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Executive Summary 

The main objective of the Telecommunication Case Study in SENSORIA is to test and verify the applicability 
of the insights, methodologies and tools developed in the SENSORIA Project WPs more focused on research 
activities, on the evolution of the Service Layer of a telecommunication infrastructure towards IT technologies. 
This document provides the description of the Telecommunication Case Study for the SENSORIA project, and 
it follows the Sensoria Deliverable D8.0: Case studies scenario description. Moreover, it reports the 
preliminary results of the application of methodologies and tools developed in SENSORIA to some of the 
issues identified in the Case Study. 
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1 Introduction 

This document provides the description of the Telecommunication Case Study for the SENSORIA project, and 
it follows the Sensoria Deliverable D8.0: Case Studies scenario description. The main objective of the case 
study is to test and verify the applicability of the insights, methodologies and tools developed in the 
SENSORIA Project WPs more focused on research activities, on the evolution of the Service Layer of a 
telecommunication infrastructure towards IT technologies. Moreover, it reports the preliminary results of the 
application of methodologies and tools developed in SENSORIA to some of the issues identified in the Case 
Study. 
In particular, the Telecommunication Case Study scenario is focusing on the development of applications 
combining two global computing infrastructures, namely the Internet and Next Generation Telecommunication 
Networks. In such a context, the applications would be designed, deployed, and executed within a SOA 
framework that integrates Web Services based computing and a rich set of telecommunication services and 
capabilities, including call/session control, messaging features, presence and location features, etc. The 
applications could also be deployed in administrative domains external to the Network Operator, according to 
the Service Broker business model. 
It is important to point out that the proposed Telecommunication Case Study mainly addresses issues 
concerning the evolution of the service infrastructure/platform, and not specific telecommunication services. 
Some specific services will be used in the description only to exemplify the infrastructural issues.  
This contribution is structured in the following parts: Section 2 introduces the context of the case study, while 
Sections 3 to 8 provide an overview of the different case study issues: each of the sections describing the case 
study issues is organised in a description of the issue and of its context in the telecommunication service layer, 
an exemplification of the issue through one or more use cases, and a presentation of the first results of the 
SENSORIA research activities.  
In particular, the deliverable presents the first results of the research activities of the other WPs of SENSORIA 
on composition mechanisms, taking into account asynchronous/synchronous orchestration, transactions etc, to 
define/create and execute telecommunication services. Moreover, the issue concerning the secure and 
controlled interaction between application components deployed in different domains (e.g., an enterprise 
domain and a network operator domain) has been considered in the case study as well. 
The Telecommunication Case Study and its issues described in this deliverable have been presented at BIGG 
Bridging Global Computing with Grid [13] . 
Annexes to this deliverable contain the detailed analyses of the issues presented below in a summarised way. 

2 The Telecommunication Case Study 

Telecommunication Services, i.e., the services that are provided by a telecommunication infrastructure 
managed by a public network operator, are evolving by considering several aspects of “convergence”: 

• convergence of media: the same service has to combine different types of communications, including 
voice, video, data streams (e.g., triple play); 

• convergence of terminals: a service should be able to be activated by heterogeneous terminals 
(including PCs, mobiles, PDAs, TV SetTopBoxes), and telecommunication access networks (e.g. 
ADSL, UMTS, GSM/GPRS); moreover, the same service session could involve different types of 
terminals;  

• combination of service features: a service may combine different telecommunication features, 
including multi-media communication, messaging, and content access; 

• convergence of Telco and Internet/Web worlds: the distinction among the application contexts is 
disappearing: e.g., a telecommunication service could be configured, activated, and controlled by Web 
applications (e.g., chat applications enabling the activation of phone calls), or an IT application could 
integrate some Telco features (e.g., fleet management application integrating location features). 

Moreover, the services should be “user-centric”, i.e. their behaviour should be personalised according to the 
requirements of single end-users. The possibility of personalising should be uniform and cover all the features 
of the service. In particular, the end-users should be seen as single entities even across several different 
networks, terminals, communication media, and applications/services. 
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In general telecommunication services are created, executed and managed by a “Service Layer”, which consists 
of a set of systems implementing the functions needed for the service delivery. The services are defined by a 
“business logic” that may use and combine a set of Telco features which provide some basic service 
capabilities. Examples of Telco features are: 

• capabilities for controlling bearers/channels: call control (e.g., Service Switching Points in the 
switches), multimedia session control (e.g., Serving SCSF functions in IMS networks), Gateways for 
WAP connections, systems for handling SMS and USSD, etc. 

• enablers for implementing VAS (Value-Added Services): servers for location, presence, messaging, 
terminal adaptation, etc.; 

• data profiles: end-users profiles, service profiles, terminal profiles, end-users account, etc. 
Services are either triggered by some events produced by Telco Features (e.g., call activation, the reception of a 
new message, the change of location of a terminal/end-user), or activated by some applications (e.g., deployed 
on an end-user terminal interacting through a specific protocol, such as HTTP, SIP, etc.). Currently, services 
interact with Telco Features and terminals through a wide set of protocols, each of which specialised to deal 
with specific capabilities/functions. Examples are: SIP, INAP, and CAP for session and call control, LIF for 
localisation, SIP for presence, USD for control of SMSs, MM7 for control of MMSs, etc. 
Most of the current service layer is realised as a set of “vertical” platforms, named Silos, each of them 
specialised to provide services involving a specific Telco Feature and a specific network. In general, such 
platforms integrate in a single system the service execution environments with the Telco features and some 
supporting functions (e.g., payment, authentication, profiles). 
In general, the vertical systems deployed in a service layer are loosely integrated: 

• it is quite difficult to share a function across different platforms (i.e., to allow that a service deployed 
on a platform A can access a function implemented on a platform B); 

• the same functions are duplicated on several platforms. 

 
Figure 1 - Vertical Telco Architecture 

Such an organisation of a service layer introduces several problems in dealing with the realisation of 
“converged” services. 
In order to improve this situation, the service layer is evolving towards a “horizontal” approach based on: 

• the integration among systems for service delivery which are deployed in the Operator infrastructure; 
• sharing of and interoperability among functions, enablers and service capabilities. 

At present there is not a shared definition of a horizontal Service Layer (SL) in the literature, but some common 
principles can be identified: 

• all the functions in the SL should not be duplicated, and they must provide open interfaces to be 
accessible by either any service logic, or any other function in the SL; 

• service enablers and bearer/channel control functions can be accessed through elements which provide 
an abstract/simplified view (e.g., in terms of used protocols and/or exposed functions); 

• different types of service execution environments can coexist and cooperate for delivering services; 
each of them should be equipped with development environments/SCEs (i.e. Service Creation 
Environment); 
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• service logic (at server-side) must be deployed on a service execution environment; other SL and 
network functions could require some configuration to support the execution of the service logic; 

• all data associated to different entities (customers, services, etc.) must be accessed through a unified 
view (even if the data may be stored in different repositories); moreover, the SL should allow the   
identification of customers in a unique way and independent of used terminals and access networks; 

• a single set of functions and a uniform set of interfaces must be provided by the SL for the interaction 
with applications deployed in 3rd party domains (e.g. service providers, content providers, enterprises); 

• SL functions must interact through a common communication infrastructure; 
• interfaces towards OSSs and BSSs (i.e. different types of telco operator data systems) must offer a 

simplified view of SL elements, also abstracting the SL internal architecture. 
A possible trend for the evolution of the SL according to a horizontal approach is the adoption of Web Services 
and Service Oriented Architecture (SOA) solutions. At the moment, there are already several initiatives that 
consider this possibility, such as the specification of Web Services for controlling Telecommunication services 
(e.g., Parlay X Web Services jointly specified by ETSI and 3GPP, the Mobile Web Services under specification 
by the OMA initiative, or Identity Web services specified by Liberty Alliance).  

 
Figure 2: A possible model for a horizontal Service Layer 

The SL model includes the following macro-functions: 
• Service Execution: it contains functions for the deployment and the execution of the business logic of 

the services; typically the execution functions are carried out by one or more execution 
environments/application servers based on several technologies: J2EE and JAIN SLEE AS, BPEL AS;  

• Service Exposure: it provides functions for secure and controlled interactions among applications 
deployed in 3rd party domains and the exposed services which are executed in the Service Execution; 

• Telco Web Services (Telco Capability Abstraction/Adaptation): it implements a uniform set of APIs 
(e.g., based on an event/command interaction model) that provide an abstract view of the Network 
Control Functions and Service Enablers to other macro-functions of the SL, in particular to the Service 
Execution macro-function; 

• Service Enablers: they are a set of functions that enable the deployment and the delivery of services 
based on features additional to the “basic” connectivity/session control; examples of Service Enablers 
are: communication enablers for Multi Media services (e.g., conference server), user interaction 
enablers for service-user/terminals interaction; messaging enablers to control messages exchange; info 
delivery enablers to control information and content delivery to users via Web, WAP, streaming; 
context enablers for context data processing, e.g., location Server, and presence. 

The SL may be seen as a complex distributed system which must fulfill requirements coming from the 
telecommunication domain, such as the capability to interact with the network control functions and service 
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enablers, to provide suitable computational throughput, and support high-availability and fault-tolerance. In any 
case it must be able to interact with the Internet/IT domain in order to provide Telco-IT convergent services. 
Some of the areas where the Web Services/SOA approach can be adopted for the evolution of the SL are: 

• adoption of SOA-based principles and techniques (e.g., based on Web Services) to organise the internal 
structure of the SL, and to define the communication bus among the different services and macro-
functions; 

• evolution of composition mechanisms for creating and executing Telco Services by adopting solutions 
based on orchestration/choreography (those mechanisms allow the possibility to handle semantic and 
dynamic compositions of services);  

• adoption of Web Services technologies to expose on the “Internet” Telco Capabilties/Features to 3rd 
party applications (e.g.. Service/Content Providers, Enterprises), and to assemble services provided by 
3rd parties (e.g., to interact with payment services, to access contents); 

• adoption of Web Services technologies to introduce a uniform interaction model among services 
delivered by the SL and terminal applications. 

Figure 3 highlights the main SOA components in the above architecture. 

 
Figure 3 – SOA Components 

• Registry/Repository: directory of the services, with all the relevant information useful for their usage 
and management 

• SOA Management : management of the SOA infrastructure (e.g., monitoring of WS usage) 
• SOA Bus: mediation functions for processing and controlling SOA messages, through Intermediaries 

(e.g., policy enforcement, security checks, rerouting, load-balancing, event notification) 
• Identity & Access Management: systems to control the access to the services from applications and 

the involvement of end-users (e.g., privacy) 
• Policy Decision & Management: handling of policies to control that the usage of enablers by 

applications fulfills the parameters defined at subscription time (SLA) 
In order to follow this trend, several issues must be addressed and several open points must be solved. The 
suitability of the SOA approach to the requirements for the delivery of telecommunication services should be 
evaluated and possible improvements and extensions should be investigated. 

2.1 Telecommunication Case Study issues 

The Telecommunication Case Study issues described in this document aim to contribute to solve the following: 
• Service Modelling (in relation to WP1 activity) 
• Formal analysis of a protocol for identity management: end-user identity in a federated context, 

application vs. end-user identity (analysed in WP3); 
• Protocol definition supported by formal analysis (studied in WP3); 
• Synchronous and asynchronous service composition (WP5); 
• Policies for exposing Web Services: dynamic negotiation / SLA (Service Level Agreement) and 

enforcement (WP5 analysis); 
• Transactions for handling exceptions in service composition (part of WP5). 
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2.2 Relationship with other Sensoria WPs 

This section aims to single out how the initial activities concerning the Telecommunication Case Study are 
related to the activities in the research WPs; in some cases the activities apply the initial results of the WPs to 
the issues of the case study, while in other cases they are motivated to identify possible requirements to be 
addressed by the WPs in order to solve open problems with respect to the state-of-art.  
The SRML language for service modelling developed in WP1 was used to specify a telecommunication 
service, in order to verify the suitability of the approach proposed by SENSORIA in modelling 
telecommunication services, and to identify possible improvements. 
The activity on the formal analysis of a protocol for identity management (to validate the security properties of 
the interactions, to identify possible threats) has been carried out by using the results of WP3 (T3.1). 
An asynchronous protocol suitable for handling long-running computations and event notifications has been 
analysed: the methods and tools investigated in T3.3 and T3.4 have been applied to investigate the properties of 
a protocol for Web Services asynchronous invocation.  
The Synchronous/Asynchronous Service Composition in order to develop or adopt a suitable language for 
composition of Telco components (e.g. Web Services), covering also the asynchronous communication aspects, 
has been faced with methods developed in WP5. Requirements for designing TLC services with asynchronous 
aspects have been identified by investigating the solutions that could be currently obtained by using BPEL: 
these requirements could be used, to outline the improvements/requirements on events handling, asynchronous 
service design and execution mechanism that should be addressed by the formalism to be investigated in WP5.  
The activity on the specification of an advanced formalism (language), in order to define and (dynamically) 
negotiate and verify policies, has been formalised by using the results of WP5 (T5.1).  
Transactional composition of Telco Web Services has been studied and analysed, applying the formalism 
investigated in WP5 and combining it with BPEL.  

3 Service Modelling 

The proposed service context, Call&Pay Taxi, concerns the retrieval and purchase of goods or services via a 
mobile terminal. The SENSORIA Reference Modelling Language (SRML) [14][15] will be applied for 
modelling the service scenario. 
The services could be provided by a 3rd party Service Provider different from the mobile operator. The Service 
Provider could develop the service by assembling service components, which allow controlling either 
capabilities/functions provided by a mobile telecommunication network (e.g., control of voice calls, 
sending/receiving of SMSs/MMSs, localising terminals), or complementary resources and applications (e.g., to 
handle contents such as maps, banks accounts). 
Specifically, the Call&Pay Taxi service provides a user with the possibility to call a taxi by sending an SMS to 
a specific SMS service number and to pay the taxi service by sending another SMS. The service will 
automatically debit the charging amount for the taxi service to the end-user’s credit card, transferring the 
money amount to the taxi company. 
From the point of view of the involved human actors (i.e., end-user, call center agent, taxi driver) the service 
behaves in the following way: 

• The end-user sends an SMS to the SMS service number (e.g., 4777), which is associated to the 
"Call&Pay Taxi" service; in this way the end-user asks to call the taxi company of the town where 
he/she is currently located. 

• The end-user receives an incoming call on its mobile phone, in order to be connected to the call center 
of the local taxi company. 

• The end-user talks with the taxi company agent; the user and the agent perform the usual conversation 
in order to get the request of the user; the call center agent contacts the available taxi drivers and 
confirms to the user the selected taxi number/name and the expected waiting time. 

• The end-user receives an SMS A, including the taxi number and a “call-code” to identify the ride. 
• The taxi driver receives a similar SMS. 
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• After the taxi ride, the user replies to A with an SMS including the same information received and the 
amount to be paid, in order to authorise the payment on his/her preferred means of payment (which was 
stored in his/her user profile). 

• In case of a successful transaction, the taxi driver and the end-user receive a confirmation of the 
payment with an SMS, reporting the taxi number, the “call-code” and the paid amount (and the end-
user can leave the taxi); in case of failure, an SMS with such an indication is sent to them (and the end-
user has to pay in the traditional way). 

3.1 Modelling “Call and Pay Taxi” Service with SRML-P  

The work presented in this section analyzes the orchestration and composition of telecommunication web 
services following an event-based approach. More specifically, the SENSORIA Reference Modelling 
Language (SRML) has been applied for modelling a service scenario that has been used by Telecom Italia as 
part of its research and development activities on Parlay X telecommunications web services – Call and Pay 
Taxi through SMS, or Call&PayTaxi for short.  This is a service that provides an interface for booking a taxi 
using a mobile phone.   

 
Figure 4: The SRML structure of Call&Pay Taxi 

This exercise provided important information on the expressiveness and the suitability of SRML for modelling 
scenarios used in domain-specific contexts such as telecommunications. The first issue to arise during the 
modelling activity was the definition of the structure of the module for Call&PayTaxi: in order to define the 
structure one has to decide which entities of the scenario description are to be represented in the SRML module 
and, for those that are, whether they are internal components or external interfaces (EX-R for short).  A 
component in SRML corresponds to a resource that is used internally in the sense that it is not visible to the 
clients of the service provided by the module.  Such resources are tightly bound inside the implementations of 
the module and represent, as an ensemble, the orchestration of the module.  An EX-R represents a dependency 
of the module on services that need to be discovered externally, i.e. beyond the internal components.  For 
instance, it was decided to represent the service for sending/receiving SMSs, called the SMS centre, as a 
component, meaning that the service provider has its own SMS centre that is available via a fixed phone 
number, say 4777.  This design decision triggered a refinement of the way SRML handles module parameters 
and to a better understanding of the role of interaction parameters. 

• In order to support reuse and the definition of configurable services, the possibility of parameterised 
modules (and the specifications used in modules) was introduced; the module is configured at design 
time by instantiating the configuration parameters and defining their value.  For instance, the parameter 
serviceNum is used to abstract from the concrete number that is used in any given service provided by 
an implementation of the Call&PayTax module.  In the concrete example, this parameter is 
instantiated, at design time, with the number 4777; all sessions of this service are for calls that use the 
number 4777. 

• Interaction parameters cope with the fact that every interaction event for a component can happen only 
once during the execution of a service instance.  Sometimes, one wants to define operations that can be 
invoked an arbitrary number of times during the same session; therefore the use of interaction 
parameters for defining families of interactions is proposed.  For instance, in the case of the SMS 
centre, the invocation of several SMS send/receive operations is supported by the definition of a family 
of interactions through a parameter – e.g. sendSMS[k:int]. 
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The Call&PayTaxi case study also provided a rich scenario for testing the modelling of interaction protocols in 
SRML.  The interaction protocols involving the SMS centre manage the mismatch between parameters of 
corresponding interactions.  The mismatch can concern the number of parameters (e.g., sending an SMS 
without text), or the type of parameters (e.g., creating textual messages from parameters and vice versa).  These 
transformations are performed through operations textify and parse declared locally in the interaction protocols. 
The fact that these operations are declared locally means that they need to be implemented whenever the 
interaction protocol is instantiated with specific data sorts.  
The Call&PayTaxi scenario is being used as a test bed for the development of SRML.  As the current 
understanding of what is required from SRML as a service modelling language grows, the syntax of the 
language evolves and its semantics becomes closer to the intended usage.  Because of this, the model proposed 
here is in no way supposed to be final.  These models will be refined as SRML develops.  For instance, a 
number of issues that require the extension SRML-F for configuration management have been omitted. 
The annexes contain the SRML-P “Call and Pay Taxi” Service Model with the detailed specification. The 
refinement of the language is carried on in WP1 of SENSORIA. 

4 Formal analysis of a protocol for identity management  

The main objective of this activity is to provide a formal analysis of a protocol aiming at transferring identity 
and authentication information handled by the systems in an operator’s network infrastructure to the 
applications implementing services provided by 3rd party service providers. The formal analysis has to verify 
the correctness of the protocol and investigate its security properties. The results of the analysis will be 
considered in order to identify possible flaws or weaknesses of the protocol and to suggest improvements. 
The analysed protocol was defined by Telecom Italia in some activities external to SENSORIA [1]. It is a 
specialisation of the Liberty Alliance framework [2] to the context of a telecommunication operator, in order to 
avoid requesting explicit credential to end-users, by exploiting the network infrastructure of a network operator. 
In this way, a network operator may play the role of Identity Provider, with respect to Service Providers 
belonging to a Circle of Trust.  
In particular, the protocol handles identity and authentication information of end-users accessing Internet 
applications through different access networks (e.g., ADSL and GPRS/UMTS). It supports the translation of 
the authentication/identity information provided by the access network to the application level and adds it to the 
HTTP requests. In this way the end-users can access the services without explicitly providing any credentials 
and the applications can rely on the authentication/identity information introduced by the protocol.  
The protocol relies on the association (federation) of the identities of end-users of a telecommunication 
network with the accounts of the Service Providers’ applications, represented by a Token (or Opaque-id). 
Thanks to such an association mechanism, the identity information transported by the protocol keeps the 
anonymity to the end-users, but allows the applications to condition the access only to the authorised end-users, 
and to personalise the services according to the account associated to the transported identity information. 
[1] provides a high-level description of the protocol and of the involved systems, for the HTTP case1. The main 
component of the solution is the Token Injector. It should be deployed in a secure network (i.e., a network that 
provides a high-level degree of security on the communication between the interconnected systems/terminals), 
such as the ones implementing access to telecommunication infrastructures (e.g., GPRS, or ADSL); it must be 
able to intercept all the data traffic originated by an end-user terminal connected to the secure network and 
terminating into an application server through an insecure network. It must be able to introduce in the 
intercepted messages some identity information of the end-user. The format of such a token must be compatible 
with the application protocol (e.g., HTTP) used in the interaction.  
When a user performs the request to access a specific service, the Token Injector, deployed in the network 
operator domain, intercepts the HTTP GET (or POST) request and, depending on the information stored on the 
Operator’s repositories (user profile, service profile, etc.), inserts an authentication “token” (i.e. a string of 
characters) into the original HTTP packet and forwards it to the final destination, for instance to a Service 
Provider connected to the Internet. When the application server receives the new access request, it looks for an 
authentication token. If such a token is present, and it is a valid one (e.g., issued by a trusted authority, well 
formed and so on), the user is immediately recognised and accepted without any explicit request for credentials 
because of the token. 

                                                 
1 The described protocol may be adapted to several protocols, including SOAP and SIP. 
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Figure 5: Identity Transport protocol 

In more details, when a terminal performs an HTTP request to access a given URI, the Token Injector 
intercepts it, and, if the URI belongs to one of the affiliated services, it performs the following steps: 

1. get the IP address of the sender of the HTTP request packet; access the AAA server of the access 
network in order to get the information of the end-user identity (EU-ID) in the context of the access 
network (e.g., IMSI or MSISDN in case of mobile network) associated to the IP address; in general, 
the IP address has been assigned to the terminal in a secure manner by the access network and it is 
very unlikely for an unauthorised user to spoof other IP addresses; 

2. access the repository storing the associations between <EU-ID, URI, Token> in order to get the Token 
corresponding to the requesting end-user; if the association is found, the Token Injector modifies the 
HTTP request in order to add the token (in a way that can be processed by the application), and 
forwards the modified request to the requested application server; 

3. if such an association does not exist, the Token Injector forwards the original request without any 
modification to the application identified by the required URI; in this case, the application could return 
a registration page for asking the end-user to subscribe to the service.  

In case the requested URI is the reference to a subscription/registration page, the Token Injector executes a 
variant of step 2: it creates a new tuple <EU-ID, URI, Token> with the creation of a new Token. If there is 
already such an association, the Token Injector forwards the existing Token to the application which is in 
charge to decide how to deal with this particular exception. 
The token can be formatted according to specific standards, such as SAML [3] and it can carry additional 
information, such as a description of how the end-user has been authenticated, or some attributes associated to 
the end-user (e.g., preferred language).  
Moreover, the protocol is able to exchange information between “federated” Token Injectors, each of them 
associated to a specific network access infrastructure (e.g., wireline, mobile), in order for the service providers 
to receive the same identity information, independently of the access network used by the end-users. 
Finally, the protocol is able to deal with the identification of end-users by means of temporary tokens, in order 
to avoid that an application is able to make correlations among requests performed by the same end-user. 
The protocol analysis will consider the following main features: 

• subscription to a service, with the transparent federation between the new account created by the 
service provider and the identity of the end-user in the telecommunication domain; 

• access to a service, with the automatic introduction of identity and authentication information needed 
by the service provider, by considering support to privacy and anonymous accesses; 

• interactions between federated identity providers, in order to guarantee that the service providers 
receive the same identity information, independently of the access network used by the end-users. 

4.1 Description of the formal analysis and of the approach 

Formal methods and tools are popular means for the analysis of security aspects of computer network 
protocols. First the protocol under scrutiny is described in a formal language, which often results in a more 
precise definition of its functioning. Subsequently, the security aspects to be analysed are specified in a logic. 
Finally, to decide whether or not certain security properties are fulfilled by the protocol, an automatic tool is 
used to analyze the protocol. The outcome either proves the protocol correct w.r.t. the security aspects 
considered or shows how it falls to one or more attacks. The literature contains many examples.  
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In [10]  three user scenarios of the above identity federation protocol for services in convergent networks are 
formally specified and some of its security aspects (like the possibility of a man-in-the-middle attack) are 
analysed. To do so, Crypto-CCS, a CCS-like process algebra with cryptographic primitives, was used in 
combination with the Partial Model Checking Security Analyzer PaMoChSA developed by the Security group 
of IIT-CNR (see http://www.iit.cnr.it/staff/fabio.martinelli/pamochsa.htm). 
The analysis approach of [12] was adopted. This approach is based on the observation that a protocol under 
analysis can be described as an open system: a system in which some component has an unspecified behaviour 
(not fixed in advance). Subsequently one assumes that, regardless of the unspecified behaviour, the system 
works properly (i.e. satisfies a certain property). In case of the network protocol of the previous section, one 
can imagine the presence of a hostile adversary trying to interfere with the normal execution of the protocol, in 
order to achieve some kind of advantage w.r.t. the honest participants. Such an adversary is added to the 
specification of the network protocol as a component with a behaviour that is defined only implicitly by the 
semantics of the specification language. 
The adversary is assumed to act in a so-called Dolev-Yao fashion by using a set of message manipulating rules 
that model cryptographic functions like encryption and decryption. Encryption is opaque, i.e. a message 
encrypted with the public key of one of the participants cannot be decrypted by anyone but the person who 
knows the corresponding private key (unless the decryption key is compromised of course). As is common in 
this branch of computer security, a black-box view of cryptography is adopted, by assuming all cryptographic 
primitives involved in the network protocol to be perfect. Like the honest participants, the adversary is able to 
send and receive messages to other participants. However, it can also intercept and forge messages and, to a 
certain degree, derive new messages from the set of messages that it has come to know. This set consists of all 
the messages the adversary knows from the beginning (its initial knowledge) united with the messages it can 
derive from the ones intercepted during a run of the protocol. To analyze whether a system works properly, at a 
certain point in the run the adversary's knowledge is checked against a security property.  
If the intruder has come to know information it was not supposed to know, then the analysis has thus revealed 
an attack w.r.t. that particular property, i.e. a sequence of actions performed by the adversary that invalidates 
the property. The first scenario formalised in [10] is that of federated registration: 

 
The entities involved are a user U, a service provider SP and a network/identity provider IdP: U asks for a 
registration to SP and for a federation between SP and IdP (sharing a secret key) in the sense that - once 
federated - IdP and SP may provide U access without directly asking for any credentials, but by simply relying 
on the information given by IdP. Federated registration consists of three main phases: the authentication phase 
in which IdP authenticates U, the token generation and the assembling of a so-called SAML response to be sent 
from IdP to SP, appropriately signed by the private key of IdP. For modelling purposes only, the SAML 
response is identified with a SAML assertion and properly encrypted: it contains a field Subj with the token idU 
univocally identifying U, a field AuthStat with an authentication statement asserting that U was authenticated 
and the mechanism under which she/he was authenticated and, finally, a field  AttrStat = < attr_list, nU

IdP > with 
a list of attributes of U related to her/his service accesses (e.g. country preferences if the service is a travel 
agency) and a nonce to avoid replay attacks. Note that the encrypted SAML assertion conforms to the SAML 
standard (see http://www.oasis-open.org/specs/), and that communications are appropriately signed. 
Next a specification of this federated registration scenario is given in Crypto-CCS. This specification is more 
expressive than the one above, because all operations and security checks on the various messages are 
explicitly modelled. The reader is referred to [10],[10] for the details of all three scenarios. 
Finally, as an initial step towards a full-blown security analysis of the protocol, the vulnerability of the first two 
scenarios w.r.t. a man-in-the-middle attack was checked. A man-in-the-middle attack is an adversary's attempt 
to intercept and modify messages between two trusted participants, in such a way that neither participant is able 
to find out that their communication channel has been compromised. Model checking is used to perform the 
analysis. This is an automatic technique to verify whether or not a system design satisfies its specifications and 
certain desired properties. Such a verification is moreover exhaustive, i.e. all possible input combinations and 
states are taken into account. The level of completeness of a verification of course depends on the range of 
properties that are verified. Compared to testing, model checking generally needs to be performed on an 
abstract system (specification) to avoid state-space explosions. However, more problems are usually found by 
model checking the full behaviour of a scaled-down system than by testing some behaviour of the full system. 
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In [10], e.g., the specification of the insecure channel between IdP and SP was checked against a man-in-the-
middle attack, i.e. an adversary trying to intercept a conversation between IdP and SP. This boils down to 
verifying the following property: whenever SP concludes the protocol apparently with IdP, it was indeed IdP 
executing the protocol. To check this, the model checker PaMoChSA requires the following input: 

• a file with the protocol specification in Crypto-CCS;  
• a logic formula expressing the property to be verified; 
• the adversary's initial knowledge.  

An adversary X was taken in consideration and its initial knowledge was set to the set of public messages that it 
knows at the start of the protocol: the public keys of IdP and SP and its own public and private key. 
Consequently, the result of the performed analysis was as follows: NO ATTACK FOUND. It took the tool less 
than a second to conclude this. Hence the protocol is correct w.r.t. the analysed security property, i.e. it does 
not fall to a man-in-the-middle attack.  
The result of the presented security analysis strengthens one’s confidence in the formal specifications of the 
three user scenarios presented in [10]. In particular, it leads one to believe that the digital signatures, encryption 
and nonces were inserted into the network protocol in a correct way. This is a clear advantage of the use of 
formal methods in the design phase of a protocol: it allows one to eventually arrive at a well-defined protocol 
that is guaranteed to satisfy certain desirable properties. In the annexes, the referred papers report all the details. 

5 Protocol definition supported by formal analysis 

The main objective of this activity is to define a variant of SOAP supporting asynchronous communications, 
driven step-by-step by the results of a formal analysis. This activity is, thus, different from the one described in 
Section 4, where the formal analysis is performed on a protocol already specified to verify its correctness. 
The domain of the research is the definition of a SOAP-based protocol which supports asynchronous 
interactions, i.e., interactions different from the usual synchronous “request-response” interactions supported 
by the available SOAP implementations based on HTTP. Such kinds of interactions are quite relevant in the 
delivery of telecommunication services, as: 

• service logic are triggered/activated by events produced, in an asynchronous way, by the 
network/special resources, or must react to such events during the execution of a service instance; 

• requests produced by a service logic to a network/special resource may results in long-running 
computations (e.g., set-up of a call) which might also require the involvement of end-users;  

• some service logic components may not be reachable (e.g., the ones deployed on mobile terminals), 
e.g., due to the temporary absence of communication. 

The objective is to define a protocol, named aSOAP, which is able to address most of these situations. The 
following are the requirements to be considered: 

• Backward compatibility: 
- aSOAP must be compatible with SOAP v1.2 on HTTP [4];  
- aSOAP must have limited impact on the clients: i.e., the clients that do not need to support 

asynchronous interactions must be SOAP clients, working according to a request-response mode; 
clients that need such a support should introduce limited variants w.r.t. normal SOAP requests; 

• Reachability 
- aSOAP must be able to deal with unreacheability of the servers (e.g., due to lack of connectivity) 
- aSOAP must be able to deal with the case in which a server cannot return a response (either 

provisional or final) due to the lack of connectivity 
- aSOAP must be able to deal with the case in which a response (either provisional or final) cannot be 

returned to a client due to the lack of connectivity 
• Message Exchange Patterns 

- aSOAP must be able to deal with requests that require the servers to perform some long-duration 
processing (greater than HTTP time-out) before producing any results 

- aSOAP must be able to deal with requests with multiple responses 
The protocol may rely on some intermediary nodes, which are assumed to be highly available. During the 
process for defining aSOAP some of the requirements could be relaxed. Paper [7] describes a possible 
functional architecture supporting aSOAP, where aSOAP proxies are SOAP intermediary nodes. 
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Figure 6: aSOAP architecture model 

The formal analysis of a preliminary definition of the protocol highlighted several issues and flaws that 
suggested to completely reviewing it.  
In a second phase quantitative analysis will address issues related to the performance of the protocol. 

5.1 Description of initial activities and results 

In [7], a first step in the development of aSOAP is presented. This step consists of the use of formal methods to 
analyse an initial formalisation. The formal model of aSOAP is specified as a set of communicating UML state 
machines. UML is used as particular formal method since it has become the de facto industrial standard for 
modelling and documenting software systems. The UML semantics associates a state machine to each object in 
a system design, while the system's behaviour is defined by the possible evolutions of the resulting set of state 
machines which may communicate by exchanging signals. All these possible system evolutions are formally 
represented as a so-called doubly-labelled transition system, in which the states represent the various system 
configurations and the edges represent the possible evolutions of a system configuration. Subsequently, several 
behavioural properties of the aSOAP model are represented in the action- and state-based temporal logic µ-
UCTL and checked with the on-the-fly model checker UMC that allows one to check UML state machines.  
UMC is a model checker that creates and traverses the state space on the fly. The advantage of on-the-fly 
model checking is that often only a fragment of the full state space needs to be generated and analysed to obtain 
a satisfying result. The development of UMC is still in progress and a prototypical version is being used 
internally at ISTI-CNR for academic and experimental purposes. So far, the focus of the development has been 
on the design of the kind of qualitative features one would desire for such a tool, experimenting with various 
logics, system modelling languages, and user interfaces. The quantitative aspects of such a tool, e.g. concerning 
optimisations aimed at limiting state-space explosions or the complexity of the evaluation algorithms (to their 
known minimal limits), have not yet been taken into consideration. There has not yet been an official public 
release of the tool, even if the current prototype can be experimented via a web interface at the address: 
http://fmt.isti.cnr.it/umc/. 
The behavioural properties that UMC can check need to be expressed in the aforementioned action- and state-
based temporal logic μ-UCTL, which includes both the branching-time action-based logic ACTL as well as the 
branching-time state-based logic CTL. Starting from the basic μ -UCTL operators, one can derive the standard 
µ-calculus operators and one can of course also derive the standard CTL/ACTL-like temporal operators such as 
EF ("possibly"), AF ("eventually"), AG ("always"), and the various Until operators, in the usual way. 
Before discussing several aspects of the formal specification of aSOAP, first the assumptions that are part of 
the design of aSOAP are recalled:  

• The Proxy is always reachable by both the Client and the Server whenever they have an active 
connection; 

• If the Client is willing to accept an asynchronous response to its SOAP Invocation, then it inserts in the 
SOAP header the URL of the SOAP listener where it wants to receive the response; 

• The URL in the header of an asynchronous SOAP Invocation is the address of a generic SOAP listener 
and the application level is equipped with a mechanism for receiving SOAP messages at this URL; 

• Upon receiving an asynchronous SOAP Invocation from the Client, the Proxy generates a Request 
Identifier REQ-ID that uniquely identifies the Client's SOAP Invocation in further communications. 

Regarding the first assumption it is important to note that the considered scenario is such that both the Client 
and the Proxy reside in the Service Layer of an operator. The application that may invoke web services (i.e. the 
Client) is thus connected with a high level of stability. In particular, services are not invoked from a mobile 
terminal with unstable connectivity. In the considered scenario it is the Server that might be a mobile terminal. 
Moreover, a mobile scenario is only one of the scenarios considered, in the sense that aSOAP might be used 
also to handle requests that activate long-running computations. 
During several sessions between ISTI-CNR and Telecom Italia, the design of aSOAP and its formalisation 
were discussed and developed in detail. In order to facilitate the discussions about the behaviour of the various 
use-case scenarios of aSOAP, it was decided to consider a separate message sequence chart for each such a 
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scenario. Finally, all these scenarios were translated into an operational model, in which the following concrete 
modelling choices were adopted: 

• All SOAP invocations are asynchronous, i.e. the synchronous SOAP invocations that only serve to 
guarantee backward compatibility with SOAP v1.2 are abstracted from; 

• The URL in the header of a SOAP message is identified with the Client, i.e. each Client is seen as just a 
listener of asynchronous SOAP  invocations; 

• A system model is constituted by a Server (and its subthreads), a Proxy (and its subthreads) and a fixed 
(configurable) number of Clients; 

• The Proxy and the Server may activate at most a fixed (configurable)  number of parallel subthreads;  
• With the Client or the Server unreachable, the Proxy attempts to contact them up to a configurable 

number of times; 
• The Client issues a single SOAP invocation and then terminates. (In the future, Clients that perform a 

loop of SOAP invocations or that issue several SOAP invocations before waiting for the deferred 
SOAP results will be considered.) 

The full specification of aSOAP can be found online at the address:  
 http://fmt.isti.cnr.it/umc/examples/0-ASOAPPP.umc 
These abstractions are sufficient to allow model checking an initial set of properties with UMC. To begin with, 
the state-space complexity of the aSOAP specification was studied. This revealed that the number of states 
increases exponentially with the number of Clients, which is of course due to the explosion of possible 
interleavings that is inherent to system models with more than one Client. As a result, already many system 
models with three Clients have state spaces that cannot possibly be traversed in full - let alone reasoned about 
without using automatic analysis tools. Since UMC is an on-the-fly model checker, however, certain properties 
can be checked for such system models and even for much larger system models. Note also that the maximum 
number of parallel subthreads that the Proxy and the Server can activate influences the total number of states of 
a system model only in system models with more than one Client.   
Next some behavioural properties expressed in μ-UCTL were verified in a system model with 2 Clients, with a 
Proxy that may try at most 2 times to contact the Client or the Server in case of their unreachability and that 
may activate at most 2 parallel subthreads and with a Server that may activate at most 2 parallel subthreads. 
First, Property 1: 
"All system executions eventually reach a configuration in which all Clients are in status 'Done'" 
was checked by verifying the formula AF ((C1.status=Done) and (C2.status=Done)). 
The formula turned out to be false, i.e. Property 1 does not hold. The reason is the fact that the Server's 
response need not reach the Client: A possible system execution (which can also occur in a minimal system 
with just one Client and no parallelism) is such that the Client's SOAP invocation is being deferred by the 
Server, but its subsequent final SOAP result never reaches the Client because the Client becomes unreachable 
for a sufficiently long time for the Proxy to cancel the SOAP invocation.  
Interesting enough, Property 1 can easily be checked also for system models with tens of Clients (in case of a 
system model with five Clients, e.g. only 117 states need to be explored in depth-first mode). This is because 
UMC is an on-the-fly model checker that, as said before, only generates and analyses the fragment of the full 
state space that is needed to obtain the result. 
The question is whether Property 1 does hold in a setting in which the Client and the Server are always 
reachable. Second, Property 2: 
"For all execution paths without communication failures the system will eventually reach a configuration in 
which all Clients are in status 'Done'" 
was checked. The formalisation uses a minimal fixed point structure and is as follows: 
      min Z :   ((C1.status=Done) and (C2.status=Done)) 

           or (PT1.result=Client_Unreachable)  or (PT1.result=Server_Unreachable)  
           or (PT2.result=Client_Unreachable)  or (PT2.result=Server_Unreachable)   
           or (not FINAL and [true] Z)  

This formula is true. Hence Property 2 does hold. To obtain this result, UMC analysed 34735 states. While 
Property 2 can still be checked for system models with 3 Clients by exploring up to 96928 states, this is no 
longer the case for system models with more than 3 Clients. 



 
D8.1.a: Telecommunication Case Study                                                                           [February 28th, 2007] 
  

016004 (Sensoria) 15 
 

Finally, the simplest system is considered, i.e. with just one Client, with a Proxy that tries to contact the Client 
or the Server only once and that may not activate any parallel subthread and with a Server that may neither 
activate any parallel subthread. Property 3: 
"If Client receives a SOAP_Result(ReqId) operation call then it received a [Soap_Deferred,ReqId] response to 
its previous SOAP_Invocation" 
was checked by verifying the formula    AG [C1.SOAP_Result(*,ReqId)] (C1.result=[Soap_Deferred,ReqId]). 
While this formula should obviously be false, in the considered model it is actually true, i.e. Property 3 does 
not hold. The reason is that the Proxy may find the Client unreachable, and thus be unable to notify the Client 
of the deferred Server response and of the REQ-ID that it has generated for its request. This of course does not 
prevent the request to proceed its usual course, until eventually the deferred result is produced by the Server. 
However, in this particular scenario the REQ-ID associated to this result will mean nothing to the Client. The 
gravity of this particularity and whether there is a way to avoid it is currently under study.  
In the annexes, the paper presented at ECOWS’06 reports all the details of the analyses. 

6 Synchronous and asynchronous service composition 

While Section 5 addressed the problem of asynchronous interactions from the point of view of the 
communication protocols, this section addresses the problem from the point of view of service logic interacting 
with resources characterised by asynchronous interactions (e.g., notification of events), as described by [9]. 
The objective of the activity is to investigate orchestration/composition formalisms for defining 
telecommunication service logic interacting with component services which provide an abstract view of the 
telecommunication capabilities.  

 
Figure 7: Synchronous/Asynchronous composition 

From the “logical” point of view a component service may provide the following interaction primitives: 
Request-Response, Request without Response (i.e., one-way message), Notification, Solicit-Response. These 
primitives are implemented by a set of Web Services (e.g., the Parlay X ones specified by 3GPP/ETSI [5]), that 
may be used by the composed service logic to interact with the component services. 
Document [9] identified some interaction patterns between composite and component services which are 
relevant in the context of the telecommunication services: 

• Request-Response: it is the normal request-response interaction supported by SOAP/Web Services; it 
may be applied when the composed service may return the “final” result of the request processing, or 
when the composed service is just interested in an acknowledgment that the processing was started;  

• Request-Response with continuation: it represents the case that the request starts a long-running 
processing, that could pass through different intermediate states; the composed service is interested to 
be informed on the changes in the processing status and/or to modify the processing; in this case the 
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initial Request-Response could be followed by a set of message exchanges between the composed 
service and the component service; 

• Notification: the composed service subscribes to be notified of an event produced by a component 
service; the composed service has to define the logic that must be executed in order to process a 
notified event; 

• Solicit-Response: the composed service subscribes to be interested in handling some events; the result 
of the processing is returned to the component service which continues its processing according to the 
received results; this interaction pattern may be used to allow a component service to perform an 
“Assist” request to a composed service to request some information useful for the composed service; 

• Solicit-started transactions: it is an extension of the Solicit-Response interaction pattern; when a 
composed service receives a Solicit to handle an event, it may start a “transaction” for its processing 
which may involve several interactions with the service component; a composed service could process 
in parallel several transactions, related to the handling of different solicits; 

• Request-started transactions: it is an extension of the “Request-Response with continuation” interaction 
pattern, where more complex interactions may be performed between the composed and the component 
services. 

In order to better identify which are the critical points to address the identified interaction patterns by a 
formalism for composed services, it was decided to start investigating how they can be implemented by using 
BPEL constructs (e.g., correlation sets, pick). 
In order to demonstrate the approach, a service scenario was defined based on the control of a multiconference, 
where the service logic has to interact (according to some asynchronous interaction patterns) with the resources 
controlling the multiconference. Figure 8 shows the reference architecture of the basic service scenario. A 
detailed description of this scenario, as well as of an extended scenario, are given in [6].   

 
 

Figure 8: Reference architecture of the MultiMedia Conference (MMC) service scenario  
In this basic scenario different actors are involved: 

• Client owner: identifies the user who manages the multimedia conference; the Client owner can create 
and  terminate  a conference, and he can also invite or delete new participant users. It is assumed that 
only Client Owner can invite a new participant to the conference. 

• Clients: identifies the new participants to a multimedia conference created by the Client Owner. A new 
participant is invited to a conference and is notified of this invite. In order to receive the invite 
notifications, a Client must previously register to a DNS service providing its notification reference 
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address (e.g. a URL of a notification Web Service). The client must accept the invite to connect to the 
multimedia conference. 

• BPEL MCC Process: the BPEL process managing the multimedia conference. It receives Client 
requests and manages the multimedia conference service logic by Web Service orchestration.  

• DNS: the Domain Name Server receives registrations by the clients and provides information about 
clients to the BPEL MCC process when the process needs to send an invite notification to a new client. 

• MCC Web Service: is the interface module between the MMC BPEL process and the resource 
adaptors. The MCC WS provides the same interface to the BPEL process independently from the 
resource adaptors used in the implemented solution. The architecture used is the same adopted and 
defined in the Parlay X approach. 

• MCU (Multi Conference Unit): is the module implementing the network functionalities. These 
interfaces are depending on the network solution adopted in the implementation and are out of the 
scope of this document. 

All actors involved are assumed to provide Web Service interfaces for their interactions.  

6.1 Preliminary results of the BPEL analysis to implement the pattern 

The analysis uses the fact that the various patterns depicted above rely on a restricted set of requirements, 
combined in different ways. Whether BPEL is capable to support such patterns therefore depends on whether 
such requirements can be implemented using such a language. In particular, all or some of the patterns require: 

1. the ability to handle asynchronous long-running interactions; 
2. the ability to handle and synchronise parallel threads of computation; 
3. the ability to refer to communication contexts, in order to correlate different communications pertaining 

to a same logical flow of data, and to dispatch them adequately to associated computation threads; 
4. the ability to suspend activities on messages, and to resume them upon timeouts; 
5. the ability to handle the association of sets of services to sets of events, which is required in  subscribe-

notification mechanisms. 
For instance, the request-response pattern only requires (1) and the request-response with continuation pattern 
only explicitly requires (1) and (3). 
All of these requirements, except for (5), are directly supported by BPEL constructs, and hencefore their 
combination can be easily realised as BPEL protocols. In particular: 

• long-running asynchronous transactions are supported by BPEL’s (non-blocking) invoke and (blocking) 
receive constructs. (Note that a synchronous variant is also available, through the invoke/receive/reply 
activities: whether an invoke is synchronous or not appears in the WSDL associated to the BPEL code). 

• parallel threads are supported by either generating process instances upon message receiving (via the 
createInstance keyword), or by explicit forking of threads via the flow activity. They can be 
synchronised by BPEL link activities. 

• The creation and correlation of communication contexts is handled by BPEL’s correlation construct. 
Correlations build upon the definition of properties typically associated, via an aliasing, to some part of 
a message type. In this way, messages convey ‘keywords’ that are used to dispatch them to the properly 
correlated process instance. Once generated upon sending of a message, both sender and receiver can 
use the correlation set associated to the message to restrict their communication context to exactly the 
right partner instance. 

• Timeout-based suspension of activities is easily handled by combining the pick and onAlarm BPEL 
constructs: the former allows suspending over several events by means of the onMessage BPEL 
construct;  the latter specifies a timeout (in terms of relative or absolute time), and can be used as one 
of the suspending activities. 

For what concerns the handling of associations of sets of services to sets of events, this would require a further 
“associator” construct in BPEL, which by now is not supported, but can be explicitly programmed in several 
ways; e.g., in terms of queues or associative lists. Note that such programming is particularly easy in a more 
restricted setting where no more than one service is associated to one event; in this case, it is possible to use 
correlation on event IDs over parallel threads to pursue a one-to-one correspondence.  
Therefore, BPEL allows for a direct realisation of most of the patterns shown in [9], and of all of the remaining 
patterns once the “associator” construct is appropriately programmed. In particular: 
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• request-response can be realised simply by means of synchronous BPEL invoke/reply;  
• request (with or without) response with continuation can be realised by means of synchronous and 

asynchronous BPEL invoke/reply, also using BPEL correlation; 
• request-started transaction can be realised by means of synchronous and asynchronous BPEL 

invoke/reply constructs, using BPEL correlation and creating parallel threads to handle different 
execution contexts;  the same holds for the W3C definition of a solicit-response pattern; 

• the BPEL realisation of  solicit-based interaction as defined in [9], as well as of the notification pattern, 
also require correlated synchronous and asynchronous communication and parallel threads, which can 
all be accommodated in BPEL. However, they also make use of the “associator” element, which as 
stated above is not supported natively in BPEL, but can be explicitly realised using BPEL constructs.  

In an experimental way, the results of this analysis were verified by designing and testing prototypical BPEL 
implementations of the patterns above. 
The annexes provide a description of interaction patterns, details on the multiconference service and examples 
of BPEL processes. 

7 Policies for exposing Web Services: negotiation and enforcement 

One of the critical points in SOA for the Telco Service Layer is the handling of policies to control that the 
applications use the enablers according to the subscribed parameters (SLA, i.e. Service Level Agreement).  
The scope of this activity is to define languages to define Policies for the description of conditions to control 
the usage of Service Capabilities implemented in a Telecommunication Network and exposed to 3rd party 
service providers, external to the Network Operator domain. Such policies would contribute to define the SLAs 
between the Network Operator and the Service Providers.  
Moreover, the activity aims at identifying mechanism to enforce such policies to control the usage of the 
Service Capabilities. Finally, it considers the problems concerning the negotiation of such policies, during the 
phases of subscription of a Service Capability and definition of the corresponding SLA.  
Policy Decision & Management should support general-purpose policies (enforced by the SOA Bus by 
message intermediaries); component service specific policies (enforced by the component implementation); 
possible involvement of external decision points (e.g. end-user account management). 
The aspects that need to be developed are: identification and specification of policies; support to deal with the 
dynamic negotiation of SLA; support to multiple points of policy enforcements in federated contexts.  
Policies in general are a way to express: 

• a control in order to guarantee that the service usage, i.e. on invocations of interfaces and operations of 
the Web Service, is compliant with the SLA agreed at subscription time;  

• condition for the control, configuration and protection of telecommunication capabilities and end-users 
involved in a service execution. 

Different types of policies can be identified, more specifically the policies can be categorised as: 
• policies associated to the subscription of services (example Telco/IT adapter, application/Protocol):  

policies on Authentication (policy on the authentication mechanisms, e.g. IP address, 
username/password, …); policy on Authorisation (e.g. access on subscription; free access);  

• policies related to the use of services, e.g.:  
- on time range (e.g. when a certain operation can be invoked); on invocation frequencies (e.g. how 

many times an operation can be invoked in a certain range); 
- on end-users’ network addresses (e.g. are the addresses valid?; is the network operator involved a 

valid one?); on hiding of end-users’ network addresses (it is indicated if the address can be explicitly 
passed or has to be hidden, e.g., by mapping addresses and aliases); on parameters’ value (e.g. 
restriction on certain values);  

- on the session validity (e.g. it should be verified the link session/application, validity of the session); 
on the state of a session (e.g.. number of participants to a conference); 

• policies associated to the user involved in the execution of the services (example: rules on the end user 
data of an application/Service Enabler, privacy rules). 
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The activity will consider, in particular, issues concerning the definition and enforcement of policies involving 
the correlation of multiple messages, and session status. 
In addition, there are several policies defining constraints on the involvement of end-users in the service 
capability execution (e.g. constraints on sending SMSs, calling them, localising, etc.); the activity will consider 
issues on how to address and resolve possible conflicts among policies of the same or of multiple end-users.  
Finally, the activity will consider how to define the policies, as a result of a negotiation between a request of a 
service provider and an offer of a service capability. 
In order to illustrate the different policies listed a service scenario is introduced, i.e. Call By SMS and the 
different policies are described on the different flows that compose the service. 
The “CallBySMS” service allows a mobile phone user to activate a voice call by sending an SMS message to a 
specific service number. The SMS message must contain a nickname of the person the user wishes to call. The 
service is able to automatically find the number associated with the nickname and to set up a 3rd party call 
between the user and the callee. In order to keep privacy, the service does not know actual phone numbers, but 
only opaque-id’s representing users. 

 
                                               Figure 9: Call By SMS interaction flow 
Figure 9 describes a scenario in which John wishes to call Mary: he knows that Mary’s nickname is “sunshine”: 

• Mary sends an SMS message “REGISTER sunshine” to a  given service number (e.g. 11111);  
• The service associates “sunshine” to the phone number/opaque-id of Mary; 
• John writes the SMS “call sunshine” and sends the message to a given service number (e.g. 11111); 
• The service retrieves the phone number/opaque-id associated to “sunshine” and sets up a call; 
• John’s phone rings; John answers and gets the ringing tone; 
• Mary’s phone rings; Mary answers; 
• John and Mary are connected. 

In order to implement the application, the enterprise may subscribe two Telco Web Services, for instance, the 
Parlay X Web Services:  

• SmSNotification, to receive the SMS sent to a specific service number; 
• Third Party Call, to set up and control calls. 

In the “CallBySMS” service scenario different policies can be applied. Examples for different operations are: 
StartSMSNotification: 

• Time Policy: is the request time allowed to start the application? E.g. the notifications can be started 
from 8 am to 4 pm. 

• Frequency Policy: how many times the operations can be invoked in a certain time frame, e.g. the start 
of notification can be handled only twice a day; 

• Address Policy: are the parameter values allowed (e.g. is the service number associated to the 
application a valid number, the SmsActivationNumber should be a largeAccount number)? 

NotifySmsReceptionRequest/Response: 
• On this operation, the Time Policy, related to the time range in which the notification is sent to the 

Application, and the Frequency Policy are obvious policies to be applied on the base of the subscription 
between the Application and the Parlay X WS (i.e. Network Operator).  
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• The policy (of the category Address) on SenderAddress can be used to hide the SenderAddress (if the 
hiding of Address was established). This means that the SenderAddress has to be mapped with an 
opaque-id before being notified to a 3rd party application.   

• The Session Policies that can be applied in relation to the Correlator parameter are Validity Time (i.e. 
evaluate the validity time within the scope of a Start/Stop Notification), and the so-called  
NumberOfOperationForSession: control on the number of notification in the session, defined in the 
subscription data. 

MakeACall: 
• Frequency Policy: the operation is violating the maximum frequency request? (e.g. the max frequency 

allowed for “A” to invoke MakeACall is 10 times in a month). 
• Address Policy: are the operation addresses involved allowed?,Is the operator  involved in the 

operation a valid one?  
• User Policy: is it violating any privacy constraints on users (e.g. can “A”  call “B”)? 

7.1 Description of the approach of automatic code generation for enforcement of 
policies  

A reference model for the specification of policies addresses various aspects of controlling the usage of service 
capabilities. There is a difference between the authentication/authorisation policies and the usage policies. The 
former define the rules for identifying and granting the access to a calling application and are not considered 
here. Instead, the usage policies define the conditions and constraints on the invocation of services, on the data 
exchanged, on the frequency and timing of the access, etc.  
These rules may be defined for all the applications that are subscribed for the controlled resource, for a 
particular application and even for a subset of the application functionality defined, e.g., by the usage session. 
The assignment of the policy sets to an application is performed at the subscription time, when the SLA 
between the application and the service provider is established.  
The goal of the presented activity is the automated generation of the code for the enforcement of policies 
associated to the application by the SLA. Once generated, the policy handlers are deployed at the middleware 
level and control the access to the service capabilities through interception mechanism. More precisely, the 
control is performed as follows.  

• During the authentication/authorisation phase, the application is identified and the corresponding 
identity values are extracted, including, e.g., application ID, subscription ID, and session IDs. 

• The call is forwarded to the policy management gateway, where all the policies associated to the 
specified identity values are enforced. 

• If the control of all the policies succeeds, the call is propagated to the target service, and the related 
policy control parameters are updated. 

• If the control of one of the policies fails, the access to the resource is denied, and optionally a 
corresponding fault message is returned to the application. 

 
Figure 10: Policy Management Architecture 

The approach of automatic policy enforcement code generation relies on the following architecture, 
implemented as a set of BPEL processes (Figure 10). The architecture consists of two layers. In the first layer, 
the OperationManager process (OM) receives an operation call and sends a “check operation” message to all 
the PolicyManager processes (PM) associated to the application. These processes represent the second layer 
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and are used to store, update and check policy measurement parameters associated to an application, a session, 
or a user. The PM processes evaluate the policy condition against the policy parameters or message parameters, 
and provide a response to the OM process. In case of policy violation, the fault message is sent to the 
application. Otherwise, the PM processes are called to update corresponding measurements (e.g., increase the 
counter of operations per day), and the call is propagated. 
The generation of the BPEL processes implementing this architecture is performed as follows. Depending on 
subscribed services/operations, a set of OM process definitions are created. The set of generated PM processes 
depends on the set of application policies and their type. In particular, a separate PM process definition is 
created for the group of application-related policies (e.g., frequency, time, addressing); for the policies related 
to a particular session type; for the user-related policies. See the annexes for a more detailed description of the 
implementation and for the BPEL code examples. 

7.2 Description of the approach for policy negotiation through constraints solving  

A constraint-based approach for specifying and enforcing policies is proposed. The model combines basic 
features of process calculi [16] and concurrent constraint programming (cc programming) [17]. Specifically,   a 
process calculus that extends cc programming by adding synchronous communication and by providing a 
treatment of local names à la pi-calculus rather than as variables with existential quantification is defined. The 
considered constraints are soft, i.e. they extend classical constraints to allow the representation of preference 
levels. In the resulting framework, policies on the capability of a web service are expressed as constraints and 
the parties wishing to define a policy are modelled as communicating processes of the model. A single process 
P= tell c.Q can place a constraint c corresponding to a certain policy and then evolve to process Q. 

Alternatively, two processes '.~ PxpP = and '.~ QypQ =  that are running in parallel (P|Q) can 

synchronise with each other on the port p by performing the output action xp ~  and the input action yp ~ , 

respectively, where x~ and  y~  stand for sequences of names. Such a synchronisation creates a constraint 
induced by the identification of the communicated parameters x~ and y~ , if the store of constraints obtained by 
adding such a new constraint is consistent, otherwise  the system has to wait that a process removes some 
constraint (action retract c). The restriction operation (x) is used to define a local name x , thus allowing 
for local stores of constraints. Synchronising processes may have the effect of combining their respective local 
stores. This constraint-based model is applied in [1] for specifying and enforcing the following policies on time 
and frequency of the CallBySMS service.   

• Time Policy. Suppose the Third Party Application (TPA) requires that the initial time i and the final 
time f of a service must be respectively in the time intervals [6am,…,9am] and [4pm,…,6pm] and the 
cost k must be less than max_cost. This policy is represented by the constraint c1 = (6am ≤ i  ≤ 9am) x 
(4pm ≤ f  ≤ 6pm) x (k  ≤  max_cost). The Telco WS (TWS) guarantees that the initial time is in 
[8am,…,10am] and the final time is in [5pm,…7pm] and the cost of the service is k= cost(f-i), where 
the function ‘cost’ specifies that the cost of the service is 10 per hour for the first 5 hours, while it is 5 
per hour for the remaining time. The constraint corresponding to this policy is c2 = (8am ≤ i  ≤ 10am) x 
(55pm ≤ f  ≤ 7pm) x (k= cost(f-i)) . 

• Frequency Policy. TWS offers a frequency fr that depends on the time interval ti according to a 
function freq(ti) which holds 6 if ti ≤ 5, while it holds 3 otherwise.  This policy is specified by the 
constraint c3 = (fr=freq(ti)).  TPA does not pose any policy on the frequency. 

TPA and TWS are defined as processes running in parallel. In order to check whether the time policy is 
enforced, one needs to equip the current model with a notion of time. Thus, a process ClockT is introduced that 
simulates the actual time by increasing a time variable t. The formal specification is as follows. 

  

( )( )( )( )( )

( )( )( )( )( )

( )( )( ) ( ))0(|)(|),(|),,(
)().1().()(

),.|,,.(),(
).(),,(

)),,(..,|.,,.(),,(

0

1

32

1

==
+===

=

≤≤=

−=

+

ttelltClockqpTWStqpTPAtqpSystem
tClockTttellTtretracttClock

frtqctellkfipctellfrtkfiqpTWS
startftichecktfiPE

tfiPEsfrifqskfipctellsfrkfitqpTPA

TT

 



 
D8.1.a: Telecommunication Case Study                                                                           [February 28th, 2007] 
  

016004 (Sensoria) 22 
 

Intuitively, TPA and TWS place their own constraints and then TPA tries to synchronise with TWS on port p 
and on port q. The synchronisations succeed because the resulting combinations of constraints c1, c2 and c3 are 
consistent. This amounts to saying that TPA and TWS have concluded a SLA contract on time and frequency. 
As a consequence, TPA evolves to the process PE, which is in charge of executing an instance of the service 
and enforcing the policies. In particular, PE first verifies that the actual time t is in the admitted range (action 
check i ≤t ≤ f) and starts the execution (action start). 
The detailed description is provided in the annexes, presenting the description of the CallbySMS use case  
extended with negotiation aspects, a paper accepted at TASE’07. 

8 Transactions for handling exceptions in service composition 

To discuss the issues related to transactionality, a scenario is considered that consists of a content provider that 
makes it possible to buy the rights to broadcast certain events, e.g. concerts and parliament meetings, and a 
media provider that makes it possible to broadcast audio streams on the Internet and to a set of registered 
portable phone numbers. Having a combined “book and broadcast event” service is extremely useful, if not 
necessary, for an event broker, hereafter called User, whose intent is organising the audio broadcast of events. 
Thus, the scenario involves four interacting partners: User, Book&Broadcast (B&B), MyEvent and 
MyBroadcast services. The User interacts exclusively with the B&B, which is responsible for the negotiation 
with the pre-existing MyEvent and MyBroadcast services, so all partners agree on their mutual needs and 
constraints. In particular, the case study describes the behaviour exposed by B&B that allows the user to book 
the rights to an event, as well as the required bandwidth to broadcast it. In this setting, the User must be able to 
submit a request for an event rights and for a broadcasting option, change it, accept or reject the offer provided, 
or stop the procedure by sending a cancellation message. 
The B&B service model is supposed to provide this functionality interacting with the MyEvent and 
MyBroadcast components. Each of these two components must provide the possibility to accept a request (for 
an event and for a broadcasting bandwidth respectively), answering positively or not, and making it also 
possible to confirm or disconfirm the operation. While this can be hard-coded in a complex piece of (BPEL) 
code that handles explicitly all cases, a much simpler and more neat way to express this is to exploit a 
transactional specification, i.e. to say that the two component services export a ‘booking’ method, and that such 
a method is transactional, i.e. it supports primitives to commit, to roll-back, to compensate or to handle 
exceptions.  Business processes usually require long-running transactions for which compensations 
mechanisms replace traditional locking, check-pointing and rolling-back. In fact, in many applications, the 
initial situation cannot just be re-established with a roll-back, instead some counteraction must be activated. 
The simplest example is the late cancellation of a reservation, for which some fees have to be paid. 
A relevant aspect of this scenario regarding transactionality is that the establishment of a consistent situation 
where the whole process of the B&B sale is completed or rolled back cannot be associated to the behaviour of a 
single service, but requires operating on the various partners in a sound and coordinated way. In particular, 
while a variety of situations may take place, only two cases are admitted: either the sale is completed, in which 
case the User has bought the rights to the event and the broadcasting bandwidth, and the MyEvent and 
MyBroadcast services have successfully completed their transactional activities, or the sale is refused, in which 
case only situations which are consistent under a global perspective are admitted, i.e. rule out cases where some 
partner has nevertheless committed a portion of the transaction. 
 

8.1 Description of the approach (BPEL + SAGAs) 

The approach to handle transactionality in the composition of services starts from a situation where the 
components comes with a notion of  transactional contexts, which define the transactional aspect of the 
functionalities they provide. In the simpler scenario, both the functionalities, ‘book an event’ and ‘book a 
bandwidth’, must be perceived as transactional, i.e. as logically atomic, and therefore need to be defined within 
two respective transactionality contexts Event_booking and Bandwidth_booking. Notice that in more complex 
scenarios, a single service may feature more than one transactional context, and it may provide a variety of 
transactional functionalities. To link this notion to the BPEL web service language,  the transactional contexts 
are represented by means of BPEL scopes that embed question/answer protocols. Figure 11 represents the 
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MyEvent transactional service: different BPEL scopes are used to define the transactional activities (left) and 
their rollback (right). 
 

 
Figure 11: BPEL Process 

Given this, the way transactionality must be handled in the composite service is specified by a transactional 
aspect of requirements, referring to the composition of transactional contexts. For this purpose, only existing 
powerful formal languages are used with a clear semantics, so to be able to automatically convert 
transactionality requirements into composition constraints. In particular, the SAGAS language [1] is 
considered, developed at the University of Pisa with the aim to clearly state transactionality requirements of 
composed processes. SAGAS is a structured language for compensable orchestration, originally defined as a 
process algebra, but also available as an XML schema. A prototypical implementation is available that includes 
a GUI for the design of transactional business processes, an interactive simulation environment, and a 
distributed orchestration engine for execution. SAGAS features a compact set of constructs that include 
sequential and parallel composition, nesting of transactions, forward and backward recovery strategies. Various 
flavours of SAGAS have been formalised, which by semantic variants allow a more or less liberal handling of 
parallelism in the compensation of processes. 
When applied to the B&B scenario, this amounts to specifying that, for instance, the B&B carries out both the 
two transactional activities “book an event” and “book the bandwidth for broadcasting it”, in some order., i.e. 
in SAGAS jargon, that Event_booking * Bandwidth_booking.  
The SAGAS specification, together with the semantics of the chosen transaction model, is what allows for the 
automated extraction of the Coordinator entity that links together the various partners; in the considered 
scenario, for instance, this means that upon receiving a refusal from the User, the B&B will contact the 
Coordinator with a ‘request for cancellation’ that will trigger, in turn, the cancellation for either the MyEvent 
and/or the MyBroadcast (depending on which of them has been made active already). 
Transactionality is only one of several possible aspects involved in a composition of web services.  For 
instance, the dependency between data values distributed amongst different components is a different aspect, 
and the mutual consistency of the logical choices put in place by different services is another one. Each of these 
aspects, and possibly more of them, need to be taken into account into the composition, either by properly 
stating them as an aspect of the composition requirements, or by suitably programming them directly into the 
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composed service. The aforementioned approach envisages the description of composition requirements 
decomposed into different, independently specified aspects, each one referring to a specific feature that must be 
presented by the composed orchestrator.  
Note that the model of transaction is defined by an independent entity, which defines the primitives available to 
handle a transaction (e.g. commit, cancel, roll-back) and their semantics. This definition is essential both to 
define the behaviour of transactional components, and to enforce transactionality in the composition. Several 
standard models of transaction are available, e.g. Business Transaction Protocol (BTP), WS-Atomic 
Transaction, WS-CAF; by not committing to any of them, the aforementioned approach is decoupled from a 
specific notion of transaction and can suitably be integrated in different settings. The intent is to develop a 
suitable LTL logic and verification tools for SAGAS that could serve to establish a weaker notion of 
conformance between SAGAS and its BPEL realisation (e.g. w.r.t. a given scenario or a logical specification). 
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10 Annexes 

This is the list of annexes to this deliverable: 
A high-level description of the Sensoria Telecommunication Case Study is part of a presentation of Telecom 
Italia at BIGG 2006 Workshop [Del81a_ch2_BIGG - Moiso v1 0.pdf]. 
In relation to the chapter about Service Modelling, two documents are provided: the “Call and Pay Taxi” 
Service Scenario [Del81a_ch3_Call&PayTaxiSensoria.pdf] explaining the service in all the details, and the 
“Call and Pay Taxi” Service Scenario modelled using SRML [Del81a_ch3_SRLMcallpay(v1 0).pdf]. 
Regarding the analysis of a protocol for identity federation are provided: one paper presented at AICT’07 
[Del81a_ch4_full-idp.pdf], one presented at YR-SOC’07 [Del81a_ch4_final-fnp.pdf] and a Telecom Italia 
paper presented at ICIN’06 [Del81a_ch4_Token Injector ICIN 2006 v1.0.pdf] 
Related to the formal modelling and verification of an asynchronous extension of SOAP one paper, presented 
at ECOWS’06, is provided [Del81a_ch5_ecows06.pdf] 
On the synchronous and asynchronous interaction, three documents are provided: a Telecom Italia analysis 
[Del81a_ch6_asincronicitv1.pdf], a multi media conference service specified by Telecom Italia 
[Del81a_ch6_MMConferenceSpecification.pdf] and a BPEL approach on the theme with an article submitted 
to ICWS’07[Del81a_ch6_ICWS07paper.pdf] 
In relation to Policies for exposing Web Services are provided: a detailed analysis of policies 
[Del81a_ch7_Wp8sensoriapolicycasestudyv1.pdf] and [Del81a_ch7_PolicyforD81a-v1.pdf], an article 
accepted at TASE’07 [Del81a_ch7_TelcoCaseTASE2007.pdf], and a policy enforcement approach 
[Del81a_ch7_PolicyEnforcv1.pdf]. 
 


