
Formalization of Autonomic Heuristics-Driven Systems∗

From a Heuristics to its Autonomic Counterpart

Marco Pasquali
HPC Lab – ISTI/CNR

IMT – Lucca
Italy

marco.pasquali@isti.cnr.it

Patrizio Dazzi
HPC Lab – ISTI/CNR

IMT – Lucca
Italy

patrizio.dazzi@isti.cnr.it

ABSTRACT
In this paper we show the fundamental elements needed to
make autonomous a heuristics-based system. It is made
by using a formal notation. The proposed method allows
heuristics designers to make autonomous a heuristics by ex-
posing its state and the polytope in which the heuristics
works properly. The proposed model was evaluated apply-
ing it to a real scenario in which a dynamic stream of batch
jobs is classified according to job deadline QoS constraint.
The conducted tests point out that the proposed autonomic
heuristics can be fruitfully exploited.

Categories and Subject Descriptors
F.1.1 [Computation by abstract devices]: Models of
Computation—Self-modifying machines, Unbounded-action
devices

General Terms
Autonomic Computing, Adaptive Heuristics

Keywords
autonomicity, higher order functions, heuristics

1. INTRODUCTION
The Autonomic Computing is an initiative started by IBM
in 2001 (aka ACI [11]). Its ultimate aim is to create self-
managing computer systems to overcome their rapidly grow-
ing complexity and to enable their further growth. It takes

∗This work has been supported by SUN Microsystems’s
grant, and it is in the activity of the European CoreGRID
NoE (European Research Network on Foundations, Soft-
ware Infrastructures and Applications for Large Scale, Dis-
tributed, GRID and Peer-to-Peer Technologies, contract no.
IST-2002-004265).

inspiration from the autonomic nervous system of the hu-
man body. The nervous system controls important biologi-
cal functions (e.g. respiration, heart beat, and blood pres-
sure) without any conscious intervention.

The ACI focuses on the definition of foundations for auto-
nomic systems and, in particular, on the definition of ele-
ments that are fundamental to make computing system au-
tonomous. In a self-managing Autonomic System, the hu-
man operator acquires a new role: She does not control the
system directly, instead she defines general policies and rules
that are used as an input for the self-management process.

Our work describes, using a formal notation, what are the
fundamental elements needed to make autonomous a heuristics-
based system. The aim is to provide to the system mecha-
nisms to recognize mismatches between actual and expected
system behavior (with respect to its internal state), and to
provide to it the capability to adapt itself.

Our approach is not intended to be too abstract nor too
formal. We describe with a high-level notation the elements
that a heuristics designer needs to care about designing an
autonomous heuristics. The challenge is to provide tech-
nique that enables software systems to evolve in order to
remain useful [12], but to do so in a way that does not incur
downtime as traditional maintenance processes do [16].

The paper starts with the formalization of heuristics-driven
systems (Section 2). First we describe a not autonomous
heuristics, i.e. that does not adapt itself to system changes,
then we present the requirements to make it autonomous.
Moreover, we discuss how continuous heuristics-state-changes
can be made discrete to model more realistic situations. In
Section 3, we present a case study in which we transform a
classification heuristics in an autonomic one. Such process
is led by the proposed formalization. In Section 4 we present
the experiments conducted and the related results. In Sec-
tion 5 related works are described. Finally, in Section 6 we
draw our conclusions and the path of future work.

2. AUTONOMIC HEURISTICS-DRIVEN
SYSTEMS

In this section we want to formalize two concepts: heuristics
and autonomic heuristics-driven systems.

A heuristics-driven system S uses its internal state (s) to
transform the inputs (I) in outputs (O), as depicted in Fig-



Figure 1: Heuristics-driven systems

Figure 2: Autonomic heuristics-driven system

ure 1. We can define its behavior as the sequence of execu-
tion of two functions:

fo : I × s → O

f? : I ×O × s → s′.

fo defines the behavior of the system, transforming inputs
in outputs using the internal state as one of its parameters.
f? is the function acting on the system: Using the inputs,
the computed outputs and the current system internal state,
it generates a new system state (s′).

An autonomic heuristics-driven system S is characterized
by an external heuristics H (Figure 2). Both S and H have
different internal states ss and sh. As the heuristics-driven
system, its behavior can be defined as the sequence of exe-
cution of two functions:

fo : I × ss → O

f? : I ×O × ss × sh → s′s × s′h.

In this second case, fo behaves exactly as the one defined
for the heuristics-driven systems, instead f? behaves in a
different way: Using the inputs, the computed outputs, the
current internal state of the system and the state of the
heuristics, it generates a new state (s′s) for the system and
a new state (s′h) for the heuristics.

This division enable the application designer to disjoin the
system and the heuristics that drives the system itself. In
this way the system can be adapted to new scenarios un-
plugging the current heuristics and plugging-in another one.

2.1 Continue and Discrete Heuristics-Driven
Systems

The two systems, we previously defined can be categorized
as continuous: For each input the system evaluates a state
change.

More realistic systems are characterized by value ranges in
which the internal state of the system is free to move with-
out changing the whole system behavior. We refer to these
systems as discrete.

To formalize the concept of discrete heuristics-driven sys-
tem, we need to consider the following abstraction: The
state of the system is a point in a geometric space and the
value range in which it is free to move is a polytope in the
same geometric space.

This implies that the internal state (ss) of the system us-
ing autonomic heuristics must be transformed in the pair
(ss, P), where ss is the new representation of the state as
a point in the space and P is the polytope that represents
the bounds in which ss is free to move without changing the
system behavior.

We can define the polytope P of heuristics h for the system
s as the union of system states in which h has a acceptable
behavior. Formally:

P = {ss | AcceptanceH(ss)}
where AcceptanceH is a boolean function that returns true
if the heuristics’s behavior is acceptable.

The f? function must be changed to use the new system
state representation:

f? : I ×O × (ss, P)× sh → (s′s, P ′)× s′h.

As depicted in figure 3.a the state is represented as a point s
inside a polytope P . When f? is computed, the state change
can be represented as a vector v in space (Figure 3.b) and
the state is modified to a new value s′. If the new state is
outside the polytope P , the behavior of the heuristics, and
consequently the behavior of the system, must be changed
according to the new state. Then a new polytope is com-
puted to bound the new state (Figure 3.c).



P

S

(a)

P

S

V

(b)

P S

(c)

Figure 3: Discrete autonomic heuristics evolution. In (a) the autonomic heuristics is identified by polytope P
and status s. In (b) a new input generates the transition vector v that moves the status outside the polytope.
In (c), after the application of function f?, the (autonomic-)heuristics changes both state and polytope to s′

and P ′.

The number of dimensions in which the polytope and the
state are defined depends on the number of heuristics con-
figuration freedom degrees.

3. CASE STUDY
In this section we describe how to apply the proposed for-
malization model to a real scenario concerning the schedul-
ing of batch jobs on computing farms according to jobs QoS
constraints.

In general, the objective of a job scheduler is twofold: to
optimize both the system throughput and the applications
performance. This means that the scheduler tries to max-
imize the overall resource utilization guaranteeing the re-
quired level of QoS to applications. Several job parameters
describing the hw/sw job requirements, the job execution
estimation time, the job deadline (the time at which the
job must be completed), and other information such as the
kind of user requiring the job execution, are used by the job
schedulers to implement their scheduling policies.

To this end we propose an autonomic classification heuristics
that we developed in the context of “Scheduling under the
Sun” 1 research project. Our heuristics can be used in online
[14] job classifiers receiving jobs from users, classifying the
jobs and eventually sending them to a scheduling system.
In our system, as depicted in Figure 4, the classifier is the
front-end and the scheduler is the back-end: The first one is
interfaced with users whereas the latter deal with physical
resources.

The goal of our job classifier is to assign a priority value to
each submitted job. The priority value defines a job total-
order of execution. It is computed when a job is submitted
to the system. The job priority is a function of only job’s pa-
rameters and it does not consider system information, such
as: The number and the type of machines, the software li-

1The project “Scheduling under the SUN” have as objec-
tive the design and the evaluation of scalable approaches to
dynamically schedule a stream of batch jobs in a large-scale
Grid for utility computing

censes availability, and the machines workload. The goal of
our system is to exploit job attributes/characteristics and
metrics to enable a job classification in an independent way
with respect to the features of the computing platform used.

To validate our approach we consider a simple job classifier
only based on the job deadline parameter.

To this end, we introduce a heuristics, called DeadLine,
which is used to implement a classifier, which exploits the
job deadline parameter, according to the description given
in section 3.1. This choice was driven by our will of im-
plement a simple case of study in which operates only one
heuristics. In this way, it is simple to recognize bad heuris-
tics behaviors, and, it also makes easier to understand how
the autonomic model can change the heuristics state.

3.1 DeadLine Heuristics
The DeadLine heuristics characterizes a job with respect
to its deadline. It considers a time value called margin,
defined as the difference between the time at which the job
execution must start in order to respect its deadline, and
the job submission time (Figure 5).

To compute the priority value of a job i, i.e. ∆p,i, DeadLine
computes the average margin value considering the margin
values of all the jobs analyzed before the submission of job
i. We consider a job to be a “proximity” one if its margin
value is smaller than the average margin value, vice versa it
is considered to be a “faraway” one.

To compute ∆p,i, the heuristics considers the double value
of average margin. It permits to over estimate the width of
the interval in which a job is a proximity one.

DeadLine is a configurable heuristics. Indeed, the admin-
istrator of the heuristic-driven system can choose the job
classification distribution policy. The policy can be used to
express the heuristics required behavior [3]. Such policies
can be used to specify the expected behavior of the auto-
nomic heuristics (Section 3.2). We chose a exponential dis-



Classifier

Scheduler

Figure 4: System architecture

tribution policy, i.e. a distribution in which the number of
jobs with priority p is exponentially greater than the num-
ber of jobs with priority p − 1. This allows the system to
strongly limit the number of jobs characterized by the high-
est priority, permitting to better satisfy the requirements of
the jobs.

The following relation formalize the priority distribution we
used to configure the DeadLine heuristics: let i and j be two
integer representing two different priority values with i < j,
let #jobp the number of job with priority equals to p, then
our scheduler behaves at best when:

#jobj =
#jobi

2j−i
. (1)

In order to assign the priority values to the jobs using the
deadline time following the described distribution, the inter-
val [0, 2 ∗ E[margin]] is divided in subintervals as depicted
in Figure 6.

����

������	�

�
�
�������

�

���

��	

�����	

Figure 5: Graphical representation of the job sub-
mission, estimation, margin and deadline times.

Figure 6: Graphical representation of the margin
value.

The subintervals are computed as:

interval(max−k) = [Sk, Sk+1] with k = 0, ..., max

where max is the highest priority value that a job can as-
sume, and where:

8
<
:

S0 = 0

Sk = Sk−1 + MinUnity · 2k (2)

where MinUnity is

MinUnity =
2 ∗ E[margin]Pmax

k=1 2k
(3)

3.2 Autonomic DeadLine Heuristics
We tested the DeadLine heuristics performing experiments
and it showed to have good performances in a lot of differ-
ent situation (see the tests performed in Section 4). We also
tested it in a critical situation, namely when the job-stream
is logically divided into distinct sub-streams (substream1, ...,
substreamn) containing jobs with a very similar margin, but
consecutive sub-streams have very different average margin
values. Figure 7 depicts this situation: On the x-axis are



represented job sub-streams and on the y-axis are repre-
sented the job average margin time.

Figure 7: Margin value for each sub-stream

In the boundary regions between two consecutive job sub-
streams, DeadLine produces a classification in which jobs
priorities are amassed in extremely low (or high) values.
Nevertheless, the DeadLine heuristics continues to perform
properly if each job sub-stream length is sizable. This is
because after a transient state the average margin used by
heuristics (margin values of all the jobs analyzed before)
changes approaching to the average margin of the current
job sub-stream. It permits to the DeadLine heuristics to
work properly i.e. emit job priorities with a distribution
faithful to the exponential one.

To make the DeadLine heuristics autonomic and to enable
it to compute a profitable priority distribution, even during
the transition between one job sub-stream to the next one,
we need to point out the causes of unprofitable distributions:
the large differences in the average margin value between a
job sub-stream and the consecutive one. This large differ-
ence causes an unprofitable priority values assignment that
is the generation of too many low priority values or too many
high priority values. To avoid this situation, we should be
able to change the way in which we compute priorities, and
to maintain a proper priority distribution when the aver-
age margin changes. It can be done (i) by changing the
heuristics used to compute job priorities or (ii) by adapting
the old one. We chose the second solution because, using a
proper set of information, we can map this behavior on an
autonomic heuristics as shown in Section 2.

Now, we provide a mapping between our autonomic heuris-
tics for job classification and the concepts previously ex-
posed. The functions are mapped in the following way:

fo : Job× (Avg × Curr.JD) → QoS

f? : Job×QoS × (Avg × Curr.JD, IdealJD)× base

→ (Avg × Curr.JD′, IdealJD′)× base′.

The system state is composed by the following values: (Avg×
Curr.JD) representing the average margin value of jobs an-
alyzed until now and the fixed-size queue containing the

priorities assigned to latest analyzed jobs (which number
depends on a parameter we changed during the test session
reported in Section 4). The polytope is represented by the
IdealJD value indicating the ideal job distribution among
the priorities.

The heuristics state, represented by the base value, is used
by the DeadLine heuristics to compute the size of the QoS
buckets (or priority intervals).

For each job submitted into the system, the DeadLine heuris-
tics computes a priority value, updates the average job mar-
gin value (Avg) and updates the priority queue (Curr.JD)
by adding the latest assigned priority and removing the old-
est one.

If the distribution of the jobs within Curr.JD is outside the
polytope defined by the exponential job distribution used
to configure the heuristics (Relation 1), the base value is
increased (or decreased) to base′ value, in order to adapt
the heuristics behavior to the margin of new jobs.

With such a mapping the polytope can be represented as
a point p representing the distribution used for configure
the DeadLine heuristics, in this case each job distribution
that differs from it will trigger a heuristic-state change. To
avoid it we decided to expand the polytope admitting an
allowance i.e. an acceptability area with a neighborhood
instead of a point. A neighborhood centered in p with ray
r. With such representation a job distribution lie inside
the polytope if for each priority, the difference between the
number of jobs within Curr.JD having such priority and
their expected values (exp) is less than r

exp
.

With the mapping we implemented the polytope never change,
in fact if current distribution does not lie inside the polytope
the autonomic heuristics does not change it but modify its
state, i.e. the base value.

Nevertheless, another mapping, with a shifting polytope,
can be provided. For instance considering a lower-bounded
deadline-margin interval, i.e. an interval that does not start
from zero but from the minimum value among the latest
analyzed job. In this case when the current distribution lie
outside the polytope, the reconfiguration process does not
limit its intervention only to the heuristics state but the
lower bound of job-margin interval is changed too.

4. EXPERIMENTS
To evaluate the goodness of the Autonomic DeadLine Heuris-
tics (ADH) solution we conducted simulations applying the
classification algorithm to a stream of jobs characterized by
a high variability of the margin parameter.

To conduct evaluation we developed an ad-hoc event-driven
simulator. For each simulation, we randomly generated a
job-stream whose margin parameter was generated accord-
ing to different distributions and described in each test. A
simulation step includes: (1)selection and classification of
new jobs, (2) update of the system and heuristics state, (3)
check for correct behavior of the system, and eventually,
perform the system adaptation. The time of job submission
is driven by the wall clock. When the wall clock reaches the



job submission time, the job enters in the simulation.

The aim of the experimentation phase was to carry out a
priority distribution among jobs according to an adminis-
trative policy constituting the input of the proposed heuris-
tics: System administrators can define a relation among the
number and the kind of jobs in the system.

In our tests, the relation on the number of jobs for each
priority is characterized as relation 1. We have five priority
classes in our simulations, afterwards the possible priority
values that a job can assume are in [0, 4].

In our experiments we compare the ADH and the DeadLine
heuristics. The performance metric used is the faithful of the
classification given by these two heuristics, with the classifi-
cation given by the exponential distribution described in 1,
which we consider the optimal one in our case study.

Figure 8 shows the behavior of the DeadLine heuristics and
of its autonomic version (ADH), compared to the optimal so-
lution, when the margin of each job is uniformly generated.
In this case ADH is never invoked because the DeadLine
heuristics is good enough to model this situation and there
is not need to operate to modify its behavior.

Figure 8: Deadline and ADH evaluation in the case
of a uniform distribution of the margin parameter

Table 1 shows the range values used to generate the margin
in the uniform case. The first column of the table shows
sub-streams of jobs that have the same range of margin,
the second column shows the range for the specific job sub-
stream. Obviously, in the uniform case all the jobs belong
to the same range.

#Jobs Margin Range
2000 0-200

Table 1: Range values for the margin parameter in
the case of a uniform distribution

Figure 9 shows the trend of the margin parameter in a non-
uniformly distributed jobs generation, compared with the
behavior of the base value (b), that is the base to compute

the division of the range in QoS buckets. We can note that
the Average Margin quickly changes and in a not predictable
way. Moreover, base of the ADH frequently changes in order
to control the generated jobs priority distribution. Table 2
shows the four job sub-streams in which we divided the job-
stream, and the range of margin values used in these tests.

#Jobs Margin Range
400 2000-4000
550 0-200
350 2000-4000
700 1000-200

Table 2: Range values for the margin parameter in
the case of a not-uniform distribution.

Figure 10 depicts the priority assignments of ADH and the
DeadLine heuristics compared with the optimal solution when
the job deadline is generated according to the Table 2. The
results point out that the autonomic heuristics lacks of ac-
curacy for the low priority jobs, but it is close to the optimal
solution for the jobs with high priority. Furthermore, ADH
trend respects the optimal solution. The DeadLine heuris-
tics, by itself, is not able to handle changes in the margin
distribution: this because the margin parameter falls down
too fast with respect to its average value.

Figure 9: Deadline and ADH evaluation in the case
of a not-uniform distribution of the margin param-
eter

The two last figures show the behavior of the system when
the margin parameter is stable for some elements of the job-
stream, namely the intervals [1000-1100] and [1300-1500].
Figure 11 shows that base does not change when the slope
of the margin average curve is not steep. This implies that
the DeadLine heuristics assignments are profitable. In the
other cases, when the curve sheers or falls down, the ADH
intervenes to adapt heuristics behavior.

Table 3 shows the job-stream subdivision and the range of
margin values defined for each job sub-stream.

Finally, Figure 12 shows the behavior of the system accord-
ing to a job deadline generation described in Table 3. The



#Jobs Margin Range
500 3000-4000
500 500-200
500 500-700
500 500-200

Table 3: Range values for the margin parameter in
the case of a non-uniform distribution.

DeadLine heuristics is not able to recognize hot spots in
the QoS buckets. In fact, when a lot of jobs with the same
margin are submitted to the system, they receive the same
priority. Instead, ADH is able to change the base value to
compute a better division of the interval and it is able to
satisfy the administrator policy.

5. RELATED WORK
Adaptive performance tuning has only recently become con-
ceivable, so only few papers address it directly.

Diao et al. [7] analyze how to choose certain parameters
of the Apache web server in order to keep CPU and mem-
ory usage near a pre-set parameter. The authors make the
assumption that there is an optimal setting for those pa-
rameters, and make no claim that the parameters impact
the performance of the web server in a known way.

Raphael M. Bahati et al. define a policy as a notation to
express required or desired behavior of systems and appli-
cations. In [3], they describe how policies are exploited and
how they are realized as actions driving autonomic man-
agement in the context of managing the performance of an
Apache web server. Their aim is to address the problem
to express policies appropriate for an autonomic computing
system and then map them to executable elements of the
autonomic system.

In [16], Warren e al. describe mechanisms used to realize
dynamic reconfiguration that must respect a number of fun-

Figure 10: Deadline and ADH evaluation in the case
of a not-uniform distribution of the margin param-
eter

Figure 11: Margin average and base trend

Figure 12: Deadline and ADH evaluation in the case
of a not-uniform distribution of the margin param-
eter

damental issues when making run-time changes to a system.
They suggest that such mechanisms have to behave accord-
ing to: (1) the dynamic reconfiguration capability should not
compromise applications integrity/correctness, (2) the run-
time overhead introduced by a reconfiguration management
facility should be acceptable, (3) the dynamic reconfigura-
tion should be transparent to application developers. Their
work are particularly concerned with preserving an applica-
tions integrity during periods of runtime change. They have
extended OpenRec (a framework for managing reconfigura-
tion of component-based applications [10]) with functional-
ity which automatically verifies the structure of an applica-
tion during periods of dynamic reconfiguration.

Other approaches, like ours, optimize performance main-
taining a fixed level of service. For example Abdelzaher et al.
[1] outline a system that maintains multiple complete con-
tent trees, each with a different quality setting. As workload
increases, quality can be decreased in order to satisfy the
maximum number of users. Additionally, Cohen et al. [6]
use Tree-Augmented Naive Bayesian Networks to correlate



system statistics to a high-level performance metric (compli-
ance or non-compliance with required service levels). Unlike
our work, this work relies on a specialized instrumentation
layer.

Hellerstien et al. [8] analyzed the performance of a system
over large spans of time with statistical models, which could
then determine online when unexpected changes occurred.
Our approach combines long-time observation with a short-
time analysis used to adapt the system to changes.

Other work within the field of autonomic computing fo-
cuses on failure diagnosis [17, 5], file system organization
[13], adaptive branch prediction [9], autonomous network
creation [4], installation and configuration analysis [2] and
utility function optimization [15].

6. CONCLUSIONS AND FUTURE WORK
Nowadays, The complex nature of current systems and ap-
plications implies the need to automate their management in
order to meet operational or behavioral requirements. Our
approach is not intended to be too abstract nor too for-
mal. We describe with a high-level notation the elements
that a heuristics designer needs to care about designing an
autonomous heuristics.

The purpose of this paper is to present fundamental ele-
ments that are needed to make autonomous a heuristics-
based system. We describe with a high level notation the ele-
ments that a heuristics system designer needs to care about
in the design process of a new heuristics and to make it
autonomous. We show an effective way for providing au-
tonomic features to an heuristics-based system by the di-
vision of the heuristics state transition function from the
system state transition function. This division enable the
application designer to disjoin the system and the heuristics
that drives the system itself. In this way the system can be
adapted to new scenarios unplugging the current heuristics
and plugging-in another one.

We present an interesting case study in which we show how
our model can be applied to a real scenario. We point out
results that exploit an autonomic behavior of the system,
and an improvement of the respect of administrator policies.

We plan to apply our model to complex scheduling frame-
work in which more than the deadline aspect is taking care.
We would like to implement an autonomic scheduling heuris-
tics with a shiftable polytope, more adherent to our formal
model, like the one sketched in Section 3.2.

Finally, formalization could be more precise and could be
extended to specify more in detail the system behavior.

7. ACKNOWLEDGEMENTS
We wish to thank Ariel David Techiouba which participated
to the development and validation of autonomic deadline
heuristics and Ranieri Baraglia for his precious advices for
drafting this paper.

8. REFERENCES

[1] Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti.
Performance guarantees for Web server end-systems:
A control-theoretical approach. IEEE Transactions on
Parallel and Distributed Systems, 2002.

[2] Gagan Aggarwal. On identifying stable ways to
configure systems. In ICAC ’04: Proceedings of the
First International Conference on Autonomic
Computing (ICAC’04), pages 148–153, Washington,
DC, USA, 2004. IEEE Computer Society.

[3] Raphael M. Bahati, Michael A. Bauer, and Elvis M.
Vieira. Mapping policies into autonomic management
actions. icas, 0:38, 2006.

[4] Yu-Han Chang, Tracey Ho, and Leslie Pack Kaelbling.
Mobilized ad-hoc networks: A reinforcement learning
approach. icac, 00:240–247, 2004.

[5] Mike Y. Chen, Emre Kiciman, Eugene Fratkin,
Armando Fox, and Eric Brewer. Pinpoint: Problem
determination in large, dynamic internet services. In
DSN ’02: Proceedings of the 2002 International
Conference on Dependable Systems and Networks,
pages 595–604, Washington, DC, USA, 2002. IEEE
Computer Society.

[6] Ira Cohen, Jeffrey S. Chase, Moisés Goldszmidt,
Terence Kelly, and Julie Symons. Correlating
instrumentation data to system states: A building
block for automated diagnosis and control. In OSDI,
pages 231–244, 2004.

[7] Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus.
Managing web server performance with autotune
agents. IBM Syst. J., 42(1):136–149, 2003.

[8] Joseph Hellerstein Fan. Characterizing normal
operation of a web server: Application to workload
forecasting and problem detection.

[9] Alan Fern, Robert Givan, Babak Falsafi, and T. N.
Vijaykumar. Dynamic feature selection for hardware
prediction. J. Syst. Archit., 52(4):213–234, 2006.

[10] J. Hillman and I. Warren. An open framework for
dynamic reconfiguration. ICSE ’04: Proceedings of the
26th International Conference on Software
Engineering, page 594603, 2004.

[11] IBM. Autonomic Computing Initiative.
www.ibm.com/autonomic.

[12] M. M. Lehman and L. A. Belady, editors. Program
evolution: processes of software change. Academic
Press Professional, Inc., San Diego, CA, USA, 1985.

[13] Michael Mesnier, Eno Thereska, Gregory R. Ganger,
and Daniel Ellard. File classification in self-* storage
systems. In ICAC ’04: Proceedings of the First
International Conference on Autonomic Computing
(ICAC’04), pages 44–51, Washington, DC, USA, 2004.
IEEE Computer Society.

[14] J. Sgall. Online Algorithms, chapter On-line
scheduling, pages 196–231. Book Series Lecture Notes
in Computer Science. Springer Berlin / Heidelberg,
Monday, April 10, 2006.

[15] J. O. Kephart W. E. Walsh, G. Tesauro and R. Das.
Utility functions in autonomic systems. In In
Proceedings of the 1st International Conference on
Autonomic Computing, May 2004.

[16] Ian Warren, Jing Sun, Sanjev Krishnamohan, and
Thiranjith Weerasinghe. An automated formal
approach to managing dynamic reconfiguration. In



ASE ’06: Proceedings of the 21st IEEE International
Conference on Automated Software Engineering
(ASE’06), pages 37–46, Washington, DC, USA, 2006.
IEEE Computer Society.

[17] Alice X. Zheng, Jim Lloyd, and Eric Brewer. Failure
diagnosis using decision trees. In ICAC ’04:
Proceedings of the First International Conference on
Autonomic Computing (ICAC’04), pages 36–43,
Washington, DC, USA, 2004. IEEE Computer Society.


