
Planar trinet dynamics 
with two rewrite rules

Tommaso Bolognesi
CNR/ISTI, Pisa, Italy

tommaso.bolognesi@isti.cnr.it
Abstract
We  propose  a  deterministic  network  mobile  automaton  for  the  creation  of  planar  trivalent  networks
(trinets)  based on the application of only two simple rewrite rules,  and we enumerate and explore the
possible  brownian  dynamics  of  the  control  point.  A  useful  behavioral  complexity  indicator  is
introduced, called revisit indicator, exposing a variety of emergent features, involving periodic, nested
and random like dynamics. Regular structures obtained include 1-D graphs, oscillating rings, and the 2-
D,  hexagonal  grid.  In  two  cases  only,  out  of  over  a  thousand  we  have  inspected,  a  remarkably  fair,
random-like  revisit  indicator  is  found,  whose  trinets  exhibit  a  slow,  square-root  growth  rate;  some
properties of these surprising computations are investigated. Finally, one 2-D case is found that seems
to be unique in the way regularity and randomness are mixed.

Keywords.  Digital physics, trivalent network, complexity indicator, elementary cellular automata, two-
dimensional Turing machine, turmite, emergent space, graph rewriting.

1. Introduction
Wolfram  [W2002]  supports  the  'digital  physics'  view,  according  to  which  the  ultimate  laws  of  physics  are  of
computational nature, the entire history of our universe is the output of a small, possibly deterministic program, and all
simple and complex natural phenomena correspond to emergent properties of this universal computation.  In particular,
he suggests that  physical  space could be a  giant  trivalent  network that  evolves according to few, simple rewrite rules.
Trivalent  networks  (trinets)  are  finite,  undirected  graphs  where  each  node  has  exactly  degree  3,  that  is,  three
neighboring nodes.  It is easy to realize that trinets are sufficient for 'implementing' graph structures of any complexity:
given a graph with unrestricted node degrees, the basic trick is to replace any node x of degree n by a cycle X of n nodes
of  degree  3,  each  connected  to  one  of  x's  neighbors.   In  particular,  by  letting  k  be  the  dimensionality  of  a  graph  G
whenever the number of nodes reachable from a generic node of G in at most r steps (edges) grows like r^k, examples of
regular trinets of dimensionality 1, 2 and 3, and of planar trinets with fractal dimensions between 1 and 2 are shown in
[W2002] (p. 477 and p. 509),

In  general,  graph rewriting  involves  nondeterminism,  in  the  selection  both  of  a  rule  and  of  a  place  where  to  apply  it.
Various trinet rewrite rules, and policies for eliminating nondeterminism, are discussed in [W2002].  One solution is to
restrict  to  causal-invariant  rewrite  systems,  which  generate  a  unique  partial  order  of  rewrite  events,  regardless  of  the
order in which rules are applied.  Another solution enriches the rewrite process by state information that records the 'age'
of  nodes,  and then always selects  the rule  and location that  involves,  say,  the youngest  nodes.   Causal  invariance is  a
powerful  and  elegant  concept,  but  the  search  for  systems  of  rules  that  guarantee  this  property  is  hard,  unless  quite
restrictive  sufficient  conditions  are  adopted;  and  the  mechanism  of  time  stamps  appears  as  unnatural  as,  say,  the
synchrony assumption for the updating of an unbounded set of cells, as adopted by cellular automata.  (See [W2002] for
a detailed description of these two approaches, which we have already assessed in  [B2007a].)

A third solution for reducing nondeterminism is to adopt what Wolfram calls network mobile automata: these consist in
setting up a single active node, in letting rules replace clusters of nodes around it, and in moving control to an adjacent
node. However, despite looking at several hundred thousand cases, involving clusters with up to 4 nodes and 4 dangling
links, Wolfram reports that he has not been able to find automata with  especially complicated behavior, which explains
why  this  model  is  relegated  to  a  small  note  of  the  NKS  book  (p.  1040).   In  conclusion,  none  of  the  experiments  on
network  evolution  described  by  Wolfram  could  fully  replicate  the  success  achieved  by  elementary  cellular  automata,
with their visually appealing, rich variety of emergent properties, and with their ability to create interacting particles, as
observed in the well known rule 110 computations. 

The two, inter-related objectives of this paper are: (i) to further explore algorithms for the evolution of trinets, and (ii) to
identify  visually  effective  complexity  indicators  and  techniques  that  can  help  screening  large  spaces  of  trinet-based
computations.  In pursuing the first objective, we have avoided the difficulties related with causal-invariance, and have
refrained from enriching the structure of trinets by state information.  Rather, we have devised a trinet growth algorithm
along the lines of network mobile automata.  In summary, the major differences with the approach (cursorily) mentioned
by Wolfram in his book are that:
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The two, inter-related objectives of this paper are: (i) to further explore algorithms for the evolution of trinets, and (ii) to
identify  visually  effective  complexity  indicators  and  techniques  that  can  help  screening  large  spaces  of  trinet-based
computations.  In pursuing the first objective, we have avoided the difficulties related with causal-invariance, and have
refrained from enriching the structure of trinets by state information.  Rather, we have devised a trinet growth algorithm
along the lines of network mobile automata.  In summary, the major differences with the approach (cursorily) mentioned
by Wolfram in his book are that:

1. we have used an extremely small set of rewrite rules, consisting of only two elements,
2. we have restricted to planar trinets, 
3. we have adopted a refined notion of control point -- the focus described below, 
4. we have attributed more importance to the dynamics of the latter, whose steps are made also dependent on the 

applied rewrite rule.  
Furthermore, we have designed the algorithm around the manipulation of trinet duals -- a choice that has to some extent
facilitated the identification and exhaustive exploration of policies for control point movement.

In Section 2 we introduce our planar trinet growth algorithm,  with its two rewrite rules, and its three parameters, one of
which,  the  threshold,  induces  a  convenient  classification  of  our  computational  space.   In  Section  3  we  discuss  a  few
ways in which the overall  character of a trinet  computation can be visualized, and introduce a useful revisit indicator.
Based  on  this  technique,  we  exhaustively  explore  our  computational  classes  in  Sections  4  to  9,  which  correspond  to
increasing values of the threshold parameter, and describe the progressive appearance of various emergent features.  In
Section 10 we summarize our results and discuss items for future work.

Similar  to  the  space  of  (elementary)  cellular  automata,  the  space  of  trinet  computations,  as  created  by  our  algorithm,
offers such an abundance of aspects to be investigated that a single paper cannot cover all of them in depth.  Then, the
purpose of this work is to provide a first exploration of the whole computation space, to identify all  features that may
possibly emerge in it, and to single out the most interesting cases.  We believe that these results shall trigger a number of
specific questions that we look forward to investigate in forthcoming papers. 

2. The algorithm
A trinet is an undirected graph where each node has degree 3.   Trinets may include loop edges and double edges, and, if
v is the number of vertices (nodes) and e is the number of edges, then 3v = 2e.  The proof is simple.  By definition, each
node is connected to three distinct edges, or to a loop edge and a 'normal' one.  By charging three edges to each node,
via the incidence relation, we count each edge exactly twice, thus establishing the above equation. Note that a loop edge
contributes  two units  to  a  node  degree.   A  consequence  of  the  above  equation  is  that   v  is  a  multiple  of  2  and  e  is  a
multiple of 3.

A graph is simple when it does not include loop edges nor double edges.  Our algorithm shall only handle trinets without
loops,  but  possibly  with  double  edges;  we call  them trinets  with  doubles  (but  we  shall  often  omit  the  attribute).   The
inclusion of loops introduces further difficulty -- but appears interesting too! -- , and is left for future investigation. 
A graph is planar when it can be embedded on the surface of a sphere without edge crossings.  An embedding partitions
the surface of the sphere into regions, and induces a dual graph (also planar), in which nodes correspond to regions and
edges  connect  the  nodes  representing  adjacent  regions.   Note  that  there  is  an  obvious  one-to-one  correspondence
between the edges of a planar graph and of its dual.

If T is a planar trinet with doubles, and D is its dual (see Figure 1, where the two graphs have, respectively, black and
white nodes), then:

Ë  regions in T will be delimited by at least two edges, thus nodes in D have at least degree 2 (see, e.g., case (a)); 
Ë D may include both loops and doubles (cases (c) and (d)); 
Ë all the regions of D are triangles, formed by three distinct edges, and every edge is shared by two distinct triangles 

(recall that one of them may be the external, 'infinite' triangle).
The latter fact is established by realizing that the dual of D is T itself, so that nodes of T, with degree 3, represent faces
of D, with three sides; and the two triangles sharing an edge in D are distinct essentially because there are no loop edges
in T.  

Graph  D  may  include  degenerate  triangles  formed  by  three  distinct  edges  but  less  than  three  nodes.  For  example,  in
Figure  1,  case  (c),  the  loop  edge  in  the  dual  graph   delimits  a  finite  triangle  with  two  nodes  only,  while  the  infinite,
external  region  of  the  dual  graph of  case  (d)  is  a  triangle  with  just  one  node.   (The  inclusion  of  loop edges in  trinets
would  lead  to  degenerate  triangles  with  two  vertices  and  two  edges  only.)  Note,  finally,  that  a  loop  edge  in  D
corresponds to an edge in T whose removal disconnects the trinet (see cases (c) and (d)).
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Figure 1 - Four planar trinets (black nodes) and their duals (white nodes)

In our algorithm we shall handle planar graphs -- trinet duals -- with a specific embedding on the sphere.  For doing this,
node  adjacency  information  is  not  enough:  we  shall  need  to  keep  the  list  of  triangles  that  form  the  embedding,  as
described below.

Representation of spherical (planar) graph embedding
We take now a closer look at the representation and properties of the spherical (planar) graph embeddings manipulated
by the algorithm, as a basis for describing the algorithm itself and proving its invariant.

Definitions (oriented edge, oriented triangle, sphericity conditions, spherical set of oriented edge triples) 
Let G(V, E) be a connected, undirected graph, where V is the set of v vertices and E is the set of e edges.  Let ex(p, q)
denote an oriented edge, where exœ E  is an adge incident to vertices p and q, and (p, q) is an ordered pair.  A triple of
oriented edges is an oriented triangle (shortly, a triangle) when (i) it is formed by three distinct edges -- that is ex ≠ ey ≠
ez ≠  ex,  and (ii)  its  elements can be arranged as in (ex(p,  q),  ey(q,  r),  ez(r,  p)) thus creating a cycle of (at  most) three
different  nodes;  which  oriented  edge  appears  first  in  the  triple  is  irrelevant.   Node  symbols  p,  q,  r  are  understood  as
formal  variables,  some of which could be assigned the same actual  node identifier,  thus yielding degenerate triangles.
A set of t oriented edge triples, relative to sets V and E, is called spherical when it satisfies three sphericity conditions:

1. Every triple is an oriented triangle;
2. Every edge is shared by two distinct triangles, with associated node pairs appearing in opposite order --  that is, 

ex(p, q) and ex(p, q)
3. v - e + t = 2 (Euler's formula) ·

Based on graph theoretic arguments, the following fact can be easily established.

Proposition
If G(V, E) is a connected, undirected graph, for which a spherical set of triples can be built, then G is planar, and every
node  has  at  least  degree  2.   The  triples  then  describe  the  counterclockwise  (by  arbitrary  convention)  traversal  of  the
border of the triangular regions of the spherical embedding of G.  ·

In particular, the minimum degree 2 is a direct consequence of sphericity condition 1.  And, based on conditions 1 and
2, one readily establishes that 3t = 2e, which, combined with Euler's formula, yields

e = 3v - 6
t = 2v - 4.

(If condition 3 is replaced by the more general Euler-Poincaré formula v - e + t = 2 - 2g, we have sufficient conditions
for  embedding  graphs  on  two-manifolds  of  genus  g.   For  example,  when  v  -  e  +  t  =  0  the  graph  can  be  embedded,
without edge crossings,  on the torus, whose genus is 1.)
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(If condition 3 is replaced by the more general Euler-Poincaré formula v - e + t = 2 - 2g, we have sufficient conditions
for  embedding  graphs  on  two-manifolds  of  genus  g.   For  example,  when  v  -  e  +  t  =  0  the  graph  can  be  embedded,
without edge crossings,  on the torus, whose genus is 1.)

Initial configuration, rewrite rules and computation step
Initial configuration
The most  elementary  trinet  with  doubles  is  the  2-node,  3-edge  graph  shown in  Figure  1.a;  thus,  all  our  computations
shall start from the corresponding triangular dual graph shown at its right, whose triangular, spherical embedding is:

triangles = {(e1(1, 2), e2(2, 3), e3(3, 1)), 
(e1(2,1), e3(1, 3), e2(3, 2))},

One can indeed check that the above data structure satisfies the three sphericity conditions.  

Rewrite rules

The  two  rewrite  rules  used  by  our  algorithm  are  illustrated  in  Figure  2,  where  the  transformation  of  dual  graphs  is
emphasized.

e1 e2

e3

e1 e2

e3q
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e1 e2

e3
q
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e4e5

e1 e2

e3

e4e5

q

r

p

q
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Figure 2 - Planar trinet rewrite rules: Refin (upper), Diags (lower)

In the context of our algorithm, these rules are called, respectively, Refin  and Diags, since the former refines a triangle
by partitioning it into three new triangles, and the latter flips the diagonal of a rhombus.  These are among the simples
rulest considered in [W2002] (p. 509), where their completeness is pointed out: they are sufficient for transforming any
planar trinet into any other (with Refin used both ways).  

Our implementation of these rules operates on sets of oriented triangles.  Rule Refin removes a triangle and creates three
new triples, by introducing a new node (s) and three new edges (e4, e5, e6):

removed triangle: (e1(q, r), e2(r, p), e3(p, q))
created triples: (e1(q, r), e4(r, s), e6(s, q)),

(e2(r, p), e5(p, s), e4(s, r)),
(e3(p, q), e6(q, s), e5(s, p)).

Rule Diags removes two triangles sharing an edge (e3), and introduces two new triples:
removed triangles: (e1(q, r), e2(r, p), e3(p, q)),

(e3(q, p), e4(p, s), e5(s, q)).
created triples: (e5(s, q), e1(q, r), e3(r, s)),

(e3(s, r), e2(r, p), e4(p, s)).
Again, p, q, r, s, are understood as formal variables, which may refer to the same actual node.
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Computation step
The algorithm endlessly iterates an elementary computation step, starting from the inital condition described above.  The
step is illustrated in Figure 3.

focus
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degree(q) < Threshold

yes no

trinetDual

p
q

apply  Refin rule;
focus' = RefinCode (1-18)
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focus' = DiagsCode (1-9)
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Figure 3 - The step of the algorithm 

The  step  accepts  the  tuple  (trinetDual,  focus,  Threshold,  RefinCode,  DiagsCode)  and  returns  the  tuple  (trinetDual',
focus', Threshold, RefinCode, DiagsCode), where:

Ë trinetDual is the current graph -- the dual of a trinet -- represented as a set of triangles. 
Ë focus is an angle of a specified triangle in trinetDual, and represents the current location for control.
Ë Threshold is a constant natural number in the interval [3, ¶], The choice between rule Refin and Diags depends on 

the degrees of the two nodes, p and q, of the edge facing the focus: when the degree of p or q is lower than the 
Threshold, then rule Refin is applied, which increments by one the degree of both nodes; otherwise rule Diags is 
applied, which decrements their degrees by one.

Ë RefinCode and DiagsCode are constant parameters, ranging respectively in intervals [1, 18] and [1, 9]; they are 
used for choosing focus', the next focus, as shown in the lower part of Figure 3.  In light of the symmetry of the 
initial graph, we can optimize the parameter space by dropping half of the 18 potential choices of the new focus, 
after rule Diags has been applied: we shall therefore consider only 18 * 9 = 162 pairs of values for these two 
parameters.

Ë trinetDual' and focus' are the updated values of these variables, used for iterating the computation step.  Threshold, 
RefinCode and DiagsCode are constants, thus they are unchanged by the step.

Algorithm invariant
We  now  want  to  prove  that  the  rewrite  rules,  as  implemented,  preserve  the  sphericity,  as  defined  above,  of  the  data
structure  they  manipulate.   For  doing  this  we  need  to  introduce  a  method  for  computing  the  degree  of  a  node  in  a
triangular,  spherical  embedding.   If  n  is  the  number  of  occurrences  of  node  p  in  a  set  of  oriented  triangles,  then
degree(p)  =  n/2,  since  each  edge  occurs  twice  in  the  structure  (recall  that  a  loop  edge  e(p,  p)  contributes  2  units  to
degree(p)).   As  an  alternative,  we may traverse  all  edges  incident  to  p  while  rotating  clockwise  around p,  as  follows:
pick from the set of triples an oriented edge e(n1, p) in which p appears as second node, and compute what we call the
cyclic star path:

e(n1, p), f(p, n2), f(n2, p), g(p, n3), ..., e(p, n1)

in which two adjacent elements with different edge identifiers, e.g. e(n1, p) and f(p, n2), represent edges that share node
p and appear in (cyclic) sequence in some triangle, while adjacent elements with the same edge identifier, e.g. f(p, n2),
f(n2,  p)  represent two opposite traversals of the same edge, as found in two distinct triangles.   It  is  easy to check that
degree(p) is half the length of the star path around p.  
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in which two adjacent elements with different edge identifiers, e.g. e(n1, p) and f(p, n2), represent edges that share node
p and appear in (cyclic) sequence in some triangle, while adjacent elements with the same edge identifier, e.g. f(p, n2),
f(n2,  p)  represent two opposite traversals of the same edge, as found in two distinct triangles.   It  is  easy to check that
degree(p) is half the length of the star path around p.  

As an example, consider the list of two oriented triangles representing the initial configuration introduced above.  The
cyclic star path for, say, node 1 is: e3(3, 1), e1(1, 2), e1(2, 1), e3(1, 3). This yields degree(1) = 2.  The advantage of this
techinique is that it allows us to possibly discover the degree of a node without scanning the whole list of triangles.  We
are now ready to prove an important invariant of the algorithm.

Proposition 1 (Algorithm invariant)

When  applied  to  a  spherical  set  of  triangles,  and  when  Threshold  ¥  3,  the  step  of  our  algorithm  produces  another
spherical set of triangles.

Proof
We must prove that when a set of triples satisfies sphericity conditions 1-3 above, then the set of triples obtained from it
after  one  step  also  satisfies  them.   We  shall  refer  to  the  edge  and  node  identifiers  appearing  in  the  above  rule
implementations.  We distinguish two cases.

Case 1: rule Refin is applied.  
Each  of  the  three  triples  created  by  this  rule  is  an  oriented  triangle  by  construction,  so  that  condition  1  is  preserved.
Furthermore these triangles: (i) re-introduce the instances e1(q, r), e2(r, p), e3(p, q) that were removed, so that each of
these  'old'  edges  is  shared  precisely  by  a  new  and  an  old  triangle,  and  (ii)  collectively  introduce  two  oriented  edge
occurrences, with opposite node orderings, of each new edge (e4, e5, e6), so that each new edge is shared by two of the
new triangles; thus,  condition 2 is also preserved.  Finally, v,  e,  t  are incremented, respectively, by 1,  3,  2,  so that the
value of v - e + t is unaffected and condition 3 preserved.  The effect of Refin on a triangle involving one, two, or three
distinct vertices is illustrated in Figure 4.

Figure 4 - Applying rule Refin to triangles with three vertices, two vertices, or one vertex

Case 2: rule Diags is applied. 

Consider the two removed triangles.  They share at least edge e3, but may share more; again, symbols e1, e2, e4, e5 are
understood as formal  variables,  some of  which may assume the  same actual  value.   Thus,  we distinguish three cases,
depending  on  the  number  of  actual  edges  they  share.   In  all  these  cases  condition  3  is  trivially  guaranteed,  since  the
counts of vertices, edges, and triples is left unchanged.

Case 2.1 - The two removed triangles share one edge.

Since e1,  e2,  e4,  e5  are  all  different,  each of the two created triples is  a triangle by construction, hence condition 1 is
guaranteed.   Condition  2  is  guaranteed  by  the  fact  that  oriented  edge  occurrences  for  e1,  e2,  e4,  e5  are  only  moved
around by the rule, while occurrences  e3(p,  q) and e3(q,  p) are replaced by occurrences e3(r,  s) and e3(s,  r),  that still
appear in different triangles.

Case 2.2 - The two removed triangles share two edges.

We distinguish two subcases.  

Case 2.2.1. The two shared edges (one is e3) appear in the same order in the two removed triangles.  Let us then assume,
w.l.o.g., that e1 = e4 (the case e2 = e5 is symmetric), so that the two removed triangles can be written:  

(e1(q, r), e2(r, p), e3(p, q)) 
(e3(q, p), e1(r, q), e5(q, q)),
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(e1(q, r), e2(r, p), e3(p, q)) 
(e3(q, p), e1(r, q), e5(q, q)),

where  the  second  triple  is  obtained  by  reversing  the  order  of  nodes  for  e1  and  e3,  and  by  letting  the  nodes  for  e5
complete the triangulation.  But for the second triple to be a correct triangle, it must also be p = r, so that the triangles
can be rewritten as:

(e1(q, p), e2(p, p), e3(p, q)) 
(e3(q, p), e1(p, q), e5(q, q)).

These triangles are depicted in Figure 5 (left).  By applying rule Diags to these two oriented triangles, we obtain the two
triples: 

(e5(q, q), e1(q, p), e3(p, q)) 
(e3(q, p), e2(p, p), e1(p, q)).

We have obtained two oriented triangles (condition 1), and it is trivial to verify that, after the replacement, condition 2
holds.  

Case 2.2.2. The two shared edges (one is e3) appear in opposite order in the two removed triangles.  Let us then assume,
w.l.o.g., that e1 = e5 (the case e2 = e4 is symmetric).  The two triangles to be removed would be:  

(e1(q, r), e2(r, p), e3(p, q)) 
(e3(q, p), e4(p, r), e1(r, q)),

where  the  second  triple  is  obtained  by  reversing  the  order  of  nodes  for  e1  and  e3,  and  by  letting  the  nodes  for  e4
complete  the  triangulation.   Consider  node  q,  which  is  shared  by  the  two edges  e1  and  e3,  in  turn  shared  by  the  two
triangles: its cyclic star path is (e3(p, q), e1(q, r), e1(r, q), e3(q, p)), its length is 4, thus degree(q) = 2.  This is in conflict
with the assumption Threshold  ¥ 3: rule Diags could not be applied to edge e3 since one of its nodes has degree lower
than the threshold. The two triangles are depicted in Figure 5 (right). 

Figure 5 - Pairs of triangles for cases 2.2.1 and 2.2.2.

Case 2.3 - The two removed triangles share three edges.

The first  removed triangle  is  (e1(q,  r),  e2(r,  p),  e3(p,  q)),  thus  the  second removed triangle  must  be composed by the
three oriented edges e1(r, q), e2(p, r) and e3(q, p), thus it can only be (e1(r, q), e3(q, p), e2(p, r)).  In this case, the star
path of  any of  the  nodes  has  length 4,  hence all  nodes  have degree 2.   This  is,  again,  in  conflict  with  the assumption
Threshold ¥ 3.    Q.E.D.

We have verified earlier that the set of triples in the initial configuration is spherical.  In light of the above invariant, we
now  conclude,  inductively,  that  all  sets  of  triples  produced  by  the  algorithm  are  spherical,  that  is,  they  represent
spherical embeddings of planar, triangular graphs.

Computation classes
We shall  let  c[T,  {RC,  DC},  L]  denote the (L-1)-step computation of our  algorithm, starting from the initial  condition
above, with Threshold  = T,  RefinCode  = RC  and DiagsCode  = DC.   (A pedantic but necessary clarification: usually a
step  is  understood  as  a  pair  of  consecutive  states,  hence  a  1-step  computation  is  two states  long:  the  'L'  in  c[T,  {RC,
DC},  L]  refers  to  the  Length  of  the  computation,  intended  as  the  number  of  states  it  includes.)  We  shall  also  use  a
convenient notation for representing subsets of the computation space.  For example,  C[Threshold = 3] shall denote the
set {c[3, {RC, DC}, S] | RC œ [1, 18], DC œ [1, 9], S ¥ 1}, that is, the family of all computations with Threshold = 3, of
any length.  Since we impose Threshold  ¥ 3, the first computation step inevitably applies rule Refin,  and produces the
tetrahedron graph shown in Figure 1 (b),  Then computations start to differentiate, depending on the parameter settings. 

3. Visual indicators for planar trinet computations
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3. Visual indicators for planar trinet computations
A computation can be defined as  a  sequence of  states.  The state  of  our  algorithm is  essentially  formed by the  pair  of
variables  (trinetDual,   focus),  that  represent  a  planar  graph and  the  location  of  control  in  it.   We are  interested in  the
emergent  properties  of  planar  trinets,  with  the  idea  that  they  might  eventually  capture  properties  of  physical  space.
However, it may be hard to visually detect emergent properties when directly using graphs, for the following reasons: (i)
a  trinet  or  trinet  dual  may  soon  become  a  complex  structure,  and  a  sequence  of  thousands  of  them  can  hardly  be
inspected at a glance, as opposed to what happens, for example, with the computations of elementary cellular automata;
(ii)  there  exist  many  alternative  methods  to  draw graphs  on  the  plane,  such  as  using a  predefined  arrangement  of  the
nodes (e.g. circular) or applying attractive or repulsive forces to nodes, and the emergence and detectability of patterns
is largely dependent on the  method.

One  can  of  course  look  just  at  the  final  graph,  either  in  dual  or  in  primal  form,  and  we  shall  do  it  too.   However,
emergent properties are better detected when  looking at the whole computation.  Thus, in our investigation we shall be
much interested in the fluctuations of the other state variable -- the focus.  This variable captures only a tiny fraction of
state information, but this is indeed an advantage, since we can easily plot a whole computations as a compact, readily
inspected diagram.  We have defined the focus  as the angle {e1,  e2} between two edges of triangle {e1,  e2,  e3}.  For
further  simplification,  we shall  simply  monitor  the  edge  opposite  to  this  angle,  namely e3.   Note  that  this  is  the  edge
whose vertices p  and q  are tested at every step: we call it the current edge.   Looking at e3  rather than at pair {e1, e2}
introduces further ambiguity, or abstraction, since e3 identifies two possible foci.  And yet, the sequence of current edge
identifiers turns out to be a useful indicator.  New edges are created in the trinet dual, three at a time, only by the Refin
rule, and are assigned progressive natural numbers; plotting the sequence of current edge numbers reveals the extent to
which  the  control  point  can  revisit  and  update  old  parts  of  the  graph,  and  whether  some  regions  are  definitively
abandoned.  For this reason we call these numeric sequences, and their plots, revisit indicators.

For illustrating the idea above, and for comparison with some of the revisit indicators we shall discuss later, consider the
two plots in Figure 6.  These depict the revisit indicators for two extremely simple and regular graph growth patterns;
the relevant revisited elements are now the nodes, which are numbered sequentially as they are created.  In the first case
the algorithm maintains a linear topology, and creates a new node only after having sequentially scanned the current list
{1, 2, ..., n} of nodes, in both directions, up and down. The second case is similar, except that nodes are arranged in a
growing circle, and a new node is added after a circular, single-scan visit of the graph. 
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Figure 6 - Revisit indicators for graphs with linear (left) and circular (right)  topology

An easy  calculation  shows  that  the  node-growth  functions,  also  plotted  in  the  diagrams,  are  n  =  Sqrt[s]  for  the  linear
graph, and   n = Sqrt[2s] for the circular graph.  More generally, a growth rate n = Sqrt[2s/k] corresponds to a 'grow-and-
revisit' algorithm that, in the interval between the creation of nodes n-1 and n, takes k*n revisit steps.

A rather obvious visual complexity indicator, even simpler than the revisit indicator, consists in plotting the number of
nodes in the trinet dual as a function of the algorithm steps.  We call this the dual node count indicator, with the attribute
'dual'  often  omitted.  Recall  that  these  nodes  represent  trinet  faces.   This  indicator  is  a  monotonic,  non-decreasing
function, since rule Refin  adds one node to the trinet dual (two nodes to the original trinet),  and rule Diags  leaves the
node  count  unaffected.  In  the  sequel  we  mainly  refer  to  the  revisit  indicator,  since  it  confirms  but  also  refines  in
interesting ways the classification induced by pure node counting. 
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4. Threshold 3: 1-D trinets, simple oscillators and trees
Figure 7 shows the revisit indicator for all  the computations of Length 500, with Threshold 3 -- a set of 18 * 9 = 162
elements  that  we  denote  C[Threshold  =  3,   Length  =  500],  and  Figure  8  shows  the  corresponding  final  trinets.   The
numbers  appearing  at  the  left  of  each  small  diagram  represent  the  highest  current  edge  identifier  used  in  the
computation: this number cannot exceed 3*Length, since the initial trinet dual has three edges, and each step can at most
contribute three new edges. 
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Figure 7 - Revisit indicators for all threshold-3, length-500 computations
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Figure 8 - Final trinets for all threshold-3, length-500 computations

Constant revisit indicator: periodic trinet sequences
The simplest type of computation corresponds to a constant revisit indicator. An example is computation c[3, {1, 1}, _]
(of unspecified length), in which, after one step, edge 5 becomes the current edge forever, and Diags  the only applied
rule.   In  this  case,  the  sequence of  trinets  has  period 2 and oscillates between the tetrahedron and a square-like graph
with  two  double  edges;  the  tetrahedron  happens  to  be  the  final  trinet  of  the  length-500  computation,  as  shown in  the
corresponding entry of Figure 8. Many similar cases of constant plots, involving a finite number of distinct current edge
identifiers occur in this computation class, as well as in subsequent ones; they all correspond to periodic sequences of
bounded-size trinets, and to graphs with very few nodes and edges in Figure 8.  For example, in computation c[3, {2, 3},
_], the current edge oscillates between 7 and 4, and the sequence of trinets has period 10 (or period 5, if node identities
are ignored).  Note that in this class also the node count indicator must be a constant function.

Linear revisit indicator: regular, 1-D, growing trinets
The next simple case, quite common too, is that of revisit indicators with linear growth. An example is computation c[3,
{1, 2}, _], in which the sequence of current edge identifiers gives a regular numeric sequence where every third natural
number  is  skipped.  The  corresponding  graph  is  the  simplest  1-D,  ladder-shaped  trinet.   Four  consecutive  trinets  from
this computation are shown in Figure 9.  Node numbers help understanding the growth mechanism.
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Figure 9 - Four consecutive trinets from computation c[3, {1, 2}, _]

Other simple 1-D patterns are observed.  For example computations c[3,  {12,  5}, 60] and c[3,  {13,  5}, 130] yield the
trinets  shown  in  Figure  10,  which  grow  linearly  and  regularly:  the  details  of  these  structures  are  lost  in  the  linear
thumbnail diagrams of Figure 8.

83, 812, 5<, 60<

83, 813, 5<, 130<

Figure 10 -  1-D final trinets of c[3, {12, 5}, 60] and c[3, {13, 5}, 130]

In  all  linear  cases  above,  the  growth  takes  place  at  one  extreme  of  the  graph.   A  slightly  different  growth  pattern  is
achieved by computation c[3, {5, 9},  _], whose revisit indicator is illustrated in more detail, with the corresponding 1-D
trinet, in Figure 11: in this case the growth takes place in the central part of the trinet.
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In  all  linear  cases  above,  the  growth  takes  place  at  one  extreme  of  the  graph.   A  slightly  different  growth  pattern  is
achieved by computation c[3, {5, 9},  _], whose revisit indicator is illustrated in more detail, with the corresponding 1-D
trinet, in Figure 11: in this case the growth takes place in the central part of the trinet.
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Figure 11 - Revisit indicator and final 1-D trinet growing from its center

The second 1-D pattern found in this family of computations is the circle: four examples are shown in Figure 12.  In the
last case, the circle is formed after a relatively large initial transient phase; the portion of the trinet created in this phase
is then permanently abandoned, and the growth takes place at the extreme of the circle opposite to it, as suggested by the
picture.
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Figure 12 - Revisit indicator and final, circular 1-D trinet for three computations
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The simple  linear  and  circular  1-D structures  appear  combined  in  c[3,  {13,  9},  _]  (Figure  13);  in  this  case  the  active
region is at their junction, and they grow at the same speed, providing a stable overall shape. 
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Figure 13 - Revisit indicator and final 1-D trinet for c[3, {13, 9}, 300]

All the revisit diagrams of this group eventually exhibit the same linear growth; the node count grows linearly with the
computation steps,  all  parts  of  the growing trinet  are  eventually abandoned,  except,  possibly,  for  a  finite  part,  and the
trinet is one-dimensional.

Nested revisit indicator:  oscillating, segment-circle and circle-circle 1-D trinets
Twelve  examples  of  nested  revisit  indicator  are  found  in  Figure  7:  six  are  in  column  2,  and  have  (RefinCode,
DiagsCode) pairs (3, 2), (8, 2), (12, 2), (13, 2), (14, 2), (17, 2), and six in column 4, with codes (5, 4), (6, 4), (11, 4), (13,
4), (14, 4), (16, 4).  The final trinets in Figure 8 fail to reveal the substantial difference between these computations and
those in the previous group, but the revisit indicators are more informative;  in particular, these diagrams indicate that
the trinet growth process sweeps an increasingly large portion of the net, by actually sampling all parts of it, except for
case (3, 2) in which a slowly growing region is permanently abandoned.  Two distinct types of  dynamics emerge from
these 12 computations; they are described below. 

Segment-circle.  The first growth pattern is exhibited by five computations, with codes (12, 2), (13, 2), (17, 2), (13, 4),
(14, 4).   We call  this pattern 'segment-circle' because the trinet is formed by connecting a linear segment and a circle;
this is similar to the trinet shown in Figure 13, except that both parts now grow and shrink, with opposite phase, so that
the  trinet  oscillates  smoothly  between  a  purely  circular  and  a  purely  linear  form.   Activity  always  takes  place  at  the
junction between the two structures. As observed in the previous cases, the micro-structure of the segment and the circle
is based on a variety of different, simple building blocks. 
As an example, Figure 14 illustrates computation c[3, {14, 4}, 2300]. 
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Figure 14 - Nested computation c[3, {14, 4}, 2300].
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Note the similarity between the revisit diagram of Figure 14 and the one on the left in Figure 6.  For a better illustration
of the dynamics of these trinets, a subsequence of several steps from computation c[3, (13, 2), _] is shown in Figure 15.

Figure 15 - Steps of computation c[3, {13, 2}, _], showing circular and linear components that grow and shrink

Circle-circle. The second growth pattern is exhibited by seven computations, with codes (3, 2), (8, 2), (14, 2), (5, 4), (6,
4), (11, 4), (16, 4).  We call the pattern 'circle-circle' because the trinet is formed by connecting two circles, that grow
and shrink with opposite phase.  Again, the growth always takes place at the junction between the two structures, and
various types of simple building blocks are observed.  Several steps of computation c[3, (6, 4), _] are shown in Figure
16, where the micro-structure is the same of Figure 15.

Figure 16 - A few steps of computation c[3, {6, 4}, _] showing a growing and a shrinking circle

The  twelve  computations  with  nested  revisit  indicator  discussed  above  are  also  directly  identified  by  inspecting  their
node count indicators: out of the 162 threshold-3 elements they are precisely those that exhibit a regular staircase shape
with a sub-linear growth.  A closer investigation of these data has revealed the facts described below.  
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The 8 computations with RefinCode-DiagsCode pairs (3, 2), (8, 2), (12, 2), (17, 2), (5, 4), (11, 4), (13, 4), (16, 4) exhibit
identical node growth functions, although they yield trinets of different types: codes (3, 2), (8, 2), (5, 4), (11, 4), (16, 4)
yield the same  circle-circle  trinet,  and codes (12, 2), (17, 2), (13, 4) yield the same segment-circle  trinet.  Their node
growth function is matched with excellent precision by function f(x) = 3 + Sqrt[x], as shown in Figure 17.  Recall that
the initial trinet dual has indeed three nodes.
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Figure 17 - Node growth for eight threshold-3 nested computations and function 3 + Sqrt(x)

Of the remaining 4 nested cases, those with code pairs (13, 2) and (14, 4) are of segment-circle type, while (14, 2) and
(6, 4) are of circle-circle  type.  All four node growth functions are different, but they all approximate quite closely the
O(n^1/2) growth of the previous group.  Indeed,  by using Mathematica function FindFit over computations of length
10,000, and by using parametric function f(x) = a + b*x^c, in all four cases a c exponent in the close proximity of 1/2
was found.

'Radial' revisit indicator: tree-like irregular trinets 
Two  computations  in  class  C[Threshold  =  3]  exhibit  revisit  indicators  that  are  slightly  perturbed  versions  of  a  very
regular  pattern consisting of potentially infinite  straight  lines ('rays')  emanating from the origin:  these have code pairs
(2, 5) and (11, 5).  Their corresponding trinets are tree-like irregular  graphs, and the active point on them also moves
quite  irregularly,  visiting  every  part  infinitely  often.   The  revisit  indicator  and  final  trinet  for  computation  c[3,  (2,  5),
2000] are shown in Figure 18.  We had found a cleaner (that is, not perturbed) version of this radial revisit indicator by
using another trinet algorithm, as described in [B2007a], and we shall find it again with the present algorithm, later in
the paper.
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Figure 18 - An 'infinite rays' revisit indicator and the corresponding tree-like trinet.

These two cases also illustrate the usefulness of our revisit indicator: the pure node count indicator for them is basically
linear,  and  would  not  be  as  effective  as  the  infinite-radii  pattern  in  discriminating  them  from  the  many  other
computations with linear node count.

Revisit indicators with long random transients: complex trinets with 'highways'
By inspecting  Figure  7,  six  computations  in  class  C[Threshold  =  3]  exhibit  a  high  degree  of  apparent  randomness  in
their revisit indicator.  They are all in column 9, and have code pairs (3, 9), (8, 9), (11, 9), (14, 9), (16, 9), (17, 9).  In
fact, by looking at longer computations, all of them eventually stabilize to a regular growth pattern, called 'highway' in
analogy with the phenomenon observed in some two dimensional Turing Machines.   (The node count indicators in all
these cases appear as roughly linear, even in the transient phase preceding the highway.)

For example, Figure 19 shows the periodic revisit indicator and periodic trinet for computation c[3, {3, 9}, 2000].
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Revisit indicators with long random transients: complex trinets with 'highways'
By inspecting  Figure  7,  six  computations  in  class  C[Threshold  =  3]  exhibit  a  high  degree  of  apparent  randomness  in
their revisit indicator.  They are all in column 9, and have code pairs (3, 9), (8, 9), (11, 9), (14, 9), (16, 9), (17, 9).  In
fact, by looking at longer computations, all of them eventually stabilize to a regular growth pattern, called 'highway' in
analogy with the phenomenon observed in some two dimensional Turing Machines.   (The node count indicators in all
these cases appear as roughly linear, even in the transient phase preceding the highway.)

For example, Figure 19 shows the periodic revisit indicator and periodic trinet for computation c[3, {3, 9}, 2000].
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Figure 19 - A periodic computation with short transient and  long period.

As another  example,  Figure  20  illustrates  computation  c[3,  {11,  9},  12000].   More  than  8000  steps  are  necessary  for
stabilizing the growth, with settles in what we have called  a segment-circle  pattern, with the active part at the junction
of the two components. In fact, in spite of the possibly very long initial transient and period, these computations are not
qualitatively different from those with 'linear revisit indicators' discussed at the beginning of this section. 

2000 4000 6000 8000 10000 12000

1000

2000

3000

83, 811, 9<, 12 000<

83, 811, 9<, 12 000<

Figure 20 - A computation  yielding a trinet which eventually settles to a segment-circle pattern with linear growth

Finally,  we  have  investigated  computation  c[3,  {14,  9},  _].   Running  it  for  160,000  steps  allowed  us  to  detect  the
periodicity of its revisit indicator, with a period of over 11,000 steps.
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5. Threshold 4: nested trinets and uniform randomness
Similar to the previous section, Figure 21  shows the revisit indicator for all the 162 computations in class C[Threshold
= 4, Length = 500], and Figure 22 shows the corresponding final trinets.
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Figure 21 -  Revisit indicators for all threshold-4, length-500 computations
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81, 1< 81, 2< 81, 3< 81, 4< 81, 5< 81, 6< 81, 7< 81, 8< 81, 9<
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817, 1< 817, 2< 817, 3< 817, 4< 817, 5< 817, 6< 817, 7< 817, 8< 817, 9<

818, 1< 818, 2< 818, 3< 818, 4< 818, 5< 818, 6< 818, 7< 818, 8< 818, 9<

Figure 22 - Final trinets for all threshold-4, length-500computations

By  inspecting  the  two  figures  it  is  immediately  clear  that  the  large  majority  of  these  computations  exhibits  emergent
features that are qualitatively the same we have already observed in the previous class.  Let us shortly overview these
cases, before moving to the novel, most interesting ones.

We still have periodic sequences of bounded trinets, and 1-D trinets that grow linearly and without bound, as segments
or  circles.   Interestingly,  among  the  latter,  computation  c[4,  {17,  5},  _]  provides  a  trinet  whose  uniformly  growing
structure appears similar to a circle with its diameter, so that its macrostructure reproduces the initial trinet -- a two-node
graph with three double edges.  We find also two computations, namely c[4, {16, 2}, _] and c[4, {17, 2}, _], with nested
revisit indicators and corresponding trinets that oscillate while growing, according to the already observed circle-circle
pattern. As observed with threshold 3, we find one computation with noisy, radial revisit indicator, namely  c[4, {11, 5},
_],  which  yields  an  irregular  tree-like  trinet,  similar  to  that  obtained  with  computation  c[3,  {11,  5},  _].   Finally,
computations  c[4,  {11,  9},  500],  c[4,  {13,  5},  500],  c[4,  {17,  9},  500],  whose  revisit  indicators  do  not  manifest  any
regularity in 500 steps, all eventually settle to a 1-D, periodic, unbounded trinet.   We are left with three novel and quite
interesting cases, that are discussed below.

c[4, {16, 4, _]: nested binary tree trinet with circular boundary
This  computation exhibits  a  cleaner version of the radial  revisit  indicator,  and the trinet  has now a regular  and nested
structure,  shown  again  in  Figure  23:  it  is  formed  by  a  binary  tree  with  trivalent  root,  with  the  addition  of  edges
interconnecting adjacent leaves in a circle.  The same trinet was obtained also by the algorithm introduced in [B2007a].
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c[4, {16, 4, _]: nested binary tree trinet with circular boundary
This  computation exhibits  a  cleaner version of the radial  revisit  indicator,  and the trinet  has now a regular  and nested
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Figure 23 - Revisit indicator and final trinet of computation c[4, {16, 4}, 199]

c[4, {3, 2}, _]: nested binary tree with oscillating, circle-circle pattern
The  thumbnail  for  the  trinet  of  this  computation,  shown  in  Figure  22,  misleadingly  suggests  a  similarity  with  the
previous  computation  c[4,  {16,  4},  _].   However,  the  nested  revisit  indicator  (Figure  21)  reveals  rather  different
dynamics.   In  fact,  the  trinet  oscillates  while  growing,  and  resembles  the  already  discussed  circle-circle  pattern  (see
Figure 16), except that now a nested structure is involved, rather than a simple circle.
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c[4, {17, 8}, _]: randomized square root growth
This computation is perhaps the most surprising we have found; the only similar case is c[5, {9, 8}, _], to be discussed
later.  Figure 24 shows the revisit indicator, the final trinet, and the node count as a function of the algorithm steps,  for
c[4,  {17,  8},  6000].  Recall  that  the  we count  the  number  of  nodes  in  the  trinet  dual,  corresponding to  the  number  of
faces  in the original trinet; in figure, this function is then matched against function f[steps] = 3 + Sqrt[2*steps], which
exactly  characterizes  also  the  regular,  circular  'grow-and-revisit'  algorithm  introduced  in  Section  3:  statistically,  the
growth process  is  such that,  between two new trinet  face creations,  a  number  of  re-visits  is  performed that  equals  the
current  number of faces.  
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Figure 24 - Revisit indicator, final trinet, and node growth for c[4, {17, 8}, 6000]

Figure 25 shows similar data for a computation of length 100,000.
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Figure 25 -Revisit indicator, final trinet, and node growth for c[4, {17, 8}, 100,000]

This  ability  of  this  computation  to  revisit  its  past  uniformly,  densely,  and  indefinitely,  while  exhibiting  random-like
dynamics, is indeed quite remarkable.
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6. Threshold 5: second case of uniform randomness
Most of what emerges in this class has been observed before. For any value of RefinCode in  range [1, 8], and for values
12 and 14, the computation is independent from the value of DiagsCode and yields a linear or circular, 1-D trinet.  All
other cases are illustrated in Figures 26 and 27.
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Figure 26 -  Revisit indicators for all threshold-5, length-500 computations
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Figure 27 - Final trinets for all threshold-5, length-500 computations

RefinCodes  11  and  15,  again  regardless  of  the  DiagsCode,  yield  plain,  linear  revisit  indicators,  but  the  corresponding
trinets are now nested, a combination that was not observed in previous classes.  The same trinet structure can therefore
be  obtained  by  different  revisit  policies,  and,  correspondingly,  in  a  different  number  of  steps.   Figure  28  shows three
different computations with different revisit indicators that produce the same trinet in, respectively, 22, 22 and 85 steps.
Nodes have been labelled for showing the different orders in which the graphs are created. 
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Figure 28 - Three computations yielding the same trinet

No nested revisit indicator of the types seen before (e.g. that of computation c[3, {3,  2}, _] or c[3, {5, 4}, _] is found in
this class.  But we do find an unperturbed radial revisit indicator for c[5, {16, 4}, _] which corresponds to a nested trinet.
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A peculiar tree-like trinet is obtained for c[5, {17, 2}, _]; the revisit indicator and the trinet are shown in Figure 29.  (In
this case the sublinear,  node growth function for the dual graph is approximated by f(steps) = 5.31 + 1.57*steps^0.65.)
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Figure 29 -   Revisit indicator and final trinet of c[5, {17, 2}, 2000]

As  observed  for  threshold-4  computations,  all  the  6  revisit  indicator  thumbnails  that  appear  as  random  in  Figure  26,
corresponding to code pairs (13, 5), (17, 4), (17, 6), (17, 8), (17, 9), (18, 8), end up settling to a regular behavior.  But
case  (17,  8)  is  the  only  one  for  which  the  revisit   indicator  stabilizes  to  a  square  root  growth pattern.   The last,  most
interesting case, is discussed below.

c[5, {9, 8}, _]: second case of randomized square root growth
This  is  the  only  other  example,  similar  to case c[4,  {17,  8},  _],  of  a  computation which exhibits  a  dense,  random but
uniform revisit indicator, with node growth well approximated by a square root function.  Figures 30 and 31 show the
revisit  indicator,  the  final  trinet,  and  the  node  growth  function,  with  approximating  functions,  for  computations  of
lengths 6000 and 100,000, respectively.
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Figure 30 - Revisit indicator, final trinet, and node growth for c[5, {9, 8}, 6000]
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Figure 31 -  Revisit indicator, final trinet, and node growth for c[5, {9, 8},100,000]
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7. Threshold 6: regular and irregular 2-D grids
For threshold  6 and higher,  the computations for RefinCode  values in range [1,  8],  and values 11,  12,  14,  15,   appear
exactly the same as those obtained for threshold 5, and are (individually) independent from DiagsCode  values. The six
interesting values left for RefinCode are illustrated     in Figures 32 and 33. 
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Figure 32 -  Revisit indicators for all threshold-3, length-500 computations with RefinCodes 9-18
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Figure 33 -  Final trinets for all threshold-3, length-500 computations with RefinCodes 9-18

Most  of  the  computations  in  C[Threshold  =  6]  exhibit  the  already  discussed  emergent  features.  For  example,
computations  c[6,  {9,  8},  _],  c[6,  {10,  5},  _],  c[6,  {13,  4},  _],  c[6,  {17,  2},  _],  c[6,  {18,  8},  _],  with  irregular
thumbnails,  all  end up settling to regular  behavior,  possibly with  long initial  transients.   For example,  c[6,  {9,  8},  _]
takes about 35,000 steps to stabilize.

However, three novel cases are observed, that produce, for the first time in our investigation, 2-D trinets.  They deserve
special attention.

c[6, {10, 2}, _]: hexagonal grid with three central pentagons
The trinet produced by this computation is a 2-D, hexagonal grid that develops around a nucleus of three pentagons; this
is shown in Figure 34.  The active point is always at the border of the graph.  The fact that this border grows with the
graph itself explains the peculiar shape of the revisit indicator, with three slightly divergent radii, and a growing part of
the net being eventually abandoned.
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Figure 34 - Revisit indicator, hexagonal grid, and dual node count for c[6, (10, 2), 200]

For comparison with the other two 2-D trinet computations it is useful to analyze the distribution of polygon sizes.  For
computation c[6, (10, 2), 3000] the following distribution is observed in the final trinet:

{{3, 3},{4, 1},{5, 93},{6, 1453},{98, 1}},

where {x, y} indicates that there are y faces with x edges.  Note the presence of a large, external face, with 98 sides.

c[6, {13, 3}, _]: irregular trinet based on hexagonal grid
Unlike  the  previous  case,  the  trinet  produced  by  this  computation  exhibits  an  intrinsically  asymmetric  structure,  as
shown in Figure 35. The distribution of face sizes for a computation of length 3000 is:

{{3, 6}, {4, 1}, {5, 24}, {6, 979}, {7, 7}, {8, 7}, {9, 2}, {11, 1}}

It is clear that the largest part of the graph is a hexagonal grid, with 979 hexagons, but some larger faces are now present
too.   Interestingly,  a  large  external  face  is  now missing,  and  this  is  not  surprising  if  we  consider  the  complex  revisit
indicator, which reveals randomness and fairness in revisiting all parts of the growing net, although traces of regularity
and symmetry are also visible.  Note that the trinet is drawn in figure as two superimposed layers of roughly the same
number of faces.
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Figure 35 - Revisit indicator, hexagonal grid, and dual node count for c[6, (13, 3), 3000]
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c[6, {18, 9}, _]: hexagonal grid with one central pentagon
The trinet produced by this computation is a 2-D hexagonal grid that develops around one pentagon  (Figure 36).   The
distribution of face sizes for a 3000-step computation is:

{{3, 73}, {5, 51}, {6, 1404}, {7, 70}, {194, 1}}

A large, external face is present again. The active point is always at the border of the graph, and the growth process is
similar to that of computation c[6, (10, 2), _] above.
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Figure 36 - Revisit indicator, hexagonal grid, and dual node count for c[6, (18, 9), 200]

8. Thresholds 7, 8, 9: further regular 2-D grids
Class C[threshold  = 7] presents further types of nested trinets, both with linear (e.g. c[7, (9, 9), _]) and with radial (e.g.
c[7, (10, 2), _]) revisit indicators, and two more cases of 2-D regular grid: c[7, {9, 2}, _], which gives a pure hexagonal
grid, and c[7, {18, 9}, _], which gives a hexagonal grid with one central septagon.  Both are illustrated in Figure 37
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Figure 37 - Revisit indicator and hexagonal grid produced by c[7, (9, 2), 200]

No other 2-D regular trinet is found for threshold values 8 and 9, while nested trinets are still present.
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9. Infinite threshold 
The case Threshold = infinite is interesting because the algorithm is forced to always apply the Refin rule.  The resulting
computations  are  illustrated  in  Figures  38  and  39,  where  '*'  stands  for  any  value  of  DiagsCode  --  a  value  that  the
algorithm never uses.
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Figure 38 - Revisit indicators for all computations with Threshold = infinite and RefinCodes 1-18, of length 500
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Figure 39 - Final trinets for all computations of length 64, with Threshold = infinite and RefinCodes 1-18, 

Note  that  the  trinets  refer,  in  this  last  diagram,  to  computations  of  length  64  only;   they  evenly  split  into  6  linear,  6
circular, and 6 nested graphs. The regular, radial revisit indicator of c[infinite, {10, 1}, _] is such that each edge (with
identifier) in the set 

{1, 2} ‹ {3k + 1 | k = 1, 2, ...}

appears infinitely often in the diagram, although at an exponentially decreasing rate.  More precisely, denoting by s[e, n]
the  step  (number)  at  which  edge  e  is  the  current  edge  for  the  n-th  time,  the  following  holds  for  all  visited  edges  as
identified above:

s[e, n] = 2 s[e, n-1] + 1     (n >1)

where  s[1,  1]  =  1,  s[2,  1]  =  2,  and  s[3k  +  1,  1]  =  2(k  +  1),  k  =  1,  2,  ....  The  arithmetic  progression  of  initial  edge
occurrences,  combined  with  the  geometric  progression  of  subsequent  appearances  of  individual  edges,  determines  the
characteristic pattern of virtually infinite radii emanating from the origin. 
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10. Conclusions
In  this  paper  we have introduced an original  algorithm for the creation of dynamic planar trivalent  networks (trinets),
and  have  exhaustively  explored  all  the  classes  of  its  computations  corresponding  to  values  in  the  range  3-9,  and  to
infinity,  of  a  threshold  parameter.   A  number  of  quite  interesting  phenomena  have  emerged,  while  it  is  still  unclear
whether  considering  finite  values  beyond  threshold  9  could  yield  qualitatively  new  features.   Among  the  expected
results we have found plenty of  computations yielding periodic sequences of bounded trinets, as well as sequences of 1-
D  trinets  growing  without  bound,  where  stabilization  to  regular,  linear  growth  may  occur  after  very  long  transient
phases characterized by pseudo-random dynamics. 

More  interestingly,  we  have  found  complex,  but  still  regular  (nested)  computations,  with  trinets  that  grow  while
oscillating  between  linear  and  ring  structures  based  on  simple   building   blocks,  and  computations  that  produce  2-D
trinets  based  on  the  hexagonal  grid.   All  of  the  latter  exhibit  a  rather  regular,  roughly  circular  shape,  and  a  regular
growth pattern; but computation c[6, {13, 3}, _] is an exception, and yields a smoothly growing trinet with an irregular
shape, no especially large, 'external' face, and irregular motion of the control point.

But  in  our  opinion the  most  interesting computations are  c[4,  {17,  8},  _]  and  c[5,  {9,  8},  _].   Their  revisit  indicators
reveal a surprising ability to densely and fairly revisit the past, while exhibiting pseudo-random dynamics. Graph size,
as  a  function  of  the  number  of  algorithmic  steps,  grows  as  O(Sqrt[steps]).   It  is  likely  that  this  combination  of
randomness and fairness, guaranteed by an extremely simple algorithm that operates on a purely local basis, could find
some useful application, still to be investigated. 

We have listed, in the introduction, the differences between our algorithm and the techniques proposed in [W2002] for
animating  trivalent  networks.   Our  previous  proposal  for  trinet  computation  [B2007a]  was  different  from  the  one
presented here in the following aspects:
- we used only the Refin rule (this can now be obtained as a special case by setting Threshold = ¶);
- we used a rather different rule for driving the control point, based on rotations by a constant number of steps around
the current node of the dual graph;
- we did not convert duals into primal form.  In spite of the conceptual equivalence between the two forms, looking at
the original trinet has been practically more helpful for spotting patterns such as oscillating rings. 

A  demonstration  of  the  algorithm  described  in  this  paper  is  available  at  the  Wolfram  Demonstrations  Project  site
[B2007c].

Much more remains to be done. 

Loop edges. 
Ways for handling trinets with loop edges should be investigated. This may lead to considering new forms of degenerate
triangles, and perhaps even to difficulties in keeping simple geometric interpretations of the manipulated data structures.
In fact, interesting developments might derive from relaxing or abandoning those interpretations, and concentrating just
on  abstract  data  structures  and  operations.   This  may  also  help  in  exposing  possible  bridges  with  other  simple
computational systems.

Dimensionality.
We  have  found  many  trinets  for  which  the  attribution  of  dimensionality  1  or  2  is  obvious,  but  what  about  all  other
graphs?  In the rather uninteresting cases of tree-like trinets, nodes grow exponentially with the distance from a given,
reference  node.   The  identification  of  a  dimensionality  for  the  finite,  irregular  sub-trinets  corresponding  to  the  initial
phase  of  eventually  periodic  computations  is  not  of  much  interest.   But  what  about  the  irregular  trinets  of  the  two
computations  c[4,  {17,  8},  _]  and  c[5,  {9,  8},  _]  with  random revisit  indicators?  A  difficulty  here  derives  from their
slow, square-root node growth:  in both cases,  100,000-step computations yield trinets  with less than 1000 nodes,  and,
due  to  this  limitation,  the  analysis  of  internode  distances  has  not  led  to  clear  results.   Finally,  one  might  perhaps
associate  different  dimensionalities  to  the  same  trinet,  depending  on  the  observation  scale,  since  some  trinets  may
exhibit  different  structures  at  different  levels.   This  would  perhaps  offer  some  bridge  towards  physical  theories  that
envisage  a  multi-dimensional  space  --  notably  string  theory  --  with  a  distinction  between  extended  and  compactified
dimensions.  More  generally,  it  seems  desirable  to  investigate  possible  connections  between  trinet  mobile-automata
computations  and  some of  the  quantum gravity  theories  proposed  by  physicists  in  last  few decades.  A wide-spanning
bibliographical review of theories concerned with the small scale structure of space-time is found in [G1966].

Relativistic, subjective views.
A research track  that  we consider  of  highest  priority  is  concerned with  the  introduction of  a  relativistic  view at  trinet
computations,  based  on  suitable  notions  of  spacetime  /  causal  network.   The  trinet  diagrams  we  have  shown  in  this
paper,  if  at  all  relevant  to  the  understanding  of  real  physical  phenomena,  would  only  represent  an  external  view of  a
dynamic physical space (a sort of 'God's eye' view), while the spatial evolution perceived by an internal  observer, one
which is himself part of the universe, would be mediated by the causal relations between observation events.  It is quite
straightforward to define a causal network for the rewrite events of our algorithm, along the lines discussed in [W2002],
chapter 9.  Then, taking the point of view of a trinet face f,  we could define discrete time, relative  to  f,  in terms of the
sequence  of  updatings  of  f,  based  on  the  assumption  that  a  face,  regarded  as  the  smallest  perceptive  unit,  does  not
experience anything, thus no progress of time, between two consecutive updates of f.  Based on this notion of time, and
taking into account the complete causal network of updating events, the idea would be to create a sequence of suitably
defined 'pictures' of the universe as perceived by f at successive instants of its time. This sequence would represent the
correct, internal view of the produced dynamic space, and the one to be appropriately compared with physical reality as
we perceive it.  We are particularly interested in applying this analysis to computations c[4, {17, 8}, _] and c[5, {9, 8},
_], whose randomness and fairness might prove essential for guaranteeing the equivalence of all possible observers.
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