of the algorithm

The step accepts the tuple (trinetDual, focus, Threshold, RefinCode, DiagsCode) and returns the tuple (trinetDual',
focus', Threshold, RefinCode, DiagsCode), where:

Ë trinetDual is the current graph -- the dual of a trinet -- represented as a set of triangles.
Ë focus is an angle of a specified triangle in trinetDual, and represents the current location for control.
Ë Threshold is a constant natural number in the interval [3, ¶], The choice between rule Refin and Diags depends on

the degrees of the two nodes, p and q, of the edge facing the focus: when the degree of p or q is lower than the
Threshold, then rule Refin is applied, which increments by one the degree of both nodes; otherwise rule Diags is
applied, which decrements their degrees by one.

Ë RefinCode and DiagsCode are constant parameters, ranging respectively in intervals [1, 18] and [1, 9]; they are
used for choosing focus', the next focus, as shown in the lower part of Figure 3. In light of the symmetry of the
initial graph, we can optimize the parameter space by dropping half of the 18 potential choices of the new focus,
after rule Diags has been applied: we shall therefore consider only 18 * 9 = 162 pairs of values for these two
parameters.

Ë trinetDual' and focus' are the updated values of these variables, used for iterating the computation step. Threshold,
RefinCode and DiagsCode are constants, thus they are unchanged by the step.

Algorithm invariant
We now want to prove that the rewrite rules, as implemented, preserve the sphericity, as defined above, of the data
structure they manipulate. For doing this we need to introduce a method for computing the degree of a node in a
triangular, spherical embedding. If n is the number of occurrences of node p in a set of oriented triangles, then
degree(p) = n/2, since each edge occurs twice in the structure (recall that a loop edge e(p, p) contributes 2 units to
degree(p)). As an alternative, we may traverse all edges incident to p while rotating clockwise around p, as follows:
pick from the set of triples an oriented edge e(n1, p) in which p appears as second node, and compute what we call the
cyclic star path:

e(n1, p), f(p, n2), f(n2, p), g(p, n3), ..., e(p, n1)

in which two adjacent elements with different edge identifiers, e.g. e(n1, p) and f(p, n2), represent edges that share node
p and appear in (cyclic) sequence in some triangle, while adjacent elements with the same edge identifier, e.g. f(p, n2),
f(n2, p) represent two opposite traversals of the same edge, as found in two distinct triangles. It is easy to check that
degree(p) is half the length of the star path around p.

PlanarTrinetsWithTwoRewriteRulesV2.nb 5

Printed by Mathematica for Students

in which two adjacent elements with different edge identifiers, e.g. e(n1, p) and f(p, n2), represent edges that share node
p and appear in (cyclic) sequence in some triangle, while adjacent elements with the same edge identifier, e.g. f(p, n2),
f(n2, p) represent two opposite traversals of the same edge, as found in two distinct triangles. It is easy to check that
degree(p) is half the length of the star path around p.

As an example, consider the list of two oriented triangles representing the initial configuration introduced above. The
cyclic star path for, say, node 1 is: e3(3, 1), e1(1, 2), e1(2, 1), e3(1, 3). This yields degree(1) = 2. The advantage of this
techinique is that it allows us to possibly discover the degree of a node without scanning the whole list of triangles. We
are now ready to prove an important invariant of the algorithm.

Proposition 1 (Algorithm invariant)

When applied to a spherical set of triangles, and when Threshold ¥ 3, the step of our algorithm produces another
spherical set of triangles.

Proof
We must prove that when a set of triples satisfies sphericity conditions 1-3 above, then the set of triples obtained from it
after one step also satisfies them. We shall refer to the edge and node identifiers appearing in the above rule
implementations. We distinguish two cases.

Case 1: rule Refin is applied.
Each of the three triples created by this rule is an oriented triangle by construction, so that condition 1 is preserved.
Furthermore these triangles: (i) re-introduce the instances e1(q, r), e2(r, p), e3(p, q) that were removed, so that each of
these 'old' edges is shared precisely by a new and an old triangle, and (ii) collectively introduce two oriented edge
occurrences, with opposite node orderings, of each new edge (e4, e5, e6), so that each new edge is shared by two of the
new triangles; thus, condition 2 is also preserved. Finally, v, e, t are incremented, respectively, by 1, 3, 2, so that the
value of v - e + t is unaffected and condition 3 preserved. The effect of Refin on a triangle involving one, two, or three
distinct vertices is illustrated in Figure 4.

Figure 4 - Applying rule Refin to triangles with three vertices, two vertices, or one vertex

Case 2: rule Diags is applied.

Consider the two removed triangles. They share at least edge e3, but may share more; again, symbols e1, e2, e4, e5 are
understood as formal variables, some of which may assume the same actual value. Thus, we distinguish three cases,
depending on the number of actual edges they share. In all these cases condition 3 is trivially guaranteed, since the
counts of vertices, edges, and triples is left unchanged.

Case 2.1 - The two removed triangles share one edge.

Since e1, e2, e4, e5 are all different, each of the two created triples is a triangle by construction, hence condition 1 is
guaranteed. Condition 2 is guaranteed by the fact that oriented edge occurrences for e1, e2, e4, e5 are only moved
around by the rule, while occurrences e3(p, q) and e3(q, p) are replaced by occurrences e3(r, s) and e3(s, r), that still
appear in different triangles.

Case 2.2 - The two removed triangles share two edges.

We distinguish two subcases.

Case 2.2.1. The two shared edges (one is e3) appear in the same order in the two removed triangles. Let us then assume,
w.l.o.g., that e1 = e4 (the case e2 = e5 is symmetric), so that the two removed triangles can be written:

(e1(q, r), e2(r, p), e3(p, q))
(e3(q, p), e1(r, q), e5(q, q)),

6 PlanarTrinetsWithTwoRewriteRulesV2.nb

Printed by Mathematica for Students

(e1(q, r), e2(r, p), e3(p, q))
(e3(q, p), e1(r, q), e5(q, q)),

where the second triple is obtained by reversing the order of nodes for e1 and e3, and by letting the nodes for e5
complete the triangulation. But for the second triple to be a correct triangle, it must also be p = r, so that the triangles
can be rewritten as:

(e1(q, p), e2(p, p), e3(p, q))
(e3(q, p), e1(p, q), e5(q, q)).

These triangles are depicted in Figure 5 (left). By applying rule Diags to these two oriented triangles, we obtain the two
triples:

(e5(q, q), e1(q, p), e3(p, q))
(e3(q, p), e2(p, p), e1(p, q)).

We have obtained two oriented triangles (condition 1), and it is trivial to verify that, after the replacement, condition 2
holds.

Case 2.2.2. The two shared edges (one is e3) appear in opposite order in the two removed triangles. Let us then assume,
w.l.o.g., that e1 = e5 (the case e2 = e4 is symmetric). The two triangles to be removed would be:

(e1(q, r), e2(r, p), e3(p, q))
(e3(q, p), e4(p, r), e1(r, q)),

where the second triple is obtained by reversing the order of nodes for e1 and e3, and by letting the nodes for e4
complete the triangulation. Consider node q, which is shared by the two edges e1 and e3, in turn shared by the two
triangles: its cyclic star path is (e3(p, q), e1(q, r), e1(r, q), e3(q, p)), its length is 4, thus degree(q) = 2. This is in conflict
with the assumption Threshold ¥ 3: rule Diags could not be applied to edge e3 since one of its nodes has degree lower
than the threshold. The two triangles are depicted in Figure 5 (right).

Figure 5 - Pairs of triangles for cases 2.2.1 and 2.2.2.

Case 2.3 - The two removed triangles share three edges.

The first removed triangle is (e1(q, r), e2(r, p), e3(p, q)), thus the second removed triangle must be composed by the
three oriented edges e1(r, q), e2(p, r) and e3(q, p), thus it can only be (e1(r, q), e3(q, p), e2(p, r)). In this case, the star
path of any of the nodes has length 4, hence all nodes have degree 2. This is, again, in conflict with the assumption
Threshold ¥ 3. Q.E.D.

We have verified earlier that the set of triples in the initial configuration is spherical. In light of the above invariant, we
now conclude, inductively, that all sets of triples produced by the algorithm are spherical, that is, they represent
spherical embeddings of planar, triangular graphs.

Computation classes
We shall let c[T, {RC, DC}, L] denote the (L-1)-step computation of our algorithm, starting from the initial condition
above, with Threshold = T, RefinCode = RC and DiagsCode = DC. (A pedantic but necessary clarification: usually a
step is understood as a pair of consecutive states, hence a 1-step computation is two states long: the 'L' in c[T, {RC,
DC}, L] refers to the Length of the computation, intended as the number of states it includes.) We shall also use a
convenient notation for representing subsets of the computation space. For example, C[Threshold = 3] shall denote the
set {c[3, {RC, DC}, S] | RC œ [1, 18], DC œ [1, 9], S ¥ 1}, that is, the family of all computations with Threshold = 3, of
any length. Since we impose Threshold ¥ 3, the first computation step inevitably applies rule Refin, and produces the
tetrahedron graph shown in Figure 1 (b), Then computations start to differentiate, depending on the parameter settings.

3. Visual indicators for planar trinet computations

PlanarTrinetsWithTwoRewriteRulesV2.nb 7

Printed by Mathematica for Students

3. Visual indicators for planar trinet computations
A computation can be defined as a sequence of states. The state of our algorithm is essentially formed by the pair of
variables (trinetDual, focus), that represent a planar graph and the location of control in it. We are interested in the
emergent properties of planar trinets, with the idea that they might eventually capture properties of physical space.
However, it may be hard to visually detect emergent properties when directly using graphs, for the following reasons: (i)
a trinet or trinet dual may soon become a complex structure, and a sequence of thousands of them can hardly be
inspected at a glance, as opposed to what happens, for example, with the computations of elementary cellular automata;
(ii) there exist many alternative methods to draw graphs on the plane, such as using a predefined arrangement of the
nodes (e.g. circular) or applying attractive or repulsive forces to nodes, and the emergence and detectability of patterns
is largely dependent on the method.

One can of course look just at the final graph, either in dual or in primal form, and we shall do it too. However,
emergent properties are better detected when looking at the whole computation. Thus, in our investigation we shall be
much interested in the fluctuations of the other state variable -- the focus. This variable captures only a tiny fraction of
state information, but this is indeed an advantage, since we can easily plot a whole computations as a compact, readily
inspected diagram. We have defined the focus as the angle {e1, e2} between two edges of triangle {e1, e2, e3}. For
further simplification, we shall simply monitor the edge opposite to this angle, namely e3. Note that this is the edge
whose vertices p and q are tested at every step: we call it the current edge. Looking at e3 rather than at pair {e1, e2}
introduces further ambiguity, or abstraction, since e3 identifies two possible foci. And yet, the sequence of current edge
identifiers turns out to be a useful indicator. New edges are created in the trinet dual, three at a time, only by the Refin
rule, and are assigned progressive natural numbers; plotting the sequence of current edge numbers reveals the extent to
which the control point can revisit and update old parts of the graph, and whether some regions are definitively
abandoned. For this reason we call these numeric sequences, and their plots, revisit indicators.

For illustrating the idea above, and for comparison with some of the revisit indicators we shall discuss later, consider the
two plots in Figure 6. These depict the revisit indicators for two extremely simple and regular graph growth patterns;
the relevant revisited elements are now the nodes, which are numbered sequentially as they are created. In the first case
the algorithm maintains a linear topology, and creates a new node only after having sequentially scanned the current list
{1, 2, ..., n} of nodes, in both directions, up and down. The second case is similar, except that nodes are arranged in a
growing circle, and a new node is added after a circular, single-scan visit of the graph.

0 100 200 300 400 500
steps

5
10
15
20

nodes

0 100 200 300 400 500
steps

5
10
15
20
25
30
nodes

Figure 6 - Revisit indicators for graphs with linear (left) and circular (right) topology

An easy calculation shows that the node-growth functions, also plotted in the diagrams, are n = Sqrt[s] for the linear
graph, and n = Sqrt[2s] for the circular graph. More generally, a growth rate n = Sqrt[2s/k] corresponds to a 'grow-and-
revisit' algorithm that, in the interval between the creation of nodes n-1 and n, takes k*n revisit steps.

A rather obvious visual complexity indicator, even simpler than the revisit indicator, consists in plotting the number of
nodes in the trinet dual as a function of the algorithm steps. We call this the dual node count indicator, with the attribute
'dual' often omitted. Recall that these nodes represent trinet faces. This indicator is a monotonic, non-decreasing
function, since rule Refin adds one node to the trinet dual (two nodes to the original trinet), and rule Diags leaves the
node count unaffected. In the sequel we mainly refer to the revisit indicator, since it confirms but also refines in
interesting ways the classification induced by pure node counting.

8 PlanarTrinetsWithTwoRewriteRulesV2.nb

Printed by Mathematica for Students

4. Threshold 3: 1-D trinets, simple oscillators and trees
Figure 7 shows the revisit indicator for all the computations of Length 500, with Threshold 3 -- a set of 18 * 9 = 162
elements that we denote C[Threshold = 3, Length = 500], and Figure 8 shows the corresponding final trinets. The
numbers appearing at the left of each small diagram represent the highest current edge identifier used in the
computation: this number cannot exceed 3*Length, since the initial trinet dual has three edges, and each step can at most
contribute three new edges.

5
81, 1<

752
81, 2<

752
81, 3<

752
81, 4<

752
81, 5<

6
81, 6<

752
81, 7<

5
81, 8<

752
81, 9<

4
82, 1<

751
82, 2<

7
82, 3<

751
82, 4<

421
82, 5<

5
82, 6<

7
82, 7<

6
82, 8<

751
82, 9<

2
83, 1<

66
83, 2<

8
83, 3<

15
83, 4<

501
83, 5<

6
83, 6<

7
83, 7<

6
83, 8<

242
83, 9<

6
84, 1<

753
84, 2<

753
84, 3<

753
84, 4<

753
84, 5<

6
84, 6<

753
84, 7<

6
84, 8<

753
84, 9<

5
85, 1<

15
85, 2<

8
85, 3<

68
85, 4<

380
85, 5<

6
85, 6<

8
85, 7<

5
85, 8<

197
85, 9<

3
86, 1<

373
86, 2<

750
86, 3<

102
86, 4<

750
86, 5<

5
86, 6<

750
86, 7<

6
86, 8<

321
86, 9<

4
87, 1<

751
87, 2<

751
87, 3<

751
87, 4<

751
87, 5<

5
87, 6<

751
87, 7<

6
87, 8<

751
87, 9<

6
88, 1<

69
88, 2<

753
88, 3<

15
88, 4<

753
88, 5<

6
88, 6<

753
88, 7<

6
88, 8<

315
88, 9<

1
89, 1<

745
89, 2<

7
89, 3<

748
89, 4<

599
89, 5<

6
89, 6<

2
89, 7<

5
89, 8<

748
89, 9<

2
810, 1<

748
810, 2<

7
810, 3<

748
810, 4<

390
810, 5<

6
810, 6<

7
810, 7<

6
810, 8<

748
810, 9<

1
811, 1<

15
811, 2<

5
811, 3<

62
811, 4<

267
811, 5<

6
811, 6<

12
811, 7<

5
811, 8<

174
811, 9<

3
812, 1<

65
812, 2<

7
812, 3<

29
812, 4<

504
812, 5<

5
812, 6<

7
812, 7<

6
812, 8<

255
812, 9<

3
813, 1<

74
813, 2<

5
813, 3<

66
813, 4<

360
813, 5<

5
813, 6<

8
813, 7<

6
813, 8<

204
813, 9<

2
814, 1<

107
814, 2<

6
814, 3<

98
814, 4<

502
814, 5<

6
814, 6<

5
814, 7<

6
814, 8<

181
814, 9<

1
815, 1<

381
815, 2<

747
815, 3<

381
815, 4<

750
815, 5<

6
815, 6<

750
815, 7<

5
815, 8<

330
815, 9<

1
816, 1<

15
816, 2<

747
816, 3<

62
816, 4<

750
816, 5<

6
816, 6<

750
816, 7<

5
816, 8<

264
816, 9<

3
817, 1<

65
817, 2<

5
817, 3<

29
817, 4<

378
817, 5<

5
817, 6<

8
817, 7<

6
817, 8<

209
817, 9<

2
818, 1<

748
818, 2<

6
818, 3<

748
818, 4<

502
818, 5<

6
818, 6<

5
818, 7<

6
818, 8<

748
818, 9<

Figure 7 - Revisit indicators for all threshold-3, length-500 computations

PlanarTrinetsWithTwoRewriteRulesV2.nb 9

Printed by Mathematica for Students

81, 1< 81, 2< 81, 3< 81, 4< 81, 5< 81, 6< 81, 7< 81, 8< 81, 9<

82, 1< 82, 2< 82, 3< 82, 4< 82, 5< 82, 6< 82, 7< 82, 8< 82, 9<

83, 1< 83, 2< 83, 3< 83, 4< 83, 5< 83, 6< 83, 7< 83, 8< 83, 9<

84, 1< 84, 2< 84, 3< 84, 4< 84, 5< 84, 6< 84, 7< 84, 8< 84, 9<

85, 1< 85, 2< 85, 3< 85, 4< 85, 5< 85, 6< 85, 7< 85, 8< 85, 9<

86, 1< 86, 2< 86, 3< 86, 4< 86, 5< 86, 6< 86, 7< 86, 8< 86, 9<

87, 1< 87, 2< 87, 3< 87, 4< 87, 5< 87, 6< 87, 7< 87, 8< 87, 9<

88, 1< 88, 2< 88, 3< 88, 4< 88, 5< 88, 6< 88, 7< 88, 8< 88, 9<

89, 1< 89, 2< 89, 3< 89, 4< 89, 5< 89, 6< 89, 7< 89, 8< 89, 9<

810, 1< 810, 2< 810, 3< 810, 4< 810, 5< 810, 6< 810, 7< 810, 8< 810, 9<

811, 1< 811, 2< 811, 3< 811, 4< 811, 5< 811, 6< 811, 7< 811, 8< 811, 9<

812, 1< 812, 2< 812, 3< 812, 4< 812, 5< 812, 6< 812, 7< 812, 8< 812, 9<

813, 1< 813, 2< 813, 3< 813, 4< 813, 5< 813, 6< 813, 7< 813, 8< 813, 9<

814, 1< 814, 2< 814, 3< 814, 4< 814, 5< 814, 6< 814, 7< 814, 8< 814, 9<

815, 1< 815, 2< 815, 3< 815, 4< 815, 5< 815, 6< 815, 7< 815, 8< 815, 9<

816, 1< 816, 2< 816, 3< 816, 4< 816, 5< 816, 6< 816, 7< 816, 8< 816, 9<

817, 1< 817, 2< 817, 3< 817, 4< 817, 5< 817, 6< 817, 7< 817, 8< 817, 9<

818, 1< 818, 2< 818, 3< 818, 4< 818, 5< 818, 6< 818, 7< 818, 8< 818, 9<

Figure 8 - Final trinets for all threshold-3, length-500 computations

Constant revisit indicator: periodic trinet sequences
The simplest type of computation corresponds to a constant revisit indicator. An example is computation c[3, {1, 1}, _]
(of unspecified length), in which, after one step, edge 5 becomes the current edge forever, and Diags the only applied
rule. In this case, the sequence of trinets has period 2 and oscillates between the tetrahedron and a square-like graph
with two double edges; the tetrahedron happens to be the final trinet of the length-500 computation, as shown in the
corresponding entry of Figure 8. Many similar cases of constant plots, involving a finite number of distinct current edge
identifiers occur in this computation class, as well as in subsequent ones; they all correspond to periodic sequences of
bounded-size trinets, and to graphs with very few nodes and edges in Figure 8. For example, in computation c[3, {2, 3},
_], the current edge oscillates between 7 and 4, and the sequence of trinets has period 10 (or period 5, if node identities
are ignored). Note that in this class also the node count indicator must be a constant function.

Linear revisit indicator: regular, 1-D, growing trinets
The next simple case, quite common too, is that of revisit indicators with linear growth. An example is computation c[3,
{1, 2}, _], in which the sequence of current edge identifiers gives a regular numeric sequence where every third natural
number is skipped. The corresponding graph is the simplest 1-D, ladder-shaped trinet. Four consecutive trinets from
this computation are shown in Figure 9. Node numbers help understanding the growth mechanism.

10 PlanarTrinetsWithTwoRewriteRulesV2.nb

Printed by Mathematica for Students

Constant revisit indicator: periodic trinet sequences
The simplest type of computation corresponds to a constant revisit indicator. An example is computation c[3, {1, 1}, _]
(of unspecified length), in which, after one step, edge 5 becomes the current edge forever, and Diags the only applied
rule. In this case, the sequence of trinets has period 2 and oscillates between the tetrahedron and a square-like graph
with two double edges; the tetrahedron happens to be the final trinet of the length-500 computation, as shown in the
corresponding entry of Figure 8. Many similar cases of constant plots, involving a finite number of distinct current edge
identifiers occur in this computation class, as well as in subsequent ones; they all correspond to periodic sequences of
bounded-size trinets, and to graphs with very few nodes and edges in Figure 8. For example, in computation c[3, {2, 3},
_], the current edge oscillates between 7 and 4, and the sequence of trinets has period 10 (or period 5, if node identities
are ignored). Note that in this class also the node count indicator must be a constant function.

Linear revisit indicator: regular, 1-D, growing trinets
The next simple case, quite common too, is that of revisit indicators with linear growth. An example is computation c[3,
{1, 2}, _], in which the sequence of current edge identifiers gives a regular numeric sequence where every third natural
number is skipped. The corresponding graph is the simplest 1-D, ladder-shaped trinet. Four consecutive trinets from
this computation are shown in Figure 9. Node numbers help understanding the growth mechanism.

12

35

4

7

6

9

8
11

12
10

12

35

4

7

6

9

8

12

10

11

12

35

4

76

9

8

11

10
13

14
12

12

35

4

7

6

9

8

11

10

14

12

13

Figure 9 - Four consecutive trinets from computation c[3, {1, 2}, _]

Other simple 1-D patterns are observed. For example computations c[3, {12, 5}, 60] and c[3, {13, 5}, 130] yield the
trinets shown in Figure 10, which grow linearly and regularly: the details of these structures are lost in the linear
thumbnail diagrams of Figure 8.

83, 812, 5<, 60<

83, 813, 5<, 130<

Figure 10 - 1-D final trinets of c[3, {12, 5}, 60] and c[3, {13, 5}, 130]

In all linear cases above, the growth takes place at one extreme of the graph. A slightly different growth pattern is
achieved by computation c[3, {5, 9}, _], whose revisit indicator is illustrated in more detail, with the corresponding 1-D
trinet, in Figure 11: in this case the growth takes place in the central part of the trinet.

PlanarTrinetsWithTwoRewriteRulesV2.nb 11

Printed by Mathematica for Students

In all linear cases above, the growth takes place at one extreme of the graph. A slightly different growth pattern is
achieved by computation c[3, {5, 9}, _], whose revisit indicator is illustrated in more detail, with the corresponding 1-D
trinet, in Figure 11: in this case the growth takes place in the central part of the trinet.

50 100 150 200

20

40

60

80
83, 85, 9<, 200<

83, 85, 9<, 200<

Figure 11 - Revisit indicator and final 1-D trinet growing from its center

The second 1-D pattern found in this family of computations is the circle: four examples are shown in Figure 12. In the
last case, the circle is formed after a relatively large initial transient phase; the portion of the trinet created in this phase
is then permanently abandoned, and the growth takes place at the extreme of the circle opposite to it, as suggested by the
picture.

2 4 6 8 10 12

5

10

15

83, 82, 2<, 12< 83, 82, 2<, 12<

10 20 30 40 50 60

10
20
30
40
50
60

83, 83, 5<, 60< 83, 83, 5<, 60<

50 100 150 200 250 300

50

100

150

83, 86, 9<, 300< 83, 86, 9<, 300<

50 100 150 200 250 300 350

50

100

150

200

83, 815, 9<, 360<
83, 815, 9<, 360<

Figure 12 - Revisit indicator and final, circular 1-D trinet for three computations

12 PlanarTrinetsWithTwoRewriteRulesV2.nb

Printed by Mathematica for Students

The simple linear and circular 1-D structures appear combined in c[3, {13, 9}, _] (Figure 13); in this case the active
region is at their junction, and they grow at the same speed, providing a stable overall shape.

50 100 150 200 250 300

20

40

60

80

100

120

83, 813, 9<, 300<
83, 813, 9<, 300<

Figure 13 - Revisit indicator and final 1-D trinet for c[3, {13, 9}, 300]

All the revisit diagrams of this group eventually exhibit the same linear growth; the node count grows linearly with the
computation steps, all parts of the growing trinet are eventually abandoned, except, possibly, for a finite part, and the
trinet is one-dimensional.

Nested revisit indicator: oscillating, segment-circle and circle-circle 1-D trinets
Twelve examples of nested revisit indicator are found in Figure 7: six are in column 2, and have (RefinCode,
DiagsCode) pairs (3, 2), (8, 2), (12, 2), (13, 2), (14, 2), (17, 2), and six in column 4, with codes (5, 4), (6, 4), (11, 4), (13,
4), (14, 4), (16, 4). The final trinets in Figure 8 fail to reveal the substantial difference between these computations and
those in the previous group, but the revisit indicators are more informative; in particular, these diagrams indicate that
the trinet growth process sweeps an increasingly large portion of the net, by actually sampling all parts of it, except for
case (3, 2) in which a slowly growing region is permanently abandoned. Two distinct types of dynamics emerge from
these 12 computations; they are described below.

Segment-circle. The first growth pattern is exhibited by five computations, with codes (12, 2), (13, 2), (17, 2), (13, 4),
(14, 4). We call this pattern 'segment-circle' because the trinet is formed by connecting a linear segment and a circle;
this is similar to the trinet shown in Figure 13, except that both parts now grow and shrink, with opposite phase, so that
the trinet oscillates smoothly between a purely circular and a purely linear form. Activity always takes place at the
junction between the two structures. As observed in the previous cases, the micro-structure of the segment and the circle
is based on a variety of different, simple building blocks.
As an example, Figure 14 illustrates computation c[3, {14, 4}, 2300].

500 1000 1500 2000

50

100

150

200

83, 814, 4<, 2300<
83, 814, 4<, 2300<

Figure 14 - Nested computation c[3, {14, 4}, 2300].

PlanarTrinetsWithTwoRewriteRulesV2.nb 13

Printed by Mathematica for Students

Note the similarity between the revisit diagram of Figure 14 and the one on the left in Figure 6. For a better illustration
of the dynamics of these trinets, a subsequence of several steps from computation c[3, (13, 2), _] is shown in Figure 15.

Figure 15 - Steps of computation c[3, {13, 2}, _], showing circular and linear components that grow and shrink

Circle-circle. The second growth pattern is exhibited by seven computations, with codes (3, 2), (8, 2), (14, 2), (5, 4), (6,
4), (11, 4), (16, 4). We call the pattern 'circle-circle' because the trinet is formed by connecting two circles, that grow
and shrink with opposite phase. Again, the growth always takes place at the junction between the two structures, and
various types of simple building blocks are observed. Several steps of computation c[3, (6, 4), _] are shown in Figure
16, where the micro-structure is the same of Figure 15.

Figure 16 - A few steps of computation c[3, {6, 4}, _] showing a growing and a shrinking circle

The twelve computations with nested revisit indicator discussed above are also directly identified by inspecting their
node count indicators: out of the 162 threshold-3 elements they are precisely those that exhibit a regular staircase shape
with a sub-linear growth. A closer investigation of these data has revealed the facts described below.

14 PlanarTrinetsWithTwoRewriteRulesV2.nb

Printed by Mathematica for Students

The 8 computations with RefinCode-DiagsCode pairs (3, 2), (8, 2), (12, 2), (17, 2), (5, 4), (11, 4), (13, 4), (16, 4) exhibit
identical node growth functions, although they yield trinets of different types: codes (3, 2), (8, 2), (5, 4), (11, 4), (16, 4)
yield the same circle-circle trinet, and codes (12, 2), (17, 2), (13, 4) yield the same segment-circle trinet. Their node
growth function is matched with excellent precision by function f(x) = 3 + Sqrt[x], as shown in Figure 17. Recall that
the initial trinet dual has indeed three nodes.

200 400 600 800 1000
Steps

5

10

15

20

25

30

35
Node count

Figure 17 - Node growth for eight threshold-3 nested computations and function 3 + Sqrt(x)

Of the remaining 4 nested cases, those with code pairs (13, 2) and (14, 4) are of segment-circle type, while (14, 2) and
(6, 4) are of circle-circle type. All four node growth functions are different, but they all approximate quite closely the
O(n^1/2) growth of the previous group. Indeed, by using Mathematica function FindFit over computations of length
10,000, and by using parametric function f(x) = a + b*x^c, in all four cases a c exponent in the close proximity of 1/2
was found.

'Radial' revisit indicator: tree-like irregular trinets
Two computations in class C[Threshold = 3] exhibit revisit indicators that are slightly perturbed versions of a very
regular pattern consisting of potentially infinite straight lines ('rays') emanating from the origin: these have code pairs
(2, 5) and (11, 5). Their corresponding trinets are tree-like irregular graphs, and the active point on them also moves
quite irregularly, visiting every part infinitely often. The revisit indicator and final trinet for computation c[3, (2, 5),
2000] are shown in Figure 18. We had found a cleaner (that is, not perturbed) version of this radial revisit indicator by
using another trinet algorithm, as described in [B2007a], and we shall find it again with the present algorithm, later in
the paper.

500 1000 1500 2000

500

1000

1500

83, 82, 5<, 2000<
83, 82, 5<, 2000<

Figure 18 - An 'infinite rays' revisit indicator and the corresponding tree-like trinet.

These two cases also illustrate the usefulness of our revisit indicator: the pure node count indicator for them is basically
linear, and would not be as effective as the infinite-radii pattern in discriminating them from the many other
computations with linear node count.

Revisit indicators with long random transients: complex trinets with 'highways'
By inspecting Figure 7, six computations in class C[Threshold = 3] exhibit a high degree of apparent randomness in
their revisit indicator. They are all in column 9, and have code pairs (3, 9), (8, 9), (11, 9), (14, 9), (16, 9), (17, 9). In
fact, by looking at longer computations, all of them eventually stabilize to a regular growth pattern, called 'highway' in
analogy with the phenomenon observed in some two dimensional Turing Machines. (The node count indicators in all
these cases appear as roughly linear, even in the transient phase preceding the highway.)

For example, Figure 19 shows the periodic revisit indicator and periodic trinet for computation c[3, {3, 9}, 2000].

PlanarTrinetsWithTwoRewriteRulesV2.nb 15

Printed by Mathematica for Students

Revisit indicators with long random transients: complex trinets with 'highways'
By inspecting Figure 7, six computations in class C[Threshold = 3] exhibit a high degree of apparent randomness in
their revisit indicator. They are all in column 9, and have code pairs (3, 9), (8, 9), (11, 9), (14, 9), (16, 9), (17, 9). In
fact, by looking at longer computations, all of them eventually stabilize to a regular growth pattern, called 'highway' in
analogy with the phenomenon observed in some two dimensional Turing Machines. (The node count indicators in all
these cases appear as roughly linear, even in the transient phase preceding the highway.)

For example, Figure 19 shows the periodic revisit indicator and periodic trinet for computation c[3, {3, 9}, 2000].

500 1000 1500 2000

200

400

600

800

83, 83, 9<, 2000<

83, 83, 9<, 2000<

Figure 19 - A periodic computation with short transient and long period.

As another example, Figure 20 illustrates computation c[3, {11, 9}, 12000]. More than 8000 steps are necessary for
stabilizing the growth, with settles in what we have called a segment-circle pattern, with the active part at the junction
of the two components. In fact, in spite of the possibly very long initial transient and period, these computations are not
qualitatively different from those with 'linear revisit indicators' discussed at the beginning of this section.

2000 4000 6000 8000 10000 12000

1000

2000

3000

83, 811, 9<, 12 000<

83, 811, 9<, 12 000<

Figure 20 - A computation yielding a trinet which eventually settles to a segment-circle pattern with linear growth

Finally, we have investigated computation c[3, {14, 9}, _]. Running it for 160,000 steps allowed us to detect the
periodicity of its revisit indicator, with a period of over 11,000 steps.

16 PlanarTrinetsWithTwoRewriteRulesV2.nb

Printed by Mathematica for Students

5. Threshold 4: nested trinets and uniform randomness
Similar to the previous section, Figure 21 shows the revisit indicator for all the 162 computations in class C[Threshold
= 4, Length = 500], and Figure 22 shows the corresponding final trinets.

1499
81, 1<

1499
81, 2<

1499
81, 3<

1499
81, 4<

1499
81, 5<

1499
81, 6<

1499
81, 7<

1499
81, 8<

1499
81, 9<

1498
82, 1<

1498
82, 2<

1498
82, 3<

1498
82, 4<

1498
82, 5<

1498
82, 6<

1498
82, 7<

1498
82, 8<

1498
82, 9<

5
83, 1<

96
83, 2<

503
83, 3<

26
83, 4<

502
83, 5<

9
83, 6<

10
83, 7<

7
83, 8<

560
83, 9<

1500
84, 1<

1500
84, 2<

1500
84, 3<

1500
84, 4<

1500
84, 5<

1500
84, 6<

1500
84, 7<

1500
84, 8<

1500
84, 9<

1499
85, 1<

1499
85, 2<

1499
85, 3<

1499
85, 4<

1499
85, 5<

1499
85, 6<

1499
85, 7<

1499
85, 8<

1499
85, 9<

5
86, 1<

373
86, 2<

753
86, 3<

63
86, 4<

750
86, 5<

8
86, 6<

750
86, 7<

8
86, 8<

504
86, 9<

1498
87, 1<

1498
87, 2<

1498
87, 3<

1498
87, 4<

1498
87, 5<

1498
87, 6<

1498
87, 7<

1498
87, 8<

1498
87, 9<

1500
88, 1<

1500
88, 2<

1500
88, 3<

1500
88, 4<

1500
88, 5<

1500
88, 6<

1500
88, 7<

1500
88, 8<

1500
88, 9<

1
89, 1<

745
89, 2<

502
89, 3<

751
89, 4<

600
89, 5<

9
89, 6<

2
89, 7<

9
89, 8<

745
89, 9<

2
810, 1<

751
810, 2<

13
810, 3<

748
810, 4<

401
810, 5<

7
810, 6<

502
810, 7<

9
810, 8<

748
810, 9<

6
811, 1<

26
811, 2<

11
811, 3<

30
811, 4<

485
811, 5<

14
811, 6<

18
811, 7<

898
811, 8<

329
811, 9<

1495
812, 1<

1495
812, 2<

1495
812, 3<

1495
812, 4<

1495
812, 5<

1495
812, 6<

1495
812, 7<

1495
812, 8<

1495
812, 9<

3
813, 1<

29
813, 2<

8
813, 3<

500
813, 4<

342
813, 5<

8
813, 6<

602
813, 7<

8
813, 8<

360
813, 9<

1497
814, 1<

1497
814, 2<

1497
814, 3<

1497
814, 4<

1497
814, 5<

1497
814, 6<

1497
814, 7<

1497
814, 8<

1497
814, 9<

6
815, 1<

454
815, 2<

996
815, 3<

381
815, 4<

753
815, 5<

752
815, 6<

750
815, 7<

97
815, 8<

753
815, 9<

1
816, 1<

111
816, 2<

747
816, 3<

162
816, 4<

747
816, 5<

9
816, 6<

753
816, 7<

9
816, 8<

375
816, 9<

6
817, 1<

95
817, 2<

6
817, 3<

21
817, 4<

506
817, 5<

10
817, 6<

8
817, 7<

75
817, 8<

351
817, 9<

4
818, 1<

748
818, 2<

4
818, 3<

745
818, 4<

752
818, 5<

753
818, 6<

7
818, 7<

9
818, 8<

751
818, 9<

Figure 21 - Revisit indicators for all threshold-4, length-500 computations

PlanarTrinetsWithTwoRewriteRulesV2.nb 17

Printed by Mathematica for Students

81, 1< 81, 2< 81, 3< 81, 4< 81, 5< 81, 6< 81, 7< 81, 8< 81, 9<

82, 1< 82, 2< 82, 3< 82, 4< 82, 5< 82, 6< 82, 7< 82, 8< 82, 9<

83, 1< 83, 2< 83, 3< 83, 4< 83, 5< 83, 6< 83, 7< 83, 8< 83, 9<

84, 1< 84, 2< 84, 3< 84, 4< 84, 5< 84, 6< 84, 7< 84, 8< 84, 9<

85, 1< 85, 2< 85, 3< 85, 4< 85, 5< 85, 6< 85, 7< 85, 8< 85, 9<

86, 1< 86, 2< 86, 3< 86, 4< 86, 5< 86, 6< 86, 7< 86, 8< 86, 9<

87, 1< 87, 2< 87, 3< 87, 4< 87, 5< 87, 6< 87, 7< 87, 8< 87, 9<

88, 1< 88, 2< 88, 3< 88, 4< 88, 5< 88, 6< 88, 7< 88, 8< 88, 9<

89, 1< 89, 2< 89, 3< 89, 4< 89, 5< 89, 6< 89, 7< 89, 8< 89, 9<

810, 1< 810, 2< 810, 3< 810, 4< 810, 5< 810, 6< 810, 7< 810, 8< 810, 9<

811, 1< 811, 2< 811, 3< 811, 4< 811, 5< 811, 6< 811, 7< 811, 8< 811, 9<

812, 1< 812, 2< 812, 3< 812, 4< 812, 5< 812, 6< 812, 7< 812, 8< 812, 9<

813, 1< 813, 2< 813, 3< 813, 4< 813, 5< 813, 6< 813, 7< 813, 8< 813, 9<

814, 1< 814, 2< 814, 3< 814, 4< 814, 5< 814, 6< 814, 7< 814, 8< 814, 9<

815, 1< 815, 2< 815, 3< 815, 4< 815, 5< 815, 6< 815, 7< 815, 8< 815, 9<

816, 1< 816, 2< 816, 3< 816, 4< 816, 5< 816, 6< 816, 7< 816, 8< 816, 9<

817, 1< 817, 2< 817, 3< 817, 4< 817, 5< 817, 6< 817, 7< 817, 8< 817, 9<

818, 1< 818, 2< 818, 3< 818, 4< 818, 5< 818, 6< 818, 7< 818, 8< 818, 9<

Figure 22 - Final trinets for all threshold-4, length-500computations

By inspecting the two figures it is immediately clear that the large majority of these computations exhibits emergent
features that are qualitatively the same we have already observed in the previous class. Let us shortly overview these
cases, before moving to the novel, most interesting ones.

We still have periodic sequences of bounded trinets, and 1-D trinets that grow linearly and without bound, as segments
or circles. Interestingly, among the latter, computation c[4, {17, 5}, _] provides a trinet whose uniformly growing
structure appears similar to a circle with its diameter, so that its macrostructure reproduces the initial trinet -- a two-node
graph with three double edges. We find also two computations, namely c[4, {16, 2}, _] and c[4, {17, 2}, _], with nested
revisit indicators and corresponding trinets that oscillate while growing, according to the already observed circle-circle
pattern. As observed with threshold 3, we find one computation with noisy, radial revisit indicator, namely c[4, {11, 5},
_], which yields an irregular tree-like trinet, similar to that obtained with computation c[3, {11, 5}, _]. Finally,
computations c[4, {11, 9}, 500], c[4, {13, 5}, 500], c[4, {17, 9}, 500], whose revisit indicators do not manifest any
regularity in 500 steps, all eventually settle to a 1-D, periodic, unbounded trinet. We are left with three novel and quite
interesting cases, that are discussed below.

c[4, {16, 4, _]: nested binary tree trinet with circular boundary
This computation exhibits a cleaner version of the radial revisit indicator, and the trinet has now a regular and nested
structure, shown again in Figure 23: it is formed by a binary tree with trivalent root, with the addition of edges
interconnecting adjacent leaves in a circle. The same trinet was obtained also by the algorithm introduced in [B2007a].

18 PlanarTrinetsWithTwoRewriteRulesV2.nb

Printed by Mathematica for Students

By inspecting the two figures it is immediately clear that the large majority of these computations exhibits emergent
features that are qualitatively the same we have already observed in the previous class. Let us shortly overview these
cases, before moving to the novel, most interesting ones.

We still have periodic sequences of bounded trinets, and 1-D trinets that grow linearly and without bound, as segments
or circles. Interestingly, among the latter, computation c[4, {17, 5}, _] provides a trinet whose uniformly growing
structure appears similar to a circle with its diameter, so that its macrostructure reproduces the initial trinet -- a two-node
graph with three double edges. We find also two computations, namely c[4, {16, 2}, _] and c[4, {17, 2}, _], with nested
revisit indicators and corresponding trinets that oscillate while growing, according to the already observed circle-circle
pattern. As observed with threshold 3, we find one computation with noisy, radial revisit indicator, namely c[4, {11, 5},
_], which yields an irregular tree-like trinet, similar to that obtained with computation c[3, {11, 5}, _]. Finally,
computations c[4, {11, 9}, 500], c[4, {13, 5}, 500], c[4, {17, 9}, 500], whose revisit indicators do not manifest any
regularity in 500 steps, all eventually settle to a 1-D, periodic, unbounded trinet. We are left with three novel and quite
interesting cases, that are discussed below.

c[4, {16, 4, _]: nested binary tree trinet with circular boundary
This computation exhibits a cleaner version of the radial revisit indicator, and the trinet has now a regular and nested
structure, shown again in Figure 23: it is formed by a binary tree with trivalent root, with the addition of edges
interconnecting adjacent leaves in a circle. The same trinet was obtained also by the algorithm introduced in [B2007a].

50 100 150 200

10

20

30

40

50

60

70
84, 816, 4<, 199<

84, 816, 4<, 199<

Figure 23 - Revisit indicator and final trinet of computation c[4, {16, 4}, 199]

c[4, {3, 2}, _]: nested binary tree with oscillating, circle-circle pattern
The thumbnail for the trinet of this computation, shown in Figure 22, misleadingly suggests a similarity with the
previous computation c[4, {16, 4}, _]. However, the nested revisit indicator (Figure 21) reveals rather different
dynamics. In fact, the trinet oscillates while growing, and resembles the already discussed circle-circle pattern (see
Figure 16), except that now a nested structure is involved, rather than a simple circle.

PlanarTrinetsWithTwoRewriteRulesV2.nb 19

Printed by Mathematica for Students

c[4, {17, 8}, _]: randomized square root growth
This computation is perhaps the most surprising we have found; the only similar case is c[5, {9, 8}, _], to be discussed
later. Figure 24 shows the revisit indicator, the final trinet, and the node count as a function of the algorithm steps, for
c[4, {17, 8}, 6000]. Recall that the we count the number of nodes in the trinet dual, corresponding to the number of
faces in the original trinet; in figure, this function is then matched against function f[steps] = 3 + Sqrt[2*steps], which
exactly characterizes also the regular, circular 'grow-and-revisit' algorithm introduced in Section 3: statistically, the
growth process is such that, between two new trinet face creations, a number of re-visits is performed that equals the
current number of faces.

1000 2000 3000 4000 5000 6000

50
100
150
200
250
300

revisit indicator
final trinet

1000 2000 3000 4000 5000 6000

20

40

60

80

100

node count HdualL vs. 3+Sqrt@2*stepsD

Figure 24 - Revisit indicator, final trinet, and node growth for c[4, {17, 8}, 6000]

Figure 25 shows similar data for a computation of length 100,000.

20000 40000 60000 80000 100000

200
400
600
800
1000
1200
1400

revisit indicator
final trinet

20000 40000 60000 80000 100000

100

200

300

400

node count HdualL vs. 3+Sqrt@2*stepsD

Figure 25 -Revisit indicator, final trinet, and node growth for c[4, {17, 8}, 100,000]

This ability of this computation to revisit its past uniformly, densely, and indefinitely, while exhibiting random-like
dynamics, is indeed quite remarkable.

20 PlanarTrinetsWithTwoRewriteRulesV2.nb

Printed by Mathematica for Students

6. Threshold 5: second case of uniform randomness
Most of what emerges in this class has been observed before. For any value of RefinCode in range [1, 8], and for values
12 and 14, the computation is independent from the value of DiagsCode and yields a linear or circular, 1-D trinet. All
other cases are illustrated in Figures 26 and 27.

1
89, 1<

742
89, 2<

751
89, 3<

751
89, 4<

602
89, 5<

752
89, 6<

2
89, 7<

121
89, 8<

748
89, 9<

751
810, 1<

754
810, 2<

505
810, 3<

748
810, 4<

602
810, 5<

568
810, 6<

754
810, 7<

756
810, 8<

751
810, 9<

750
811, 1<

750
811, 2<

750
811, 3<

750
811, 4<

750
811, 5<

750
811, 6<

750
811, 7<

750
811, 8<

750
811, 9<

743
813, 1<

755
813, 2<

752
813, 3<

500
813, 4<

393
813, 5<

751
813, 6<

755
813, 7<

754
813, 8<

752
813, 9<

750
815, 1<

750
815, 2<

750
815, 3<

750
815, 4<

750
815, 5<

750
815, 6<

750
815, 7<

750
815, 8<

750
815, 9<

1
816, 1<

753
816, 2<

744
816, 3<

223
816, 4<

750
816, 5<

507
816, 6<

753
816, 7<

752
816, 8<

379
816, 9<

9
817, 1<

230
817, 2<

741
817, 3<

235
817, 4<

524
817, 5<

384
817, 6<

12
817, 7<

242
817, 8<

508
817, 9<

12
818, 1<

748
818, 2<

494
818, 3<

748
818, 4<

1001
818, 5<

756
818, 6<

27
818, 7<

435
818, 8<

751
818, 9<

Figure 26 - Revisit indicators for all threshold-5, length-500 computations

89, 1< 89, 2< 89, 3< 89, 4< 89, 5< 89, 6< 89, 7< 89, 8< 89, 9<

810, 1< 810, 2< 810, 3< 810, 4< 810, 5< 810, 6< 810, 7< 810, 8< 810, 9<

811, 1< 811, 2< 811, 3< 811, 4< 811, 5< 811, 6< 811, 7< 811, 8< 811, 9<

813, 1< 813, 2< 813, 3< 813, 4< 813, 5< 813, 6< 813, 7< 813, 8< 813, 9<

815, 1< 815, 2< 815, 3< 815, 4< 815, 5< 815, 6< 815, 7< 815, 8< 815, 9<

816, 1< 816, 2< 816, 3< 816, 4< 816, 5< 816, 6< 816, 7< 816, 8< 816, 9<

817, 1< 817, 2< 817, 3< 817, 4< 817, 5< 817, 6< 817, 7< 817, 8< 817, 9<

818, 1< 818, 2< 818, 3< 818, 4< 818, 5< 818, 6< 818, 7< 818, 8< 818, 9<

Figure 27 - Final trinets for all threshold-5, length-500 computations

RefinCodes 11 and 15, again regardless of the DiagsCode, yield plain, linear revisit indicators, but the corresponding
trinets are now nested, a combination that was not observed in previous classes. The same trinet structure can therefore
be obtained by different revisit policies, and, correspondingly, in a different number of steps. Figure 28 shows three
different computations with different revisit indicators that produce the same trinet in, respectively, 22, 22 and 85 steps.
Nodes have been labelled for showing the different orders in which the graphs are created.

PlanarTrinetsWithTwoRewriteRulesV2.nb 21

Printed by Mathematica for Students

RefinCodes 11 and 15, again regardless of the DiagsCode, yield plain, linear revisit indicators, but the corresponding
trinets are now nested, a combination that was not observed in previous classes. The same trinet structure can therefore
be obtained by different revisit policies, and, correspondingly, in a different number of steps. Figure 28 shows three
different computations with different revisit indicators that produce the same trinet in, respectively, 22, 22 and 85 steps.
Nodes have been labelled for showing the different orders in which the graphs are created.

5 10 15 20

5

10

15

20

25

30

35
85, 811, 1<, 23<

1

2
13

45

21

25

4

33 37

3

6

1519

5

8
27

31

7 10

39

43
9

14 12
16

1120

18
22 17

26

24

28

23

3230
34

29 38

36
4035

44

42

46

41

85, 811, 1<, 23<

5 10 15 20

5

10

15

20

25

30

85, 815, 1<, 23<

1
2

22

24

1246

3
34

36

4

5
16

18

6

7

2830

8

9

40

42
10

11
13

15
14

1719

2120

23
25

27262931
33
32

3537

3938

41
43

45
44

85, 815, 1<, 23<

20 40 60 80

5

10

15

20

25

30

84, 816, 4<, 86<

33

41

11 13

1
43

17

26
28

32

46

4

6

9

16

19
21

24

31

3537

4045

2

3 5

8

7
10
12

15
14 18
20

23

22

2527

30

29
34
36

39
384244

84, 816, 4<, 86<

Figure 28 - Three computations yielding the same trinet

No nested revisit indicator of the types seen before (e.g. that of computation c[3, {3, 2}, _] or c[3, {5, 4}, _] is found in
this class. But we do find an unperturbed radial revisit indicator for c[5, {16, 4}, _] which corresponds to a nested trinet.

22 PlanarTrinetsWithTwoRewriteRulesV2.nb

Printed by Mathematica for Students

A peculiar tree-like trinet is obtained for c[5, {17, 2}, _]; the revisit indicator and the trinet are shown in Figure 29. (In
this case the sublinear, node growth function for the dual graph is approximated by f(steps) = 5.31 + 1.57*steps^0.65.)

500 1000 1500 2000

100

200

300

400

500

600
85, 817, 2<, 2000< 85, 817, 2<, 2000<

Figure 29 - Revisit indicator and final trinet of c[5, {17, 2}, 2000]

As observed for threshold-4 computations, all the 6 revisit indicator thumbnails that appear as random in Figure 26,
corresponding to code pairs (13, 5), (17, 4), (17, 6), (17, 8), (17, 9), (18, 8), end up settling to a regular behavior. But
case (17, 8) is the only one for which the revisit indicator stabilizes to a square root growth pattern. The last, most
interesting case, is discussed below.

c[5, {9, 8}, _]: second case of randomized square root growth
This is the only other example, similar to case c[4, {17, 8}, _], of a computation which exhibits a dense, random but
uniform revisit indicator, with node growth well approximated by a square root function. Figures 30 and 31 show the
revisit indicator, the final trinet, and the node growth function, with approximating functions, for computations of
lengths 6000 and 100,000, respectively.

1000 2000 3000 4000 5000 6000

100

200

300

400
revisit indicator

final trinet

1000 2000 3000 4000 5000 6000

20
40
60
80
100
120
140
node count HdualL vs. 3 + 1.75*Sqrt@stepsD

Figure 30 - Revisit indicator, final trinet, and node growth for c[5, {9, 8}, 6000]

20000 40000 60000 80000 100000

200
400
600
800
1000
1200
1400

revisit indicator
final trinet

20000 40000 60000 80000 100000

100

200

300

400

node count HdualL vs. 17 + 1.5 Sqrt@stepsD

Figure 31 - Revisit indicator, final trinet, and node growth for c[5, {9, 8},100,000]

PlanarTrinetsWithTwoRewriteRulesV2.nb 23

Printed by Mathematica for Students

7. Threshold 6: regular and irregular 2-D grids
For threshold 6 and higher, the computations for RefinCode values in range [1, 8], and values 11, 12, 14, 15, appear
exactly the same as those obtained for threshold 5, and are (individually) independent from DiagsCode values. The six
interesting values left for RefinCode are illustrated in Figures 32 and 33.

1
89, 1<

742
89, 2<

997
89, 3<

997
89, 4<

994
89, 5<

998
89, 6<

2
89, 7<

643
89, 8<

745
89, 9<

999
810, 1<

808
810, 2<

753
810, 3<

748
810, 4<

672
810, 5<

758
810, 6<

1003
810, 7<

759
810, 8<

751
810, 9<

749
813, 1<

1004
813, 2<

464
813, 3<

521
813, 4<

752
813, 5<

743
813, 6<

758
813, 7<

1001
813, 8<

526
813, 9<

1
816, 1<

999
816, 2<

994
816, 3<

994
816, 4<

744
816, 5<

995
816, 6<

999
816, 7<

998
816, 8<

752
816, 9<

991
817, 1<

865
817, 2<

46
817, 3<

650
817, 4<

683
817, 5<

1001
817, 6<

17
817, 7<

918
817, 8<

728
817, 9<

33
818, 1<

748
818, 2<

1002
818, 3<

766
818, 4<

1195
818, 5<

762
818, 6<

508
818, 7<

792
818, 8<

763
818, 9<

Figure 32 - Revisit indicators for all threshold-3, length-500 computations with RefinCodes 9-18

89, 1< 89, 2< 89, 3< 89, 4< 89, 5< 89, 6< 89, 7< 89, 8< 89, 9<

810, 1< 810, 2< 810, 3< 810, 4< 810, 5< 810, 6< 810, 7< 810, 8< 810, 9<

813, 1< 813, 2< 813, 3< 813, 4< 813, 5< 813, 6< 813, 7< 813, 8< 813, 9<

816, 1< 816, 2< 816, 3< 816, 4< 816, 5< 816, 6< 816, 7< 816, 8< 816, 9<

817, 1< 817, 2< 817, 3< 817, 4< 817, 5< 817, 6< 817, 7< 817, 8< 817, 9<

818, 1< 818, 2< 818, 3< 818, 4< 818, 5< 818, 6< 818, 7< 818, 8< 818, 9<

Figure 33 - Final trinets for all threshold-3, length-500 computations with RefinCodes 9-18

Most of the computations in C[Threshold = 6] exhibit the already discussed emergent features. For example,
computations c[6, {9, 8}, _], c[6, {10, 5}, _], c[6, {13, 4}, _], c[6, {17, 2}, _], c[6, {18, 8}, _], with irregular
thumbnails, all end up settling to regular behavior, possibly with long initial transients. For example, c[6, {9, 8}, _]
takes about 35,000 steps to stabilize.

However, three novel cases are observed, that produce, for the first time in our investigation, 2-D trinets. They deserve
special attention.

c[6, {10, 2}, _]: hexagonal grid with three central pentagons
The trinet produced by this computation is a 2-D, hexagonal grid that develops around a nucleus of three pentagons; this
is shown in Figure 34. The active point is always at the border of the graph. The fact that this border grows with the
graph itself explains the peculiar shape of the revisit indicator, with three slightly divergent radii, and a growing part of
the net being eventually abandoned.

24 PlanarTrinetsWithTwoRewriteRulesV2.nb

Printed by Mathematica for Students

Most of the computations in C[Threshold = 6] exhibit the already discussed emergent features. For example,
computations c[6, {9, 8}, _], c[6, {10, 5}, _], c[6, {13, 4}, _], c[6, {17, 2}, _], c[6, {18, 8}, _], with irregular
thumbnails, all end up settling to regular behavior, possibly with long initial transients. For example, c[6, {9, 8}, _]
takes about 35,000 steps to stabilize.

However, three novel cases are observed, that produce, for the first time in our investigation, 2-D trinets. They deserve
special attention.

c[6, {10, 2}, _]: hexagonal grid with three central pentagons
The trinet produced by this computation is a 2-D, hexagonal grid that develops around a nucleus of three pentagons; this
is shown in Figure 34. The active point is always at the border of the graph. The fact that this border grows with the
graph itself explains the peculiar shape of the revisit indicator, with three slightly divergent radii, and a growing part of
the net being eventually abandoned.

50 100 150 200

50
100
150
200
250
300

revisit indicator final trinet

50 100 150 200

20

40

60

80

100

node count HdualL

Figure 34 - Revisit indicator, hexagonal grid, and dual node count for c[6, (10, 2), 200]

For comparison with the other two 2-D trinet computations it is useful to analyze the distribution of polygon sizes. For
computation c[6, (10, 2), 3000] the following distribution is observed in the final trinet:

{{3, 3},{4, 1},{5, 93},{6, 1453},{98, 1}},

where {x, y} indicates that there are y faces with x edges. Note the presence of a large, external face, with 98 sides.

c[6, {13, 3}, _]: irregular trinet based on hexagonal grid
Unlike the previous case, the trinet produced by this computation exhibits an intrinsically asymmetric structure, as
shown in Figure 35. The distribution of face sizes for a computation of length 3000 is:

{{3, 6}, {4, 1}, {5, 24}, {6, 979}, {7, 7}, {8, 7}, {9, 2}, {11, 1}}

It is clear that the largest part of the graph is a hexagonal grid, with 979 hexagons, but some larger faces are now present
too. Interestingly, a large external face is now missing, and this is not surprising if we consider the complex revisit
indicator, which reveals randomness and fairness in revisiting all parts of the growing net, although traces of regularity
and symmetry are also visible. Note that the trinet is drawn in figure as two superimposed layers of roughly the same
number of faces.

500 1000 1500 2000 2500 3000

500

1000

1500

2000

2500

revisit indicator
final trinet

500 1000 1500 2000 2500 3000

200

400

600

800

1000
node count HdualL

Figure 35 - Revisit indicator, hexagonal grid, and dual node count for c[6, (13, 3), 3000]

PlanarTrinetsWithTwoRewriteRulesV2.nb 25

Printed by Mathematica for Students

c[6, {18, 9}, _]: hexagonal grid with one central pentagon
The trinet produced by this computation is a 2-D hexagonal grid that develops around one pentagon (Figure 36). The
distribution of face sizes for a 3000-step computation is:

{{3, 73}, {5, 51}, {6, 1404}, {7, 70}, {194, 1}}

A large, external face is present again. The active point is always at the border of the graph, and the growth process is
similar to that of computation c[6, (10, 2), _] above.

50 100 150 200

50

100

150

200

250

300
revisit indicator final trinet

50 100 150 200

20

40

60

80

100

120

node count HdualL

Figure 36 - Revisit indicator, hexagonal grid, and dual node count for c[6, (18, 9), 200]

8. Thresholds 7, 8, 9: further regular 2-D grids
Class C[threshold = 7] presents further types of nested trinets, both with linear (e.g. c[7, (9, 9), _]) and with radial (e.g.
c[7, (10, 2), _]) revisit indicators, and two more cases of 2-D regular grid: c[7, {9, 2}, _], which gives a pure hexagonal
grid, and c[7, {18, 9}, _], which gives a hexagonal grid with one central septagon. Both are illustrated in Figure 37

50 100 150 200

50
100
150
200
250

revisit indicator H9, 2L final trinet H9, 2L

50 100 150 200

50
100
150
200
250
300

revisit indicator H18, 9L final trinet H18, 9L

Figure 37 - Revisit indicator and hexagonal grid produced by c[7, (9, 2), 200]

No other 2-D regular trinet is found for threshold values 8 and 9, while nested trinets are still present.

26 PlanarTrinetsWithTwoRewriteRulesV2.nb

Printed by Mathematica for Students

9. Infinite threshold
The case Threshold = infinite is interesting because the algorithm is forced to always apply the Refin rule. The resulting
computations are illustrated in Figures 38 and 39, where '*' stands for any value of DiagsCode -- a value that the
algorithm never uses.

1499
81, *<

1498
82, *<

1496
83, *<

1500
84, *<

1499
85, *<

1496
86, *<

1498
87, *<

1500
88, *<

1
89, *<

748
810, *<

750
811, *<

1495
812, *<

750
813, *<

1497
814, *<

750
815, *<

1
816, *<

750
817, *<

748
818, *<

Figure 38 - Revisit indicators for all computations with Threshold = infinite and RefinCodes 1-18, of length 500

81, *< 82, *< 83, *< 84, *< 85, *< 86, *<

87, *< 88, *< 89, *< 810, *< 811, *< 812, *<

813, *< 814, *< 815, *< 816, *< 817, *< 818, *<

Figure 39 - Final trinets for all computations of length 64, with Threshold = infinite and RefinCodes 1-18,

Note that the trinets refer, in this last diagram, to computations of length 64 only; they evenly split into 6 linear, 6
circular, and 6 nested graphs. The regular, radial revisit indicator of c[infinite, {10, 1}, _] is such that each edge (with
identifier) in the set

{1, 2} ‹ {3k + 1 | k = 1, 2, ...}

appears infinitely often in the diagram, although at an exponentially decreasing rate. More precisely, denoting by s[e, n]
the step (number) at which edge e is the current edge for the n-th time, the following holds for all visited edges as
identified above:

s[e, n] = 2 s[e, n-1] + 1 (n >1)

where s[1, 1] = 1, s[2, 1] = 2, and s[3k + 1, 1] = 2(k + 1), k = 1, 2, The arithmetic progression of initial edge
occurrences, combined with the geometric progression of subsequent appearances of individual edges, determines the
characteristic pattern of virtually infinite radii emanating from the origin.

PlanarTrinetsWithTwoRewriteRulesV2.nb 27

Printed by Mathematica for Students

10. Conclusions
In this paper we have introduced an original algorithm for the creation of dynamic planar trivalent networks (trinets),
and have exhaustively explored all the classes of its computations corresponding to values in the range 3-9, and to
infinity, of a threshold parameter. A number of quite interesting phenomena have emerged, while it is still unclear
whether considering finite values beyond threshold 9 could yield qualitatively new features. Among the expected
results we have found plenty of computations yielding periodic sequences of bounded trinets, as well as sequences of 1-
D trinets growing without bound, where stabilization to regular, linear growth may occur after very long transient
phases characterized by pseudo-random dynamics.

More interestingly, we have found complex, but still regular (nested) computations, with trinets that grow while
oscillating between linear and ring structures based on simple building blocks, and computations that produce 2-D
trinets based on the hexagonal grid. All of the latter exhibit a rather regular, roughly circular shape, and a regular
growth pattern; but computation c[6, {13, 3}, _] is an exception, and yields a smoothly growing trinet with an irregular
shape, no especially large, 'external' face, and irregular motion of the control point.

But in our opinion the most interesting computations are c[4, {17, 8}, _] and c[5, {9, 8}, _]. Their revisit indicators
reveal a surprising ability to densely and fairly revisit the past, while exhibiting pseudo-random dynamics. Graph size,
as a function of the number of algorithmic steps, grows as O(Sqrt[steps]). It is likely that this combination of
randomness and fairness, guaranteed by an extremely simple algorithm that operates on a purely local basis, could find
some useful application, still to be investigated.

We have listed, in the introduction, the differences between our algorithm and the techniques proposed in [W2002] for
animating trivalent networks. Our previous proposal for trinet computation [B2007a] was different from the one
presented here in the following aspects:
- we used only the Refin rule (this can now be obtained as a special case by setting Threshold = ¶);
- we used a rather different rule for driving the control point, based on rotations by a constant number of steps around
the current node of the dual graph;
- we did not convert duals into primal form. In spite of the conceptual equivalence between the two forms, looking at
the original trinet has been practically more helpful for spotting patterns such as oscillating rings.

A demonstration of the algorithm described in this paper is available at the Wolfram Demonstrations Project site
[B2007c].

Much more remains to be done.

Loop edges.
Ways for handling trinets with loop edges should be investigated. This may lead to considering new forms of degenerate
triangles, and perhaps even to difficulties in keeping simple geometric interpretations of the manipulated data structures.
In fact, interesting developments might derive from relaxing or abandoning those interpretations, and concentrating just
on abstract data structures and operations. This may also help in exposing possible bridges with other simple
computational systems.

Dimensionality.
We have found many trinets for which the attribution of dimensionality 1 or 2 is obvious, but what about all other
graphs? In the rather uninteresting cases of tree-like trinets, nodes grow exponentially with the distance from a given,
reference node. The identification of a dimensionality for the finite, irregular sub-trinets corresponding to the initial
phase of eventually periodic computations is not of much interest. But what about the irregular trinets of the two
computations c[4, {17, 8}, _] and c[5, {9, 8}, _] with random revisit indicators? A difficulty here derives from their
slow, square-root node growth: in both cases, 100,000-step computations yield trinets with less than 1000 nodes, and,
due to this limitation, the analysis of internode distances has not led to clear results. Finally, one might perhaps
associate different dimensionalities to the same trinet, depending on the observation scale, since some trinets may
exhibit different structures at different levels. This would perhaps offer some bridge towards physical theories that
envisage a multi-dimensional space -- notably string theory -- with a distinction between extended and compactified
dimensions. More generally, it seems desirable to investigate possible connections between trinet mobile-automata
computations and some of the quantum gravity theories proposed by physicists in last few decades. A wide-spanning
bibliographical review of theories concerned with the small scale structure of space-time is found in [G1966].

Relativistic, subjective views.
A research track that we consider of highest priority is concerned with the introduction of a relativistic view at trinet
computations, based on suitable notions of spacetime / causal network. The trinet diagrams we have shown in this
paper, if at all relevant to the understanding of real physical phenomena, would only represent an external view of a
dynamic physical space (a sort of 'God's eye' view), while the spatial evolution perceived by an internal observer, one
which is himself part of the universe, would be mediated by the causal relations between observation events. It is quite
straightforward to define a causal network for the rewrite events of our algorithm, along the lines discussed in [W2002],
chapter 9. Then, taking the point of view of a trinet face f, we could define discrete time, relative to f, in terms of the
sequence of updatings of f, based on the assumption that a face, regarded as the smallest perceptive unit, does not
experience anything, thus no progress of time, between two consecutive updates of f. Based on this notion of time, and
taking into account the complete causal network of updating events, the idea would be to create a sequence of suitably
defined 'pictures' of the universe as perceived by f at successive instants of its time. This sequence would represent the
correct, internal view of the produced dynamic space, and the one to be appropriately compared with physical reality as
we perceive it. We are particularly interested in applying this analysis to computations c[4, {17, 8}, _] and c[5, {9, 8},
_], whose randomness and fairness might prove essential for guaranteeing the equivalence of all possible observers.

28 PlanarTrinetsWithTwoRewriteRulesV2.nb

Printed by Mathematica for Students

Much more remains to be done.

Loop edges.
Ways for handling trinets with loop edges should be investigated. This may lead to considering new forms of degenerate
triangles, and perhaps even to difficulties in keeping simple geometric interpretations of the manipulated data structures.
In fact, interesting developments might derive from relaxing or abandoning those interpretations, and concentrating just
on abstract data structures and operations. This may also help in exposing possible bridges with other simple
computational systems.

Dimensionality.
We have found many trinets for which the attribution of dimensionality 1 or 2 is obvious, but what about all other
graphs? In the rather uninteresting cases of tree-like trinets, nodes grow exponentially with the distance from a given,
reference node. The identification of a dimensionality for the finite, irregular sub-trinets corresponding to the initial
phase of eventually periodic computations is not of much interest. But what about the irregular trinets of the two
computations c[4, {17, 8}, _] and c[5, {9, 8}, _] with random revisit indicators? A difficulty here derives from their
slow, square-root node growth: in both cases, 100,000-step computations yield trinets with less than 1000 nodes, and,
due to this limitation, the analysis of internode distances has not led to clear results. Finally, one might perhaps
associate different dimensionalities to the same trinet, depending on the observation scale, since some trinets may
exhibit different structures at different levels. This would perhaps offer some bridge towards physical theories that
envisage a multi-dimensional space -- notably string theory -- with a distinction between extended and compactified
dimensions. More generally, it seems desirable to investigate possible connections between trinet mobile-automata
computations and some of the quantum gravity theories proposed by physicists in last few decades. A wide-spanning
bibliographical review of theories concerned with the small scale structure of space-time is found in [G1966].

Relativistic, subjective views.
A research track that we consider of highest priority is concerned with the introduction of a relativistic view at trinet
computations, based on suitable notions of spacetime / causal network. The trinet diagrams we have shown in this
paper, if at all relevant to the understanding of real physical phenomena, would only represent an external view of a
dynamic physical space (a sort of 'God's eye' view), while the spatial evolution perceived by an internal observer, one
which is himself part of the universe, would be mediated by the causal relations between observation events. It is quite
straightforward to define a causal network for the rewrite events of our algorithm, along the lines discussed in [W2002],
chapter 9. Then, taking the point of view of a trinet face f, we could define discrete time, relative to f, in terms of the
sequence of updatings of f, based on the assumption that a face, regarded as the smallest perceptive unit, does not
experience anything, thus no progress of time, between two consecutive updates of f. Based on this notion of time, and
taking into account the complete causal network of updating events, the idea would be to create a sequence of suitably
defined 'pictures' of the universe as perceived by f at successive instants of its time. This sequence would represent the
correct, internal view of the produced dynamic space, and the one to be appropriately compared with physical reality as
we perceive it. We are particularly interested in applying this analysis to computations c[4, {17, 8}, _] and c[5, {9, 8},
_], whose randomness and fairness might prove essential for guaranteeing the equivalence of all possible observers.

Acknowledgment
We express our gratitude to Marco Tarini, at ISTI, for several discussions on trivalent network representation.

References
[B2007a] T. Bolognesi, 'Planar trivalent network computation', in: J. Durand-Lose, M. Margenstern (eds.), Machines,

Computations and Universality, Proceedings of MCU 2007, Lecture Notes in Computer Science, N. 4664,
Springer 2007.

[B2007b] T. Bolognesi, 'Planar trinet dynamics with two rewrite rules', Technical Report ISTI-015/2007, CNR, ISTI,
Pisa, 2007.

[B2007c] T. Bolognesi, "Planar Trivalent Network Growth Using Two Rewrite Rules", The Wolfram Demonstrations
Project, http://demonstrations.wolfram.com/PlanarTrivalentNetworkGrowthUsingTwoRewriteRules/

[G1996] P. E. Gibbs, "The Small Scale Structure of Space-Time: A Bibliographical Review", http://arxiv.org/abs/hep-
th/9506171v2

[W2002] S. Wolfram, A New Kind of Science, Wolfram Media, 2002.

PlanarTrinetsWithTwoRewriteRulesV2.nb 29

Printed by Mathematica for Students

