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Abstract. We present a system for image classification based on an adaptive
committee of five classifiers, each specialized on classifying images based on a
single MPEG-7 feature. We test four different ways to set up such a committee,
and obtain important accuracy improvements with respect toa baseline in which
a single classifier, working an all five features at the same time, is employed.

1 Introduction

An automated classification system is normally specified by specifying two essential
components. The first is a scheme for internally representing the data items that are the
objects of classification; this representation scheme, that is usually vectorial in nature,
must be such that a suitable notion of similarity (or closeness) between the representa-
tions of two data items can be defined. Here, “suitable” meansthat similar representa-
tions must be attributed to data items that are perceived to be similar. If so, a classifier
may identify, within the space of all the representations ofthe data items, a limited re-
gion of space where the objects belonging to a given class lie; here, the assumption of
course is that data items that belong to the same class are “similar”. The second com-
ponent is a learning device that takes as input the representations of training data items
and generates a classifier from them.

In this work we addresssingle-label image classification, i.e., the problem of setting
up an automated system that classifies an image into exactly one from a predefined set
of classes. Image classification has a long history (see e.g., [1]), most of which has
produced systems that conform to the pattern described at the beginning of this section.

In this paper we take a detour from this tradition, and describe an image classifi-
cation system that makes use not of a single representation,but of five different ones
for the same data item; these representations are based on five different descriptors, or
“features”, from the MPEG-7 standard, each analyzing an image under a different point
of view. As a learning device we use a “committee” of five feature-specific classifiers,
i.e., an appropriately combined set of classifiers each based on the representation of the
image specific to a single MPEG-7 feature. The committees that we use are adaptive,
in the sense that, for each image to be classified, they dynamically decide which among
the five classifiers should be entrusted with the classification decision, or decide whose
decisions should be trusted more. We study experimentally four different techniques of



combining the decisions of the five individual classifiers, using a dataset consisting of
photographs of stone slabs classified into different types of stone.

As a technique for generating the individual members of the classifier committee
we usedistance-weightedk nearest neighbours, a well-known example-based learn-
ing technique. Technically, this method does not require a vectorial representation of
data items to be defined, since it simply requires that, giventwo data items, a distance
between them is defined. In the discussion that follows this will allow us to abstract
away from the details of the representation specified by the MPEG-7 standard, and sim-
ply specify our methods in terms of distance functions between data items. This is not
problematic, since distance functions both for the individual MPEG-7 features and for
the image as a whole have already been studied and defined in the literature.

Since distance computation is so fundamental to our methods, we have also studied
how to compute distances between data items efficiently, andhave implemented an
efficient system that makes use of metric data structures explicitly devised for “nearest
neighbour search”.

The rest of the paper is organized as follows. Section 2 describes in detail the learn-
ing algorithm, while Section 3 discusses how we have implemented efficiently these
learning algorithms by recurring to metric data structures. In Section 4 we move to
describing our experiments, and to discuss conclusions that can be drawn from them.

2 Automatic Image Classification by means of Adaptive,
Feature-specific Committees

Given a set of documentsD and a predefined set ofclasses(also known aslabels, or
categories) C = {c1, . . . , cm}, single-label(aka1-of-m, or multiclass) document clas-
sification(SLC) is the task of automatically building a single-label document classifier,
i.e., a functionΦ̂ that predicts, for anydi ∈ D, the correct classcj ∈ C to whichdi

belongs. More formally, the task is that of approximating, or estimating, an unknown
target functionΦ : D → C, that describes how documents ought to be classified, by
means of a function̂Φ : D → C, called theclassifier, such thatΦ andΦ̂ “coincide as
much as possible”1.

The solutions we will give to this task will be based on automatically generating
the classifiersΦ̂ by supervised learning. This will require a setΩ of documents as
input which are manually labelled according to the classesC, i.e., such that for each
documentdi ∈ Ω the value of the functionΦ(di) is known. In the experiments we
present in Section 4 the setΩ will be partitioned into two subsetsTr (the training set)
andTe (the test set), with Tr ∪ Te = Ω; Tr will be used in order to generate the
classifiersΦ̂ by means of supervised learning methods, whileTe will be used in order
to test the effectiveness (i.e., accuracy) of the generatedclassifiers.

1 Consistently with most mathematical literature we use the caret symbol (ˆ) to indicate estima-
tion.

114



2.1 Image Classifiers as Committees of Single-feature Classifiers

The image classifier̂Φ : D → C that we will generate will actually consist of aclassi-
fier committee(akaclassifier ensemble), i.e., of a tupleΦ̂ = (Φ̂1, . . . , Φ̂n) of classifiers,
where each classifier̂Φs is specialized in analyzing the image from the point of view
of a single featurefs ∈ F , whereF is a set of image features. For instance, a classi-
fier Φ̂colour will be set up that classifies the image only according to its distribution of
colours, and a further classifier̂Φtexture will be set up that classifies the image accord-
ing to texture considerations. As image features we will usefive visual “descriptors” as
defined in the MPEG-7 standard2, each of them characterizing a particular visual aspect
of the image. These five descriptors areColour Layout(CL – information about the spa-
tial layout of colour images),Colour Structure(CS – information about colour content
and its spatial arrangement),Edge Histogram(EH – information about the spatial distri-
bution of five types of edges),Homogeneous Texture(HT – texture-related properties of
the image), andScalable Colour(SC – a colour histogram in the HSV colour space)3.

The “aggregate” classifier̂Φ takes its classification decision by combining the de-
cisions returned by the feature-specific classifiersΦ̂s by means of anadaptivecombi-
nation rule, i.e., a combination rule that pays particular attention to thosêΦs’s that are
expected to perform more accurately on the particular imagethat needs to be classified.
This is advantageous, since different features could be themost revealing for classify-
ing different types of images; e.g., for correctly recognizing that an image belongs to
classc′ theHomogeneous Texturefeature might be more important thanColour Layout,
while the contrary might happen for classc′′. In the techniques that we have used in this
work, whether and how much a given feature is effective for classifying a given docu-
ment is automatically detected, and automatically broughtto bear in the classification
decision.

For implementing the classifier committee, i.e., for combining appropriately the
outputs of theΦ̂s’s, we will experiment with four different techniques. In Sections 2.1
to 2.1 we will describe these techniques, while in Section 2.2 we will describe how to
generate the individual members of these committees.

Dynamic Classifier Selection.The first technique we test isdynamic classifier selec-
tion (DCS) [2–4]. This technique consists in

1. identifying the set

χw(di) = arg
w

min
dp∈Tr

δ(di, dp) (1)

of the w training examples closest to the test documentdi, whereδ(d′, d′′) is a
(global) measure of distance to be discussed more in detail in Section 3);

2. attributing to each feature-specific classifierΦ̂s a scoreg(Φ̂s, χw(di)) that measures
how well it classifies the examples inχw(di); see below for details;

2 International Organization for Standardization,Information technology - Multimedia content
description interfaces, Standard ISO/IEC 15938, 2002.

3 For definitions of these MPEG-7 visual descriptors see: International Organization for Stan-
dardization,Information technology - Multimedia content description interfaces - Part 3: Vi-
sual, Standard ISO/IEC 15938-3, 2002.
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3. adopting the decision of the classifier with the highest score; i.e.,Φ̂(di) = Φ̂t(di)
whereΦ̂t = arg max

Φ̂s∈Φ̂

g(Φ̂s, χw(di)).

This technique is based on the intuition that similar documents are handled best by
similar techniques, and that we should thus trust the classifier which has proven to
behave best on documents similar to the one we need to classify.

We compute the score from Step (2) as

g(Φ̂s, di) =
∑

dp∈χw(di)

(1 − δ(di, dp)) · [Φ̂
s(dp) = Φ(dp)] (2)

where[α] is an indicator function, i.e.,

[α] =

{

+1 if α = True

−1 if α = False

Equation 2 thus encodes the intuition that the more examplesin χw(di) are correctly
classified byΦ̂s (i.e., are such that̂Φs(dp) = Φ(dp)), and the closer they are todi (i.e,
the lowerδ(di, dp) is), the better̂Φs may be expected to behave in classifyingdi.

Weighted Majority Vote. The second technique we test isweighted majority vote
(WMV), a technique similar in spirit to the “adaptive classifier combination” technique
of [3]. WMV is different from DCS in that, while DCS eventually trusts a single feature-
specific classifier (namely, the one that has proven to behavebest on documents similar
to the test document), thus completely disregarding the decisions of all the other clas-
sifiers, WMV uses a weighted majority vote of the decisions ofall the feature-specific
classifiersΦ̂s ∈ Φ̂, with weights proportional to how well eacĥΦs has proven to be-
have on documents similar to the test document. This technique is thus identical to DCS
except that Step 3 is replaced by the following two steps:

3. for each classcj ∈ C, all evidence in favour of the fact thatcj is the correct class of
di is gathered by summing theg(Φ̂s, χw(di)) scores of the classifiers that believe
this fact to be true; i.e.,

z(di, cj) =
∑

fs∈F : Φ̂s(di)=cj

g(Φ̂s, χw(di)) (3)

4. the class that obtains the maximumz(di, cj) score is chosen, i.e.,

Φ̂(di) = arg max
cj∈C

z(di, cj) (4)

Confidence-rated Dynamic Classifier Selection.The third technique we test isconfi-
dence-rated dynamic classifier selection(CRDCS), a variant of DCS in which theconfi-
dencewith which a given classifier has classified a document is alsotaken into account.
From now on we will indeed assume that, given a test documentdi, a given feature-
specific classifier̂Φs returns both a classcj ∈ C to which it believesdi to belonganda
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numerical valueν(Φ̂s, di) that represents the confidence thatΦ̂s has in its decision (high
values ofν correspond to high confidence). In Section 2.2 we will see this to be true
of the feature-specific classifiers we generate in our experiment. Note also that, with
respect to the “standard” version of DCS described in Section 2.1, this “confidence-
aware” variant is more in line with the developments in computational learning theory
of the last 10 years, since confidence is closely related to the notion of “margin”, which
plays a key role in learning frameworks based on structural risk minimization, such as
kernel machines and boosting [5].

The intuition behind the use of these confidence values is that a classifier that has
made a correct decision with high confidence should be preferred to one which has
made the same correct decision but with a lower degree of confidence; and a classifier
that has taken a wrong decision with high confidence should betrusted even less than a
classifier that has taken the same wrong decision but with a lower confidence.

CRDCS is thus the same as DCS in Section 2.1, except for the computation of
the g(Φ̂s, di) score in Step 2, which now becomes confidence-sensitive. In CRDCS
Equation (2) thus becomes

g(Φ̂s, di) =
∑

dp∈χw(di)

(1 − δ(di, dp)) · [Φ̂
s(dp) = Φ(dp)] · ν(Φ̂s, dp) (5)

Therefore, a classifier̂Φs may be expected to perform accurately on an exampledi when
many examples inχw(di) are correctly classified bŷΦs, when these are close todi, and
when these correct classifications have been reached with high confidence.

Steps 1 and 3 from Section 2.1 remain unchanged.

Confidence-rated Weighted Majority Vote. The fourth technique we test,confidence-
rated weighted majority vote(CRWMV), stands to WMV as CRDCS stands to DCS;
that is, it consists of a version of WMV in which confidence considerations, as from the
previous section, are taken into account. CRWMV has thus thesame form of WMV; the
only difference is that theg(Φ̂s, di) score as from Step 2 is obtained through Equation
(5), which takes into account the confidence with which theΦ̂s classifiers have classified
the training examples inχw(di), instead of Equation (2), which does not. Steps 1, 3 and
4 from Section 2.1 remain unchanged.

2.2 Generating the Individual Classifiers

Each individual classifier̂Φs (i.e., each member of the various committees described in
Section 2.1) is generated by means of the well-known(single-label, distance-weighted)
k nearest neighbours(k-NN) technique. This technique consists in the following steps;
for a test documentdi

1. (similarly to Equation 1) identify the set

χk(di) = arg
k

min
dp∈Tr

δs(di, dp) (6)

of the k training examples closest to the test documentdi, whereδs(d
′, d′′) is a

distance measure between documents in which only aspects specific to featurefs

are taken into consideration, andk is an integer parameter;
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2. for each classcj ∈ C, gather the evidenceq(di, cj) in favour ofcj by summing the
complements of the distances betweendi and the documents inχk(di) that belong
to cj ; i.e.,

q(di, cj) =
∑

dp∈χk(di) : Φ(dp)=cj

(1 − δs(di, dp)) (7)

3. pick the class that maximizes this evidence, i.e.,

Φ̂s(di) = arg max
cj∈C

q(di, cj) (8)

Standard forms of distance-weightedk-NN do not usually output a value of confidence
in their decision. We naturally make up for this by adding a further step to the process,
i.e.,

4. set the value of confidence in this decision to

ν(Φ̂s, di) = q(di, Φ̂
s(di)) −

∑

cj 6=Φ̂s(di)
q(di, cj)

m − 1

That is, the confidence in the decision taken is defined as the strength of evidence in
favour of the chosen class minus the average strength of evidence in favour of all the
remaining classes.

Distance-weightedk-NN classifiers have several advantages over classifiers gener-
ated by means of other learning methods:

– Very good effectiveness, as shown in several text classification experiments [6–
9]; this effectiveness is often due to their natural abilityto deal with non-linearly
separable classes;

– The fact that they scale extremely well (better than SVMs) tovery high numbers
of classes [9]. In fact, computing the|Tr| distance scores and sorting them in de-
scending order (as from Step 1) needs to be performed only once, irrespectively of
the numberm of classes involved; this means that distance-weightedk-NN scales
(wildly) sublinearly with the number of classes involved, while learning methods
that generate linear classifiers scale linearly, since noneof the computation needed
for generating a single classifier̂Φ′ can be reused for the generation of another
classifierΦ̂′′, even if the same training setTr is involved.

– The fact that they are parametric in the distance function they use. This allows the
use of distance measures customized to the specific type of data involved, which
turns out to be extremely useful in our case.

3 Efficient Implementation of Nearest Neighbour Search by
Metric Data Structures

In order to speed up the computations of our classifiers we have focused on imple-
menting efficientlynearest neighbour search, which can be defined as the operation of
finding, within a set of objects, thek objects closest to a given target object, given a
suitable notion of distance. The reason we have focused on speeding up this operation
is that
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1. it accounts for most of the computation involved in classifying objects through the
k-NN method of Section 2.2; Step 1 of this method requires nearest neighbour
search;

2. it also accounts for most of the computation involved in combining base classi-
fiers through each of the four methods of Section 2.1; Step 1 ofeach of these four
methods also requires nearest neighbour search.

Efficient implementation of nearest neighbour search requires data structures in sec-
ondary storage that are explicitly devised for this task [10–12]. As such a data structure
we have used anM-tree [13]4, a data structure explicitly devised for speeding up near-
est neighbour search inmetric spaces, i.e., sets in which a distance function is defined
between their members that is a metric5. We have been able to use M-trees exactly
because

– as the five feature-specific distance functionsδs of Equation 6, we have chosen the
distance measures recommended by the MPEG group (see [14] for details), which
are indeed metrics;

– as the global distance functionδ of Equation 1 we have chosen a linear combination
of the previously mentioned fiveδs functions, which is by definition also a metric.
As the linear combination weightsws we have simply adopted the weights derived
from the study presented in [15], i.e.,w(CL) = .007, w(CS) = .261, w(EH) =
.348, w(HT ) = .043, w(SC) = .174.
Note that, in reality, theδs functions from [14] that we have adopted donot range
on [0, 1], but on five different intervals[0, αs]; in order to have them all range on
[0, 1] we have multiplied all distances by the normalization weightsz(CL) = .174,
z(CS) = .075, z(EH) = .059, z(HT ) = .020, z(SC) = .001.

4 Experiments

The dataset that we have used for our experiments (here called theStone dataset) is
a set of 2,597 photographs of stone slabs, subdivided under 37 classes representing
different types of stone6. The dataset was randomly split into a training set, containing
approximately 30% of the entire dataset, and a test set, consisting of the remaining
70%. For each photograph an internal representation in terms of MPEG-7 features was
generated and stored into an M-tree.

4 We have used the publicly available Java implementation of M-trees developed at Masaryk
University, Brno; seehttp://lsd.fi.muni.cz/trac/mtree/.

5 A metric is a distance functionδ on a set of objectsX such that, for anyx1, x2, x3 ∈ X, it is
true that (a)δ(x1, x2) ≥ 0 (non-negativity); (b) δ(x1, x2) = 0 if and only if x1 = x2 (iden-
tity of indiscernibles); (c) δ(x1, x2) = δ(x2, x1) (symmetry); (d) δ(x1, x3) ≤ δ(x1, x2) +
δ(x2, x3) (triangle inequality).

6 The dataset was provided by theMetro S.p.A. Marmi e Graniti company (see
http://www.metromarmi.it/), and was generated during their routine production pro-
cess, according to which slabs are first cut from stone blocks, and then photographed in order to
be listed in online catalogues that group together stone slabs produced by different companies.
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As a measure of effectiveness we have usederror rate(notedE), i.e., the percentage
of test documents that have been misplaced in a wrong class.

As a baseline, we have use a “multi-feature” version of the distance-weightedk-
NN technique of Section 2.2, i.e., one in which the distance functionδ mentioned at
the end of Section 3, and resulting from a linear combinationof the five feature-specific
δs functions, is used in place ofδs in Equation 6. For completeness we also report five
other baselines, obtained in a way similar to the one above but using in each a feature-
specific distance functionδs. In these baselines and in the experiments involving our
adaptive classifiers thek parameter has been fixed to 30, since this value has proved
the best choice in previous experiments involving the same technique [7, 8]. Thew
parameter of the four adaptive committees has been set to 5, which is the value that
had performed best on previous experiments we had run on a different dataset. In future
experiments we plan to optimize these parameters more carefully by cross-validation.

The results of our experiments are reported in Table 1. From this table we may
notice that all four committees (2nd row, 2nd to 5th cells) bring about a noteworthy
reduction of error rate with respect to the baseline (2nd row, 1st cell). The best performer
proves the confidence-rated dynamic classifier selection method of Section 2.1, with
a reduction in error rate of 39.7% with respect to the baseline. This is noteworthy,
since both this method and the baseline use the same information, and only combine
it in different ways. The results also show that confidence-rated methods (CRDCS and
CRWMV) are not uniformly superior to methods (DCS and WMV) which do not make
use of confidence values. They also show that dynamic classifier selection methods
(DCS and CRDCS) are definitely superior to weighted majorityvoting methods (WMV
and CRWMV).

This latter result might be explained by the fact that, out offive features, three (CS,
CL, SC) are based on colour, and are thus not completely independent from each other;
if, for a given test image, colour considerations are not relevant for picking the correct
class, it may be different to ignore them anyway, since they are brought to bear three
times in the linear combination. In this case, DCS and CRDCS are more capable of
ignoring colour considerations, since they will likely entrust either the EH- or the HT-
based classifier with taking the final classification decision.

The same result also seems to suggest that, for any image, there tends to be a single
feature that alone is able to determine the correct class of the image, but this feature is
not always the same, and sharply differs across categories.For instance, the SC feature
is the best performer, among the single-feature classifiers(1st row), on test images
belonging to class GIALLOVENEZIANO (E = .11), where it largely outperforms the
EH feature (E = .55), but the contrary happens for class ANTIQUEBROWN, where
EH (E = .01) largely outperforms SC (.22). That no single feature alone is a solution
for all situations is also witnessed by the fact that all single-feature classifiers (1st row)
are, across the entire dataset, largely outperformed by both the baseline classifier and
all the adaptive committees. This fact confirms that splitting the image representation
into independent feature-specific representations on which feature-specific classifiers
operate is a good idea.
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Table 1. Error rates of the techniques as tested on theStone dataset; percentages indicate de-
crease in error rate with respect to the baseline. The first five results are relative to the five
feature-specific baselines.Boldface indicates the best performer.

CL CS EH HT SC
0.479 0.318 0.479 0.410 0.419

Baseline DCS CRDCS WMV CRWMV
0.297 0.183 (-38.4%)0.179(-39.7%) 0.225 (-24.2%)0.227 (-23.6%)
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