
A Secure Middleware for Wireless Sensor Networks ∗

Claudio Vairo
Department of Computer

Science
University of Pisa

Largo B. Pontecorvo, 3
56127, Pisa, Italy

vairo@cli.di.unipi.it

Michele Albano
Department of Computer

Science
University of Pisa

Largo B. Pontecorvo, 3
56127, Pisa, Italy

michele@di.unipi.it

Stefano Chessa
∗

Department of Computer
Science

University of Pisa
Largo B. Pontecorvo, 3

56127, Pisa, Italy
ste@di.unipi.it

ABSTRACT
SMEPP Light is a middleware for Wireless Sensor Networks
(WSNs) based on mote-class sensors. It is derived from the
specification developed under the framework of the SMEPP
project, to deal with the hardware and software constraints
of WSNs. SMEPP Light features group management, group-
level security policies, mechanisms for query injection and
data collection based on a subscribe/event mechanism, and
adaptable energy efficiency mechanisms. In this paper we
present the SMEPP Light specification, its architecture and
its main protocols for communication, security, and energy
efficiency.

General Terms
Wireless Sensor Networks, Middleware, Embedded Systems,
Energy Efficiency

1. INTRODUCTION
A Wireless Sensor Network (WSN ) is a network composed
by a large number of tiny, low-power, inexpensive sensors
which self organize into a (multi-hop) ad hoc network [1]. A
sensor is a micro-system that comprises a processor, a small
memory, one or more sensing units (transducers) and a radio
transceiver. Sensors are spread in an environment (sensor
field) without any predetermined infrastructure and cooper-
ate to realize an highly distributed application, whose goal
usually consists in sensing environmental data and monitor-
ing a variable set of parameters.

WSNs are flexible enough to be applied in diverse applica-
tion areas: a WSN can be the architectural support for Am-
bient Assisted Living applications, that span from health
monitoring of patients to independent aging [2]. A “smart
house” is usually made up of several intelligent devices that
can control home appliances or “feel” their surroundings [3].

∗Work funded in part by the European Commission in the
framework of the SMEPP project (contract N. 033563).∗Also affiliated with ISTI-CNR, Pisa

Other applications are the industrial plants monitoring, for
instance nuclear plants, or monitoring of disaster areas. De-
spite the different nature of these applications, they share
many common mechanisms. These mechanisms can be clas-
sified according to the functional requirements they sat-
isfy, namely: network organization, and management mech-
anisms, security mechanisms, and query dissemination and
data collection mechanisms. However, very often (and mo-
tivated by the constraints of the sensors in terms of memory
and processing capabilities), the software of the sensors is
generally a piece of monolithic code encapsulating all the
functions belonging to all layers, making thus difficult the
re-use of solutions developed for other applications.

One of the critical points to leverage on the potential use-
fulness of WSNs is the possibility of abstracting common
WSNs problems by means of convenient middleware to sup-
port the applications development and maintenance, filling
the gap between the applications and the network stacks.
Using a middleware that provides the right primitives, the
application developer can focus on the application business
logic, not having to implement the layers that provide the
access to the hardware and the networking mechanisms.

This paper describes SMEPP Light, a middleware for WSNs
that derives from the Secure Middleware for Embedded Peer-
To-Peer (SMEPP) project [4],[5]. SMEPP aims at hiding
the complexity of the underlying infrastructure while provid-
ing open interfaces to third parties for secure application de-
velopment. SMEPP is specially designed for Embedded P2P
scenarios (EP2P) and its objective is to overcome the main
problems of existing proposals in domain specific middle-
ware for EP2P: the middleware has to be secure, generic and
highly customizable, allowing for its adaptation to hetero-
geneous devices (from PDAs to embedded sensor/actuator
systems) and domains (from critical systems to consumer
entertainment).

SMEPP Light is the version of SMEPP tailored for WSNs.
This because a sensor can hardly face the technical problems
arising in the implementation of the whole SMEPP specifica-
tion. For this reason SMEPP Light addresses a limited but
yet significant and coherent subset of SMEPP. In particular,
differently from the full SMEPP specification, SMEPP Light
does not support services, on the other hand it provides the
same network organization mechanisms and it relies on the
SMEPP eventing mechanisms for query dissemination and
data collection. These mechanisms are implemented inter-



nally according to the directed diffusion paradigm [6].

2. RELATED WORK
The problem of defining a middleware for WSN has been
addressed in many recent works. TinyLime [7] defines the
middleware based on the concept of tuple spaces where data
is represented by elementary data structures called tuples,
and the memory is a multiset of tuples called a tuple space,
that is shared among all the sensors. Another proposal,
TCMote [9], is based on tuple channels. A tuple channel
is a FIFO structure that allows one-to-many and many-to-
one communication of data structures, represented by tu-
ples. By using the tuple channels the applications can de-
cide which application components exchange data with each
other. In this way the communication overhead can be opti-
mized. A different approach, based on the notion of events,
is employed by the Mires middleware [10]. This middleware
exploits a publish/subscribe paradigm to let the applica-
tions specify interests in certain state changes of the real
world. Upon detecting such an event, a sensor node sends a
so-called event notification towards interested applications.
All of these approaches however do not address the issues re-
lated to security. This aspect significantly differentiates our
work, since our approach inherits from SMEPP the security
concepts related to the use of groups, that can be used to
build secure multicast and unicast communications with a
fine granularity.

A different approach to WSN middleware is given by the
ZigBee standard [1], [8]. At the network layer it has an in-
herently node centric behavior, but it offers service-oriented
mechanisms to the applications. The ZigBee specification
includes mechanisms aimed at limiting the sensors duty cy-
cle, which however are configurable at network creation and
that can not be adapted dynamically to the application.
With respect to ZigBee the aim of SMEPP Light is more
focused to monitoring/control applications. With this re-
striction the number and kind of functionalities to be of-
fered to the applications are rather different. In particular
SMEPP Light seeks for a reduced core of primitives, which
includes also mechanisms for query dissemination and data
aggregation that are not primitive in ZigBee, and it offers
energy efficiency mechanisms that dynamically adapt to the
applications’ needs. Another difference of SMEPP Light
with respect to ZigBee is that SMEPP Light offers secu-
rity mechanisms based on groups to implement fine-grained
secure communications.

3. HARDWARE AND SOFTWARE TARGET
PLATFORMS

SMEPP Light targets a Mote-class hardware platform for
sensors. A typical example of sensors in this class is the
Crossbow MicaZ sensor [11]. It has an 8 bit, 8 MHz proces-
sor, 128 KBytes of program memory, 4 KBytes of RAM and
512 KBytes of storage memory.

SMEPP Light is developed on top of the TinyOS operating
system (that is the de-facto standard for this class of sen-
sors). A TinyOS application is a set of components linked
together to form an executable. Each component consists of
an interface and its implementation. The interface specifies
a set of commands implemented by the component and a set

of events that the component can signal. Hereafter, to avoid
confusion with the term event that is also used for other
purposes in SMEPP Light, we will call signals the TinyOS
events. TinyOS relies on the concept of split function for
energy saving. Split functions are functionalities split into
pairs command/signal: when a component A invokes a split
function of another component B implemented by a com-
mand, the command enqueues the request and returns im-
mediately. Only when the result is available B generates the
corresponding signal to give the result to A.

4. REQUIREMENTS
The main feature of SMEPP (and thus of SMEPP Light) is
that the peers in the same network organize themselves into
groups. The existence of different groups is useful since it
enables the definition of different security and communica-
tion domains, that involve only peers owning the appropriate
credentials. This is, for example, quite different from ZigBee
where the security domain is either the whole network or an
individual communication link between two peers.

The peers of a group in SMEPP Light interact via a pub-
lish/subscribe mechanism. A peer can subscribe for events
of other peers that belong to the same group, so that it auto-
matically receive the relevant events whenever they become
available. From the security point of view, a group can be
open or closed, private or public. In closed groups, a key is
necessary to access the group, while the appropriate key is
necessary to discover private groups.

SMEPP Light also provides a two-level security based on
symmetric cryptography: network-level and group-level. The
network-level security exploits two keys: one for packets’
confidentiality (used to encrypt the packet) and one for pack-
ets’ integrity (used to compute a MAC to be attached to the
packet). The two keys are set by the application and can
be changed at run time. The group-level security exploits
three keys, namely the masterKey, the sessionKey, and the
sessionMAC. The masterKey is used to restrict the access to
the closed group, so that a peer can join a closed group only
if it owns the right masterKey. Once a peer joins a group
it receives the sessionKey and the sessionMAC. These keys
are used to enforce data confidentiality and data integrity in
all the communications within the group, and they can be
changed at run time, however the masterKey must be known
in advance and is set at compile time. Since a peer can join
several groups, in all its communications it must specify in
clear text the identifier of the group to which the message
is directed, so that each peer receiving that message can use
the right key to check the message integrity and to decrypt
it.

Another important requirement of SMEPP is that each peer
must be described by an XML document. In SMEPP Light,
a peer description also comprises the list of the transducers
the sensor is equipped with. The peer description is com-
pressed into a bitmask that the sensors can easily store and
exchange.

For energy management purposes, each group defines its own
duty cycle that drives the radio activity of the peers. Thus
each peer in the group operates the energy management ac-
cording to this duty cycle (e.g., it responds to the messages



only when it is active). However, any received subscription
can request the peer to use also another duty cycle for envi-
ronmental sampling. For this reason SMEPP Light manages
all the duty cycles (which should coexist) by turning on or
off the peer (and thus the radio) whenever necessary. This
policy of energy management is rather different from the
policies used by ZigBee. In fact, in the case of ZigBee, the
duty cycle is defined a priory by the network coordinator
and routers (normally according to the expected behavior
of the application), and it is common to all the network.

Table 1: Interface of SMEPP Light
command peerId smepp newPeer(netwKey, netwMAC)
command groupId smepp createGroup(groupDescription)
command smepp getGroups(groupDescription)
signal getGroups result(groupId[])
command smepp getGroupDescription(groupDescription)
command smepp joinGroup(groupId, masterKey)
signal peerJoined(peerDescription)
signal joinGroup result(groupId, subscriptions[], result)
command peerDescr[] smepp getPeers(groupId)
command smepp leaveGroup(groupId)
signal peerLeft(peerId, groupId)
command smepp subscribe(eventName, groupId,

expirationTime?, rate?)
signal subscribed(eventName, groupId, expirationTime,

rate, offset)
command smepp unsubscribe(eventName?, groupId)
signal unsubscribed(eventName, groupId)
command smepp event(groupId, eventName, value)
command smepp receive(groupId, eventName, frequency)
signal receive result(sender, groupId, eventName, value)

5. SMEPP LIGHT SPECIFICATION
Interface – SMEPP Light provides primitives for peer ini-
tialization, group management, and event transmission. The
set of the (main) primitives is shown in Table 1. The peer
initialization is executed by the primitive smepp_newPeer.
It takes in input the network and the MAC keys (hence
these keys are established by the application) and returns to
the application the peer identifier. This identifier is unique
within the network and corresponds to the sensor identifier
used by TinyOS and assigned at compile time to the sensor.

The group management primitives support the creation of
groups, the search for existing groups and the join to ex-
isting groups. The smepp_createGroup primitive creates a
group according to the group description taken in input.
The description contains the security keys of the group and
a set of flags expressing the group security policies in terms
of closeness and privacy.

The primitives for group discovery are used to retrieve groups
that match a search criteria. The command smepp_getGroups

accepts a group description partially filled up, and returns,
via the signal getGroups_result, the id of matching groups.
Then smepp_getGroupDescription is used to read the group
descriptions. Group discovery can be based on group name
or on the security properties.

The command smepp_joinGroup takes in input the master
key of the group to be accessed. The result of the join proto-
col (either success or failure) is returned to the application
by means of the joinGroup_result signal. If the join is

successful, the peer also receives the session keys used for
the communications in the group, the list of the peers in
the group, and the list of the subscriptions that are active
within the group. The list of subscriptions is also notified to
the application layer that can thus begin raising any relevant
event. Furthermore, as a result of the join protocol, all the
peers in the group are notified with the signal peer_joined
reporting the identifier of the newly joined peer. The de-
scriptions of the peers into the group can be accessed via
the smepp_getPeers primitive.

The command smepp_leaveGroup is a split function that
enables a peer to leave a group. This disassociation is au-
tomatically notified to all the peers in the group with the
peerLeft signal.

The main event management primitives offer functionalities
for event subscription and event notification. The event sub-
scription can be invoked by any peer in a group and is issued
to all the peers in the group. When one of the peers detects
an event matching the subscription it sends the event back to
the peer (or the peers) that subscribed for it. The command
smepp_subscribe takes in input the name of the event to be
subscribed and a group id to which the subscribe is directed.
The event name may encode an arbitrary monitoring task to
be run on the peers in the group. The primitive also takes
two optional parameters: the expiration time and the rate
of the subscribe. The rate defines the sampling rate of the
monitoring task associated to the event name, which also
implies the maximum rate at which the events can be sent
back to the subscriber. Each subscribe results in the creation
of a routing tree spanning on all the peers in the group and
rooted in the subscriber. This tree is used to route the events
to the subscriber. After the expiration time the subscribe
(and consequently the associated routing tree) expires and
the subscriber should issue again another subscribe if it is
still interested. The presence of a subscribe request is noti-
fied to the application layer of all the peers in the group by
means of the subscribed signal that provides to the appli-
cation layer the parameters of the subscription (event name,
group id, rate, expiration time) and an offset time, that is the
time in which the subscribe has been generated and that is
used to synchronize all the peers in the group. After the in-
vocation of the command smepp_subscribe, the subscriber
can invoke the command smepp_receive to start waiting for
the corresponding events.

If a peer detects an event matching a subscribe, it sends the
event to the subscriber by using the command smepp_event,
that routes the event using the routing tree constructed
by the subscribe. When the event reaches the subscriber,
SMEPP Light provides the event to the application layer
by raising the receive_result signal, that provides to the
application layer the value associated with the event along
with the event name, the identifier of the peer that detected
the event, and the identifier of the group where the event
was detected.

Architecture – SMEPP Light is composed by three main
components, namely the Peer Identification, Group Manage-
ment and Event Management, that implement the SMEPP
Light primitives, and three components that provide support
to security, networking, and energy efficiency. The interac-



Figure 1: Components in the SMEPP Light archi-
tecture

tion among these components is shown in Figure 1.

The Peer Identification component maps to the peer initial-
ization primitives and it interacts with the Security compo-
nent to set the network keys.

The Group Management component manages the topologies
of the groups and maps to the group management primitives.
It is in charge of the group descriptions and duty cycle man-
agement and it interacts with all the support components:
it sets the group master key, it sends and receive data from
the Network component when most of the primitives are
executed, and it interacts with the Energy Efficiency com-
ponent to set the information for the management of the
peers’ duty cycle.

The Event Management component maps to the event man-
agement primitives and it is in charge of subscriptions and
events. This component interacts with the Network compo-
nent to access the wireless medium and to set up the routing
trees associated with subscriptions, and it interacts with the
Energy Efficiency component to configure the duty cycle of
the peer according to the subscribes generated or received.

The Security component manages the keys for all the secu-
rity issues related to the network and to the group layers. At
the current stage of development it keeps the network keys
set by the Peer Identification component, the group mas-
ter key set by the Group Management component, and the
group session keys received from the Network component
during the join protocol. This component will also man-
age the (planned) protocols for the dynamic refresh of the
session keys.

The Network component implements the communication be-
tween peers. Its main mechanisms are the network broadcast
used to implement the subscribe and the management of the
routing trees associated to the subscribes. It also provides
one-hop broadcast used to implement the group discovery
and the join mechanisms.

The Energy Efficiency component manages the duty cycle
of the peer. In particular it manages the the on/off periods
of the radio interface according to the duty cycles associated
to the subscribe messages received or generated by the peer.
It should be observed that the management of the radio is
transparent to the other components, since this component
makes sure that the radio is activated before it is used by
other components and that it is turned off soon after its use.
Details on how this is implemented are reported in Section 6.

Protocols – For the sake of brevity we describe only the
main protocols used by the SMEPP Light middleware, i.e.
the group creation/join protocols (Figure 2) and the sub-
scribe/event protocols. We illustrate the protocol of group
creation and join referring to the diagram of Figure 2, where
it is shown the case where Node B creates a group and Node
A joins the group of B. Node B creates the group using the
createGroup command. The group creation does not in-
volve communications since it consists in setting a few data
structures in SMEPP Light and in setting the master and
the session keys in the B’s Security component, hence it can
immediately provide the result of the operation without re-
sorting to the split function mechanism. The application
layer of Node A performs the search for existing groups by
invoking the getGroups command. This command sends to
all the A’s neighbors (in local broadcast) a message request-
ing the group descriptions of the existing groups. At Node
B, SMEPP Light replies to this request (without involving
the application layer) by sending to A the descriptions of
all the groups known to Node B (in this case only one). At
Node A SMEPP Light keeps all the received descriptions
and after a timeout it notifies to the application layer the
list of identifiers of all the groups detected. The application
at Node A can then choose a group ID and it can access
the corresponding group description by invoking the get-

GroupDescription primitive.

Now the application layer of Node A can invoke the jo-

inGroup primitive to join the group. As a consequence,
SMEPP Light sends in unicast to Node B the request to join
the group. This message is notified to SMEPP Light in Node
B, that, in turn, decides whether to accept the request of A.
In our case the request is accepted, hence SMEPP Light in
Node B sends to A a set of messages containing the session
keys, the list of peers belonging to the group, and the list of
subscriptions that are currently active into the group. All
of these messages are used by SMEPP Light in Node A to
update its internal data structures, and once this phase is
completed SMEPP Light raises a joinGroup_result signal
to the application layer of the same node to notify that the
join protocol is completed. In the meantime, SMEPP Light
in Node B sends in broadcast to all the other peers in the
group a message notifying that Node A joined the group.

The subscribe protocol is initiated by any peer in a group
that wants to receive a given type of events generated by
other peers in the group. Consider for example the case
where Node A subscribes for events that are generated by
a Node B. To this purpose Node A invokes a subscribe

command, that broadcasts the subscribe to all the peer in
the group. Then Node A invokes the receive command to
prepare SMEPP Light in Node A to receive events related
to this subscribe. When Node B receive the subscribe mes-



Figure 2: Creating a group

sage, SMEPP Light in Node B notifies this request to the
application layer by means of the subscribed signal. This
signal gives to the application layer the event name for which
the subscribe holds, hence it is responsibility of the appli-
cation to start any relevant monitoring task to detect the
events matching the subscribe. This monitoring task should
be activated at the sampling rate contained in the subscribe
message. Whenever the application in Node B detects an
event it sends the event to the subscriber using the event

command. This primitive sends a message containing the
event to SMEPP Light in Node A, that, in turn, notifies
the application in Node A by means of the receive_result

signal. This protocol continues until the subscribe expires
or Node A cancels it using the unsubscribe command.

If a primitive fails, the middleware notifies the error to the
application to let it implement fallback policies. There are
however some exceptions to this general behavior when the
middleware can not identify the fault. One example is the re-
moval of a peer without the leave primitive. This case may
result in broken routing trees, stopping data flows related
to some subscribe. SMEPP Light copes with this problem
via regular refreshing of subscriptions, as also does directed
diffusion [6]. There are also some situations that can not
be coped with, for example when the sudden removal of a
peer results in a group partition. In this particular case, the
group splits up, but the peers that remain connected con-
tinue working without the sensors in the partitioned branch.

6. ENERGY EFFICIENCY
As anticipated in Section 5 the Energy Efficiency component
of SMEPP Light saves sensors’ energy by keeping the radio
off whenever possible, i.e. when the sensors do not expect to
receive or send data. This component manages the radio by
means of user duty cycles that are implicitly determined by
the subscribe messages (recall that these messages contain
the subscribe rate and an expiration time), and a manage-
ment duty cycle that enables the sensors in the group to
exchange control messages (in particular join and subscribe
messages). Each of these duty cycles defines periodic inter-
vals when the radio should be turned on by all the sensors.

As a side-effect of this approach, when a sensor executes the
getGroups primitive it needs to keep sending request mes-
sages until one of these messages is sent during a period of
activity of a group. However during the getGroups protocol
the sensor receives enough information to synchronize with
the other sensors of the group, so the next communications
happen only according to the management duty cycle of the
group. To make this approach effective, the sensors need
to be (weakly) synchronized, for this reason synchronization
information is periodically exchanged among the peers in
the group.

Figure 3 shows an example of the status of the radio of a
node that belongs to a group in which are active two sub-
scribes (subs1 and subs2). The three lines on the top show



the activity windows of the radio for the user duty cycles
corresponding to the two subscribes and for the manage-
ment duty cycle. The last line shows the overall radio activ-
ity. The Energy Efficiency component calculates the union
of all the duty cycles, and decides when the radio should be
turned off and on, according to two parameters that provide
some tolerance to the system. One parameter specifies the
minimum distance (in milliseconds) between the end of a
window of radio activity and the start of the next one: if
two windows are too close the radio is kept on until the sec-
ond window ends. The other parameter expresses the time
used to anticipate and delay the radio commutations from
off to on and from on to off, respectively.

The performance of the energy efficiency mechanism was
evaluated by measuring the periods of radio activity of a
sensor. In the experiments we used 4 MicaZ motes [11]
(s1,s2,s3,s4) connected in a line, i.e. s1 is connected to s2,
s2 to s3 and s3 to s4. We measured the radio activity on
node s2, s1 is the node that produced the subscribes and s4
produced events. We repeated four sets of experiments with
a number of subscribes ranging from 0 to 4. The rate of
each subscribe was set randomly in each experiment. Each
experiment was repeated 10 times for 180 seconds, and in
each experiment was measured the average period of time
in which the radio of sensor s2 was in the state of off, ready,
receive and send. From these data we computed the average
energy consumption of sensor s2 (expressed in mA-hr) in all
the set of experiments, as shown in Figure 4. For a compar-
ison the figure reports the energy consumption estimated
with the TOSSIM simulator and the energy consumption in
the case where the energy efficiency is disabled. From the
figure it is seen that the energy efficiency strategy enables
significant energy savings, and that the energy consumed
grows sublinearly with the number of subscribes.

Figure 3: Duty cycles and subscriptions

7. CONCLUDING REMARKS
We presented the main features of SMEPP Light, a middle-
ware for the organization, management and query of WSNs.
In particular we described the main requirements that are
at the base of the SMEPP Light design, namely the sen-
sors organization in terms of groups and the security model

Figure 4: Energy consumption (in mA-hr)

also based on groups, the query injection and data collec-
tion based on a subscribe/event model, and the energy ef-
ficiency strategy based on this model. We performed some
preliminary measurement on the performance of the energy
efficiency strategy that shows that SMEPP Light can signif-
icantly contribute to energy savings. Future work includes
the extension of SMEPP Light to a service oriented interac-
tion model, and mechanisms for the dynamic refresh of the
security keys.

8. REFERENCES
[1] P. Baronti et. Al. ”Wireless Sensor Networks: a Survey

on the State of the Art and the 802.15.4 and ZigBee
Standards”, Computer Communications, 30 (7), May
2007, pp. 1655-1695.

[2] EU FP6 IP project ”PERSONA”,
http://www.aal-persona.org

[3] S. K. Das and D. J. Cook ,”Designing and Modeling
Smart Environments”, WoWMoM’06

[4] EU FP6 ”SMEPP” project, http://www.smepp.org/

[5] M. Albano et. Al., ”Towards Secure Middleware for
Embedded Peer-to-Peer Systems: Objectives and
Requirements”, RSPSI 07, Innsbruck (Austria),2007

[6] Intanagonwiwat et. Al. ”Directed Diffusion: A Scalable
and Robust Communication Paradigm for Sensor
Networks”, MobiCom 2000, Boston, pp. 56–67

[7] C. Giani et. Al. ”Data collection in Sensor Networks:
the TinyLime Middleware”, J. of Pervasive and Mobile
Computing, 4(1), pp. 449–469

[8] ZigBee Specifications 2006, http://www.ZigBee.org

[9] M. Dı́az et. Al. ”A Coordination Middleware for
Wireless Sensor Networks”, IEEE SENET 05, Montreal,
Aug 05, pp. 377–382.

[10] E. Soutoet. et Al. ”A Message-Oriented Middleware
for Sensor Networks”, MPAC 04, Toronto, Oct. 04, pp.
127–134,

[11] Crossbow Technology - www.xbow.com.


