
A Formal Checklist for Self-Optimizing
Strategy-Driven Priority Classification System

Patrizio Dazzi1,2, Antonio Panciatici1,3, and
Marco Pasquali1,2

1 Institute of Information Science and Technologies (ISTI) – CNR, Pisa, Italy
2 IMT Lucca Institute for Advanced Studies, Lucca, Italy

3 Engineering PhD School “Leonardo da Vinci”, Pisa, Italy

Abstract. In this paper we identify the fundamental elements needed
to make self-optimizing a strategy-driven classification system. The pa-
per presents, using a formal notation, a checklist allowing classification-
strategy designers to make autonomous their strategies. The proposed
model is evaluated applying it to a real scenario in which a dynamic
stream of elements is classified according to QoS constraints. The tests
performed point out that the proposed approach can be fruitfully ex-
ploited.

1 Introduction

The Autonomic Computing is an initiative started by IBM in 2001 (aka ACI
[19]). Its ultimate aim is to create self-managing computer systems to overcome
their rapidly growing complexity and to enable their further growth. It takes
inspiration from the autonomic nervous system of the human body. The nervous
system controls important biological functions (e.g. respiration, heart beat, and
blood pressure) without any conscious intervention.

The ACI focuses on the definition of foundations for autonomic systems and,
in particular, on the definition of elements that are fundamental to make com-
puting system autonomous. In a self-managing Autonomic System, the human
operator acquires a new role: She does not control the system directly, instead
she defines general policies and rules that are used as an input for the self-
management process.

The Autonomic Computing paradigm is being considered for Grid Comput-
ing [15, 14] to address some issues that are typical of Computational Grids. For
instance the management of a huge number of resources [29]. Moreover, an im-
portant issue of Grid Computing concerns its dynamism [4]. In general, the
dynamism is considered from the resources point of view and many solutions
have been provided [26, 10, 5]. In the present contribution, dynamism is studied
from the point of view of Grid jobs: the computational requests of Grid users.
Typically, a Grid job is an item consisting of a program code to be executed
on a specific computer architecture coupled with the set of input data. A Grid
job is characterized by computational requirements that need to be satisfied in



order to execute it w.r.t. its QoS constraints. Generally, such requirements are
specified in a XML file. This file is used by a Grid scheduler to decide where (on
which computational resource) and when (in which order) each Grid job has to
be computed.

There are several different design approach that can be exploited to imple-
ment a Grid scheduler [23, 25, 8]. A promising approach consists in multi-level
schedulers (e.g. [18]). Their architecture consists of: a low-level scheduler, that
deal with computational resources, and a meta-scheduler, that analyzes the Grid
jobs hw/sw requirements and send them to the appropriate low-level scheduler.
An interesting feature of the meta-scheduler is the classifier, that labels each
job with a priority that define an order of execution among jobs. The low-level
scheduler uses such a priority to order the jobs inside its local queue. In this way
the first job to be scheduled is the one with the highest priority (w.r.t. the total
order estabilished by the meta-scheduler).

During the last years the models and technologies derived from Grid Com-
puting have been exploited to deploy Utility Computing [21] services. Utility
Computing is a service provisioning model in which a service provider makes
computing resources (and infrastructure) management available to the customer
as needed, and charges them for specific usage rather than a flat rate. Like
other types of on-demand computing, the Utility model seeks to maximize the
efficient use of resources and/or minimize associated costs. At the main time,
an important commitment for a utility-system service provider is to satisfy its
user community needs. The provided service in our case is the execution of Grid
jobs, hence correct job scheduling decisions must be taken in order to satisfy the
maximum number of users. As more satisfied users trust the system, the more
trustworthy the system becomes, and more users are attracted by it.

This work describes, using a formal notation, which are the fundamental el-
ements needed to make autonomous a strategy-based [16] job classification sys-
tem. The aim is to provide to the system mechanisms to recognize mismatches
between actual and expected classifier behavior (with respect to a target behav-
ior), and to provide to it the capability to adapt itself.

Our approach is not intended to be too abstract nor too formal. We describe
with a high-level notation the elements that a strategy designer needs to care
about designing an autonomous strategy. The challenge is to provide technique
that enables software systems to evolve in order to remain useful [20], but to do
so in a way that does not incur downtime as traditional maintenance processes
do [28].

The paper starts with the formalization of strategy-driven classifier systems
(Section 2). In Section 3, we present a case study in which we transform a
classification strategy in an autonomic one. Such process is led by the proposed
formalization. In Section 4 we present the experiments conducted and the related
results. In Section 5 related works are described. Finally, in Section 6 we draw
our conclusions and the path of future work.



2 Strategy-driven classification systems

A priority classification system S can be formally described with the following
higher-order function:

fS : I × Fstrategy −→ P. (1)

Where I is the set of all possible item that need to be classified, Fstrategy is
the set of all the possible strategy-functions and P ⊂ N is a finite set of priority
values. A strategy-function fstrategy ∈ Fstrategy is defined as:

fstrategy : I → P (2)

The system S applies fstrategy to each input i ∈ I in order to obtain a priority
value p ∈ P .

A priority classifier system can be defined self-optimizing when it is able
to adapt itself in order to maintain good classification performance whatever an
input comes into the system. From our perspective, a priority classifier offers a
good performance when it is able to satisfy two requirements:

– the priority value assigned to each input item is well-proportioned to the
item relevance (e.g. very important item must have a very high priority)

– the priorities assigned by the system must be coherent with a specified target
policy

There are two different approaches to design a classifier able to achieve good
performance, hence address the reported requirements. The first one consists
in using a fstrategy designed with a deep knowledge about the items that the
classifier has to classify: a strategy-function strictly tailored to the item that will
be classified, able to manage every possible input stream. The other approach is
to design a self-optimizing classifier able to change the strategy-function taking
care of the priorities assigned to a finite portion of the past classified items. This
partial information is used by the self-optimizing classifier to analyze the trend
of the priorities distribution assigned. Such information drives the tuning of the
strategy-function behavior. This last design approach is the one we examine in
this paper.

To model the self-optimization nature of the classifier we need to enrich the
definition previously introduced for the strategy-function based classification
system. Namely, we need to define how the strategy function can be modified
to enhance its performance. This requires a reconfiguration mechanism able to
modify the strategy-function and an evaluation mechanism able to evaluate the
historical data and to drive, through the reconfiguration mechanism, the changes
in the strategy-function.

Formally, the reconfiguration and evaluation mechanisms RM can be mod-
eled with the two following functions:



Feval : H × C −→ C (3)
Freconf : C −→ Fstrategy (4)

Where H is the set of all possible historical data. C is the configuration of
the RM , that is the set of all possible function tuning parameters. Fstrategy is
the set of all possible strategy functions.

Every time that the system completes the computation of a new item, Feval

evaluates the priority distribution dcurrent obtained analyzing the current histor-
ical data hcurrent ∈ H. If the result of this evaluation highlight an incoherence
between dcurrent distribution and the target policy dtarget, Feval generates a
new configuration c ∈ C. If Feval does not recognize any incongruence, it simply
returns as new configuration the last one used by the system.

Once a new configuration is available the Freconf uses this configuration in
order to select a novel and more appropriate fstrategy in the Fstrategy set. If the
new configuration coincides with the last one adopted by the system, the RM
simply return the last used fstrategy.

From an operative point of view, the behavior of the RM is defined by the
composition of the Feval and Freconf functions (Freconf ◦ Feval).

2.1 Realistic self-optimizing priority classification system

In the previous section we described an ideal self-optimizing classification system,
that can access to an unlimited set of historical data, and which is able to
generate a new strategy function every time that Feval recognized any minimum
difference between the dcurrent and dtarget priority distributions.

More realistic systems are characterized by reconfiguration mechanism that
can only access to a finite set of historical data and which are not able to generate
a new strategy function every time that they recognized a minimum difference.
These limitations are mainly due to performance and data-knowledge problems.
In a real scenario classification systems trigger the choice of a new strategy func-
tion based on checking the belongings of the current distribution to a permissible
working region of the target distribution.

In order to formalize these systems we need to introduce two concepts: the
vector space D and the polytope P . The vector space D with dimension P , where
P is the number of possible priority values, is a convenient way to represent
priority distribution of historical data. In particular each priority distribution,
obtained from h ∈ H, is represented with a vector d = (d1, ..dk, .., dP ).

In this context each component dk of d is a value grater than or equal to zero
and less than or equal to one (0 ≤ dk ≤ 1 ∀k=1,..,P ). It represents the percentage
of jobs belongings to historical data h to which the system has assigned the
priority k ∈ P . Since each component dk is a percentage grater than zero and
less than one, the sum of all dk must be equal to one (

∑P
k=1 dk = 1). We enforce

this last constraints by using the Norm (‖.‖1).
The polytope is defined as:



P = {d : ‖d− dtarget‖2 ≤ δ} (5)

It characterizes the permissible working region as the set of all priority dis-
tributions that are “far” from the target distribution of a quantity less than
or equal to a certain radius δ. In this context the measure of the distance is
performed using the Euclidean Norm (‖.‖2).

In other words, if dcurrent belongs to the polytope P it means that the dis-
tance between dcurrent and dtarget is less than the fixed radius δ, hence fstrategy

does not need to be reconfigured, otherwise a new reconfiguration is performed.
From a formal point of view, in order to consider the polytope, the Feval

function must be changed. Indeed, it has to generate a new fstrategy configuration
only if dcurrent does not belong to the polytope (P ). Formally:

Feval : H × C × P −→ C (6)

3 Case study

In this section we describe how to apply the proposed formalization model to
a real scenario concerning the scheduling of jobs on computing farms according
to jobs QoS constraints. We show that the use of our approach would result in
simplifying the turning of a non-autonomic strategy driven classification system
in an autonomic one.

In general, the objective of a job scheduler is twofold: to optimize both the
system throughput and the applications performance. This means that the sched-
uler tries to maximize the overall resource utilization guaranteeing the required
level of QoS to applications.

To this end we propose an autonomic classification strategy that can be used
in the online paradigm [24]. The job classifiers receive jobs from users, classify
the jobs and eventually send them to a scheduling system. In our system, as
depicted in Figure 1, the classifier is the front-end and the scheduler is the back-
end: the first one is interfaced with users whereas the latter deals with physical
resources.

The goal of our job classifier is to assign a priority value to each submit-
ted job. The priority value defines a job total-order of execution. It is computed
when a job is submitted to the front-end of the system. The job priority is a
function of only job’s parameters and it does not consider any system infor-
mation, such as: the number and the type of machines, the software licenses
availability, and the machines workload. The goal of our system is to exploit
job attributes/characteristics and metrics to enable a job classification in an
independent way with respect to the features of the computing platform used.

To validate our approach we consider a simple job classifier that use only a
single job parameter.



Fig. 1. System architecture

To this end, we introduce a strategy which is used to implement a job clas-
sifier, which exploits a job parameter, according to the description given in sec-
tion 3.1. We also describe an autonomic version of the strategy showing how
to turn the non-autonomic version into the autonomic one by using our formal
approach.

3.1 Classifier Strategy

The aim of the classifier strategy we conceived is to classify input jobs according
to a policy given by the system administrators. In our study, the policy is a
target job priority distribution, and the aim of the classifier strategy is to carry
out a job classification with respect to this distribution.

Each input job is characterized by a parameter X that can be an attribute
of the job or a result of a function of different job’s attributes. To compute the
priority value of a job i, the classifier must know the minimum and maximum
value that X can assume. In this way it is possible to set static thresholds (T1,
T2 depicted in Figure 2) that identify subintervals in the [minimum, maximum]
interval. These thresholds are specified according to the administrator policy.

The administrator of the computing farm can specify the target job prior-
ity distribution. The policy can be used to drive the strategy behavior [3]. The
administrator can specify any priority distribution, according to specific require-
ments or/and the capacity of the computing farm administrated. In this partic-
ular case study there are three priority classes: Low, Medium and High. Figure
2 shows an example where the distribution is 20% of jobs with Low priority, 60%
of jobs with Medium priority and 20% of job with High priority.

It is important to point out that a strategy which uses static thresholds can
be effectiveness only if the X parameter is uniformly distributed respect to its
domain of definition.



1 2

Minimum

20% 60% 20%

Maximum

T T

Fig. 2. Graphical representation of the thresholds given by the administrator policy.

Supposing for instance that the system has to classify a stream of jobs in
two priority classes, High and Normal. In particular it has to classify as high
priority jobs the q% of the stream. Supposing also that the only threshold T is
fixed to a given fraction q% of the X parameter domain ([minimum,maximum]).
Jobs that have the X parameter less or equal to T are classified as High priority
jobs. Jobs that have the X parameter grater than T are classified as Normal
priority jobs.

If the distribution of X is uniform respect to its domain ([minimum, max-
imum]), only the q% of its possible values will be less or equal to T . Hence,
only the q% of the jobs stream will be classified as High priority jobs, while
the remaining jobs of the stream will be classified as Normal priority jobs. The
target job classification policy is respected.

If the distribution of X is not uniform respect to its domain, the percentage
of possible values of X that is less or equal to T will be different respect to
q%. Hence the percentage of jobs classified as high priority jobs will be different
respect to q%. The target job classification policy is not respected.

It is quite clear that this approach is still valid for an arbitrary number of
thresholds.

3.2 Autonomic Classifier Strategy

In a real computing farm scenario it is not possible to assume that the stream
of jobs has the X parameter uniformly distributed with respect to its range of
values, e.g. if X represents the total amount of memory requested by a job, the
total range value of X could be bound in [0, 4GByte] but a realistic distribution
of requested memory is faraway from the uniform one. A such non-uniform dis-
tribution can cause an unprofitable priority values assignment. In order to avoid
this situation, the system should be able to change the way in which it compute
priorities, and to maintain a proper priority distribution. This behavior can be
obtained by turning the non-autonomic classification strategy in an autonomic
one. That consists in autonomic adjustment of the threshold (T1, T2) positions.

In order to better understand this concept, we suppose to have the scenario
described in the previous section, the one with just one threshold T and with
the X parameter not uniformly distributed. As already shown, due to the non
uniform distribution of X, the observed percentage q′ of jobs classified as High
priority jobs is different respect to q that is the desidered percentage. For in-



stance, without loss of generality, let’s suppose that q′ is grater than q. This
means that there are too much jobs classified as High priority jobs, but also
that the percentage q′, of values of X that are less or equal to T , is grater than
q.

In this case the autonomic behaviour consists in decreasing progressively the
value of the T threshold. This strategy has the effect of reducing the percentage
q′ of the values of X that are less or equal to T , hence the number of jobs
classified as High priority jobs. This strategy is maintained until the observed
percentage q′ is not comparable with q, the desidered one. A such approach
permits to respect quite well the target job classification policy also in case of
high variability of the X parameter.

All the above observations can be done also for the specular scenario in which
q′ in less then q. In this case the threshold T is increased.

It is quite clear that this approach is still valid for an arbitrary number of
thresholds.

From the formal point of view the turning process consists in providing a
mapping between the formalization we present in Section 2 and the real scenario
introduced in this case study.

The equations 7 and 8 define such a mapping.

Feval : Hjob−window × CT1,T2 × Pdtarget,δtolerance
−→ CT1

′,T2
′ (7)

Freconf : CT1
′,T2

′ −→ (Job → (Low, Medium, High)) (8)

The historical-data set consists in a job-window with a fixed size k that stores
the priorities assigned to the last k jobs processed.

Each job is classified as Low, Medium or High priority job depending by its
X parameter and the position of thresholds T1 and T2. The strategy configuration
CT1,T2 is defined through the two values T1 and T2. The autonomic behavior of
the strategy is obtained changing the thresholds values in a convenient way.

The polytope is defined by using the target distribution dtarget and the radius
δtolerance.

Freconf takes as input the new configuration CT1
′,T2

′ generated by Feval and
returns an fstrategy which assigns as priority one of the three possible values to
each job.

1 2

Minimum Maximum

T T

Fig. 3. Graphical representation of the sliding thresholds



4 Experiments

To evaluate the Autonomic Classifier Strategy (ACS) solution we conducted
simulations applying the strategy to a stream of jobs characterized by a high
variability of the X parameter. To compare ACS with Classifier (CS) we bind the
X value in a predefined interval ([0, 5000]), but we assume that the distribution
of X in this range can be not uniform.

To conduct evaluation we developed an ad-hoc event-driven simulator. For
each simulation, a stream of 5000 jobs was randomly generated. Their X pa-
rameter was produced according to different distributions and described in each
test. A simulation step includes: (1) selection and classification of new jobs, (2)
check for correct behavior of the system, and eventually, perform the system
adaptation (changing the thresholds values of the ACS strategy).

For each test, we fix two ACS’s parameters: δtolerance, which represents the
accepted error in the resulting priority distribution (e.g. the distance between
ACS results and the policy set by the administrators), and job-window, which
stores the value of the last assigned priorities for a fixed number of jobs. δtolerance

is set to 2% before which the thresholds are not changed, and job-window is set to
250, meaning that the instantaneous priority distribution is computed analyzing
only the last 250 assigned priorities.

The aim of the experimentation phase was to carry out a priority distri-
bution among jobs, according to a particular administrative policy. The policy
constitutes the input of the proposed strategy: system administrators can define
a relation among the number and the kind of jobs in the system.

In our tests we have three administrator policies as described in Table 1.

Low Medium High

20% 60% 20%

70% 20% 10%

34% 33% 33%

Table 1. Administrator priority distribution policies.

In our experiments we compare the ACS with the CS strategy and with the
priority distribution given by the system administrators, which we refer as the
optimal one in our case study (Optimal). For each test we measure the percent-
age of jobs that belong to each priority class for the three resulting classifications
(Optimal, ACS, CS). Furthermore, we show how the thresholds change for the
autonomic Classifier strategy.

In the first test we consider a stream of jobs that has the X parameter uni-
formly distributed in the predefined interval. Figure 4 shows that CS and ACS
behave in the same way and they are about optimal. Figures 4.a, 4.b, 4.c refer
to (20-60-20), (70-20-10), (34-33-33) distributions in Table 1 respectively. We



omitted the charts related to the thresholds variation because, in this case, their
initial setting (i.e. T1 = 20% and T2 = 80% for the first distribution in Table 1)
is never changed.

Low Medium High

Pe
rc

en
ta

ge

 0

 10

 20

 30

 40

 50

 60
Optimal

ACS
CS

(a) Distribution 20-60-20.

Low Medium High

Pe
rc

en
ta

ge

 0

 10

 20

 30

 40

 50

 60

 70

 80
Optimal

ACS
CS

(b) Distribution 70-20-10.

Low Medium High

Pe
rc

en
ta

ge

 0

 5

 10

 15

 20

 25

 30

 35

 40
Optimal

ACS
CS

(c) Distribution 34-33-33.

Fig. 4. CS and ACS evaluation in the case of an uniform distribution of the X param-
eter

Figure 5 shows a test section in which the X parameter for each job is gener-
ated according to the Table 2. Each entry of that Table describes the number of
generated jobs (first column), the minimum and the maximum value (second and
third column respectively) that X can assume for those jobs, w.r.t. an uniform
distribution of X between these limits.

#Jobs Minimum Maximum

1250 0 1000

1250 2500 3000

1250 0 500

1250 4500 5000

Table 2. Description of the job-stream with respect to the X parameter distribution.



Low Medium High

Pe
rc

en
ta

ge

 0

 10

 20

 30

 40

 50

 60
Optimal

ACS
CS

(a) Distribution 20-60-20.

Low Medium High

Pe
rc

en
ta

ge

 0

 10

 20

 30

 40

 50

 60

 70

 80
Optimal

ACS
CS

(b) Distribution 70-20-10.

Low Medium High

Pe
rc

en
ta

ge

 0

 10

 20

 30

 40

 50
Optimal

ACS
CS

(c) Distribution 34-33-33.

Fig. 5. CS and ACS evaluation in the case of an non-uniform distribution of the X
parameter

As we can see in Figure 5, the priority distributions carried out by the ACS
follow the trend of the Optimal ones. However, the CS distributions are distant
from the optimum. This is because the CS classification depends on the input
stream. As we can see in Figure 5.a and in Figure 5.c the distribution carried
out by the CS is the same. On the other hand the ACS classifies jobs in a better
way than the CS in respect to the given priority distribution. Moreover, for the
(70− 20− 10) distribution, CS classifies jobs as low priority class for 75% of the
stream. This is because the jobs that in the other cases belong to the medium
priority class here they belong to the left hand of the interval and they are classi-
fied as not important. Our ACS adapt its behavior to respect the administrator
policy also in this case.

Finally, in Figure 6, we show how the thresholds of the ACS change at run-
time (w.r.t. the three priority distribution defined in Table 1). On the X axis
there are the elements of the input stream, on the Y axis there are the thresh-
olds values. The thresholds define three interval for the three priority classes,
the low priority belongs to the inteval [0, T1], the medium belongs to [T1, T2]
and the high belongs to [T2, 1]. Obviously, The charts concern to a percentual
rappresentation of the X parameter distribution interval. As we can see all the
conducted experiments are characterized by a high variability of the thresholds
values, only in the case shown in Figure 6.b the T1 threshold is stable almost all
the time.



Stream of Jobs
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

T2
T1

(a) Distribution 20-60-20.

Stream of Jobs
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

T2
T1

(b) Distribution 70-20-10.

Stream of Jobs
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

T2
T1

(c) Distribution 34-33-33.

Fig. 6. Variations of the thresholds in the Autonomic Classifier strategy.

5 Related work

Adaptive performance tuning has only recently become conceivable, so only few
papers address it directly.

Diao et al. [11] analyze how to choose certain parameters of the Apache
web server in order to keep CPU and memory usage near a pre-set parameter.
The authors make the assumption that there is an optimal setting for those
parameters, and make no claim that the parameters impact the performance of
the web server in a known way.

Raphael M. Bahati et al. define a policy as a notation to express required or
desired behavior of systems and applications. In [3], they describe how policies
are exploited and how they are realized as actions driving autonomic manage-
ment in the context of managing the performance of an Apache web server. Their
aim is to address the problem to express policies appropriate for an autonomic
computing system and then map them to executable elements of the autonomic
system.

In [28], Warren e al. describe mechanisms used to realize dynamic reconfigu-
ration that must respect a number of fundamental issues when making run-time
changes to a system. They suggest that such mechanisms have to behave ac-
cording to: (1) the dynamic reconfiguration capability should not compromise
applications integrity/correctness, (2) the run-time overhead introduced by a
reconfiguration management facility should be acceptable, (3) the dynamic re-
configuration should be transparent to application developers. Their work are



particularly concerned with preserving an applications integrity during periods
of runtime change. They have extended OpenRec (a framework for managing
reconfiguration of component-based applications [17]) with functionality which
automatically verifies the structure of an application during periods of dynamic
reconfiguration.

Other approaches, like ours, optimize performance maintaining a fixed level
of service. For example Abdelzaher et al. [1] outline a system that maintains
multiple complete content trees, each with a different quality setting. As work-
load increases, quality can be decreased in order to satisfy the maximum num-
ber of users. Additionally, Cohen et al. [9] use Tree-Augmented Naive Bayesian
Networks to correlate system statistics to a high-level performance metric (com-
pliance or non-compliance with required service levels). Unlike our work, this
work relies on a specialized instrumentation layer.

Other work within the field of autonomic computing focuses on failure di-
agnosis [30, 7], file system organization [22], adaptive branch prediction [13],
autonomous network creation [6], installation and configuration analysis [2] and
utility function optimization [27].

6 Conclusions and Future Work

The complex nature of grid systems and distributed applications implies the need
to automate their management in order to meet the operational and behavioral
requirements. This paper highlights and outlines the fundamental elements that
are needed to make autonomous a strategy-based classification system. The de-
scription is given using a formal notation.

We show that this formalization ease the design of autonomic classifiers.
To show it, we present an interesting case study in which we describe how to
exploit the formalization introduced. It is used to drive, in a real scenario, the
process of making autonomous a strategy-based classifier used to annotate with
a priority value the elements belonging to a stream of Grid jobs. We compare
the performance results of the autonomic and non-autonomic systems. We point
out that the system that exploits an autonomic behavior provides a priority
distribution more adherent to the one required by the classifier administrator.

For the near future research we plan to improve the formalization outlined in
this paper, both addressing more complex class of applications and describing the
operational semantics of the elements required to make autonomous a classifier
system. For the next future we plan to conceive a autonomic programming model
based on an extended version of the autonomic formalization presented here.

References

1. Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti. Performance guarantees for
Web server end-systems: A control-theoretical approach. IEEE Transactions on
Parallel and Distributed Systems, 2002.



2. Gagan Aggarwal. On identifying stable ways to configure systems. In ICAC
’04: Proceedings of the First International Conference on Autonomic Computing
(ICAC’04), pages 148–153, Washington, DC, USA, 2004. IEEE Computer Society.

3. Raphael M. Bahati, Michael A. Bauer, and Elvis M. Vieira. Mapping policies into
autonomic management actions. icas, 0:38, 2006.

4. Mark Baker, Rajkumar Buyya, and Domenico Laforenza. Grids and Grid Technolo-
gies for Wide-Area Distributed Computing. Software – Practice and Experience,
32(15):1437–1466, 2002.

5. Francine D. Berman, Rich Wolski, Silvia Figueira, Jennifer Schopf, and Gary Shao.
Application-level scheduling on distributed heterogeneous networks. pages ??–??,
1996.

6. Yu-Han Chang, Tracey Ho, and Leslie Pack Kaelbling. Mobilized ad-hoc networks:
A reinforcement learning approach. icac, 00:240–247, 2004.

7. Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric Brewer.
Pinpoint: Problem determination in large, dynamic internet services. In DSN
’02: Proceedings of the 2002 International Conference on Dependable Systems and
Networks, pages 595–604, Washington, DC, USA, 2002. IEEE Computer Society.

8. D. Clark. Scheduling of parallel jobs on dynamic heterogenous networks, 1995.
9. Ira Cohen, Jeffrey S. Chase, Moisés Goldszmidt, Terence Kelly, and Julie Symons.

Correlating instrumentation data to system states: A building block for automated
diagnosis and control. In OSDI, pages 231–244, 2004.

10. Karl Czajkowski, Ian Foster, Nick Karonis, Carl Kesselman, Stuart Martin, Warren
Smith, and Steven Tuecke. A resource management architecture for metacomput-
ing systems. Lecture Notes in Computer Science, 1459:62–??, 1998.

11. Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus. Managing web server per-
formance with autotune agents. IBM Syst. J., 42(1):136–149, 2003.

12. Joseph Hellerstein Fan. Characterizing normal operation of a web server: Appli-
cation to workload forecasting and problem detection.

13. Alan Fern, Robert Givan, Babak Falsafi, and T. N. Vijaykumar. Dynamic feature
selection for hardware prediction. J. Syst. Archit., 52(4):213–234, 2006.

14. I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastruc-
ture. MorganKaufmann, 1999.

15. Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the Grid: Enabling
scalable virtual organizations. Lecture Notes in Computer Science, 2150:1–??, 2001.

16. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley.

17. J. Hillman and I. Warren. An open framework for dynamic reconfiguration. ICSE
’04: Proceedings of the 26th International Conference on Software Engineering,
page 594603, 2004.

18. E. Huedo, R.S. Montero, and I.M. Llorente. A framework for adaptive execution
on grids. Journal of Software - Practice and Experience, 2004.

19. IBM. Autonomic Computing Initiative. www.ibm.com/autonomic.
20. M. M. Lehman and L. A. Belady, editors. Program evolution: processes of software

change. Academic Press Professional, Inc., San Diego, CA, USA, 1985.
21. Ignacio M. Llorente, Ruben S. Montero, Eduardo Huedo, and Katia Leal. A grid

infrastructure for utility computing. In 15th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’06),
pages 163–168, 2006.

22. Michael Mesnier, Eno Thereska, Gregory R. Ganger, and Daniel Ellard. File clas-
sification in self-* storage systems. In ICAC ’04: Proceedings of the First Interna-



tional Conference on Autonomic Computing (ICAC’04), pages 44–51, Washington,
DC, USA, 2004. IEEE Computer Society.

23. Rajesh Raman, Miron Livny, and Marvin H. Solomon. Matchmaking: Distributed
resource management for high throughput computing. In HPDC, pages 140–, 1998.

24. J. Sgall. Online Algorithms, chapter On-line scheduling, pages 196–231. Book
Series Lecture Notes in Computer Science. Springer Berlin / Heidelberg, Monday,
April 10, 2006.

25. S. VADHIYAR and J. DONGARRA. A metascheduler for the grid, 2002.
26. J. L. Vázquez-Poletti, E. Huedo, Ruben S. Montero, and Ignacio M. Llorente.

A Comparative Analysis between EGEE and GridWay Workload Management
Systems. In Proc. International Conference on Grid computing, high-performAnce
and Distributed Applications on the Move Federated Conferences (GADA) 2006,
volume 4276 of Lecture Notes in Computer Science, pages 1143–1151, 2006.

27. W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das. Utility functions in autonomic
systems. In In Proceedings of the 1st International Conference on Autonomic
Computing, May 2004.

28. Ian Warren, Jing Sun, Sanjev Krishnamohan, and Thiranjith Weerasinghe. An
automated formal approach to managing dynamic reconfiguration. In ASE ’06:
Proceedings of the 21st IEEE International Conference on Automated Software
Engineering (ASE’06), pages 37–46, Washington, DC, USA, 2006. IEEE Computer
Society.

29. Jonathan Wildstrom, Peter Stone, Emmett Witchel, Raymond J. Mooney, and
Michael Dahlin. Towards self-configuring hardware for distributed computer sys-
tems. In ICAC, pages 241–249, 2005.

30. Alice X. Zheng, Jim Lloyd, and Eric Brewer. Failure diagnosis using decision trees.
In ICAC ’04: Proceedings of the First International Conference on Autonomic
Computing (ICAC’04), pages 36–43, Washington, DC, USA, 2004. IEEE Computer
Society.


