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Abstract. Managing uncertainty and/or vagueness is starting to play an impor-
tant role in Semantic Web representation languages. Our aim is to overview basic
concepts on representing uncertain and vague knowledge in current Semantic
Web ontology and rule languages (and their combination).

1 Introduction

The management of uncertainty and/or vagueness is an important issue whenever the
real world information to be represented is of imperfect nature, which likely occurs
in Semantic Web tasks. In this work we overview the relevant work in the context of
Description Logics [6], Logic Programs [143] and their combination. This work should
act as a reference/citation guide to the relevant literature, and, thus, we keep the formal
level to a minimum.

2 Uncertainty and Vagueness Basics

There has been a long-lasting misunderstanding in the literature of artificial intelli-
gence and uncertainty modeling, regarding the role of probability/possibility theory and
vague/fuzzy theory. A clarifying paper is [64]. We recall here salient notes, which may
clarify the role of these theories for the inexpert reader.

A standard example that points out the difference between degrees of uncertainty
and degrees of truth is that of a bottle [64]. In terms of binary truth values, a bottle is
viewed as full or empty. But if one accounts for the quantity of liquid in the bottle, one
may e.g. say that the bottle is “half-full”. Under this way of speaking, “full” becomes a
fuzzy predicate [294] and the degree of truth of “the bottle is full” reflects the amount
of liquid in the bottle. The situation is quite different when expressing our ignorance
about whether the bottle is either full or empty (given that we know that only one of the
two situations is the true one). Saying that the probability that the bottle is full is 0.5
does not mean that the bottle is half full.

We recall that under uncertainty theory fall all those approaches in which statements
rather than being either true or false, are true or false to some probability or possibility



(for example, “it will rain tomorrow”). That is, a statement is true or false in any world,
but we are “uncertain” about which world to consider as the right one, and thus we
speak about e.g. a probability distribution or a possibility distribution over the worlds.
For example, we cannot exactly establish whether it will rain tomorrow or not, due to
our incomplete knowledge about our world, but we can estimate to which degree this is
probable, possible, and necessary.

As for the main differences between probability and possibility theory, the proba-
bility of an event is the sum of the probabilities of all worlds that satisfy this event,
whereas the possibility of an event is the maximum of the possibilities of all worlds
that satisfy the event. Intuitively, the probability of an event aggregates the probabilities
of all worlds that satisfy this event, whereas the possibility of an event is simply the
possibility of the “most optimistic” world that satisfies the event. Hence, although both
probability and possibility theory allow for quantifying degrees of uncertainty, they are
conceptually quite different from each other. That is, probability and possibility theory
represent different facets of uncertainty.

On the other hand, under vagueness/fuzziness theory fall all those approaches in
which statements (for example, “the tomato is ripe”) are true to some degree, which is
taken from a truth space. That is, an interpretation maps a statement to a truth degree,
since we are unable to establish whether a statement is completely true or false due
to the involvement of vague concepts, such as “ripe”, which only have an imprecise
definition. For example, we cannot exactly say whether a tomato is ripe or not, but
rather can only say that the tomato is ripe to some degree. Usually, such statements
involve so-called vague/fuzzy predicates [294].

Note that all vague/fuzzy statements are truth-functional, that is, the degree of truth
of every statement can be calculated from the degrees of truth of its constituents, while
uncertain statements cannot be a function of the uncertainties of their constituents [63].
More concretely, in probability theory, only the negation is truth-functional (see Eq. 1),
while in possibility theory, only the disjunction resp. conjunction is truth-functional in
possibilities resp. necessities of events (see Eq. 2). Furthermore, mathematical fuzzy
logics are based on truly many-valued logical operators, while uncertainty logics are
defined on top of standard binary logical operators.

In the following, we illustrate a typical formalization of uncertain statements and
vague statements. In the former case, we consider a basic probabilistic/possibilistic
logic, while in the latter, we consider a basic many-valued logic.

2.1 Probabilistic Logic

Probabilistic logic has its origin in philosophy and logic. Its roots can be traced back to
Boole in 1854 [18]. There is a wide spectrum of formal languages that have been ex-
plored in probabilistic logic, ranging from constraints for unconditional and conditional
events to rich languages that specify linear inequalities over events (see especially the
work by Nilsson [210], Fagin et al. [75], Dubois and Prade et al. [61,66,5,65], Frisch
and Haddawy [82], and the first author [157,160,164]; see also the survey on sentential
probability logic by Hailperin [95]). Recently, nonmonotonic generalizations of proba-
bilistic logic have been developed and explored; see especially [168] for an overview.



In this section, for illustrative purposes, we recall only the simple probabilistic logic
described in [210].

We first define probabilistic formulas and probabilistic knowledge bases. We as-
sume a set of basic events Φ= {p1, . . . , pn} with n> 1. We use ⊥ and > to denote
false and true, respectively. We define events by induction as follows. Every element
of Φ∪{⊥,>} is an event. If φ and ψ are events, then also ¬φ, (φ ∧ ψ), (φ ∨ ψ), and
(φ→ ψ) are events. We adopt the usual conventions to eliminate parentheses. A prob-
abilistic formula is an expression of the form φ> l, where φ is an event, and l is a real
number from the unit interval [0, 1]. Informally, φ> l says that φ is true with a prob-
ability of at least l. For example, rain tomorrow > 0.7 may express that it will rain
tomorrow with a probability of at least 0.7. Notice also that ¬φ> 1− u encodes that φ
is true with a probability of at most u. A probabilistic knowledge base KB is a finite
set of probabilistic formulas.

We next define worlds and probabilistic interpretations. A world I associates with
every basic event in Φ a binary truth value. We extend I by induction to all events as
usual. We denote by IΦ the (finite) set of all worlds for Φ. A world I satisfies an event φ,
or I is a model of φ, denoted I |=φ, iff I(φ) = true. A probabilistic interpretation Pr
is a probability function on IΦ (that is, a mapping Pr : IΦ → [0, 1] such that all Pr(I)
with I ∈IΦ sum up to 1). Intuitively, Pr(I) is the degree to which the world I ∈IΦ
is probable, that is, the probability function Pr encodes our “uncertainty” about which
world is the right one. The probability of an event φ in Pr , denoted Pr(φ), is the sum
of all Pr(I) such that I ∈IΦ and I |=φ. The following equations are an immediate
consequence of the above definitions: for all probabilistic interpretations Pr and events
φ and ψ, the following relationships hold:

Pr(φ ∧ ψ) = Pr(φ) + Pr(ψ)− Pr(φ ∨ ψ) ;
Pr(φ ∧ ψ) 6 min(Pr(φ),Pr(ψ)) ;
Pr(φ ∧ ψ) > max(0,Pr(φ) + Pr(ψ)− 1) ;
Pr(φ ∨ ψ) = Pr(φ) + Pr(ψ)− Pr(φ ∧ ψ) ;
Pr(φ ∨ ψ) 6 min(1,Pr(φ) + Pr(ψ)) ;
Pr(φ ∨ ψ) > max(Pr(φ),Pr(ψ)) ;
Pr(¬φ) = 1− Pr(φ) ;
Pr(⊥) = 0 ;
Pr(>) = 1 .

(1)

A probabilistic interpretation Pr satisfies a probabilistic formula φ> l, or Pr is a model
of φ> l, denoted Pr |=φ> l, iff Pr(φ) > l. We say Pr satisfies a probabilistic knowl-
edge base KB , or Pr is a model of KB , iff Pr satisfies all F ∈KB . We say KB is
satisfiable iff a model of KB exists. A probabilistic formula F is a logical consequence
of KB , denoted KB |=F , iff every model of KB satisfies F . We say φ> l is a tight log-
ical consequence of KB iff l is the infimum of Pr(φ) subject to all models Pr of KB .
Notice that the latter is equivalent to l= sup {r |KB |=φ> r}.

The main decision and optimization problems in probabilistic logic are deciding the
satisfiability of probabilistic knowledge bases and logical consequences from proba-
bilistic knowledge bases, as well as computing tight logical consequences from prob-
abilistic knowledge bases, which can be done by deciding the solvability of a system



of linear inequalities and by solving a linear optimization problem, respectively. In par-
ticular, column generation techniques from operations research have been successfully
used to solve large problem instances in probabilistic logic; see especially the work by
Jaumard et al. [114] and Hansen et al. [99].

2.2 Possibilistic Logic

We next recall possibilistic logic; see especially [60]. The main syntactic and semantic
differences to probabilistic logic can be summarized as follows. Syntactically, rather
than using probabilistic formulas to constrain the probabilities of propositional events,
we now use possibilistic formulas to constrain the necessities and possibilities of propo-
sitional events. Semantically, rather than having probability distributions on worlds,
each of which associates with every event a unique probability, we now have possibility
distributions on worlds, each of which associates with every event a unique possibility
and a unique necessity. Differently from the probability of an event, which is the sum
of the probabilities of all worlds that satisfy that event, the possibility of an event is
the maximum of the possibilities of all worlds that satisfy the event. As a consequence,
probabilities and possibilities of events behave quite differently from each other (see
Eqs. 1 and 2). These fundamental semantic differences between probabilities and pos-
sibilities can also be used as the main criteria for using either probabilistic logic or
possibilistic logic in a given application involving uncertainty. In addition, possibilistic
logic may especially be used for encoding user preferences, since possibility measures
can actually be viewed as rankings (on worlds or also objects) along an ordinal scale.

The semantic differences between probabilities and possibilities are also reflected
in the computational properties of possibilistic and probabilistic logic, since reasoning
in probabilistic logic generally requires to solve linear optimization problems, while
reasoning in possibilistic logic does not, and thus can generally be done with less com-
putational effort. Note that although possibility measures can be viewed as sets of upper
probability measures [62], and possibility and probability measures can be translated
into each other [57], no translations are known between possibilistic and probabilistic
knowledge bases as described here.

We first define possibilistic formulas and knowledge bases. Possibilistic formulas
have the form Pφ> l or Nφ> l, where φ is an event, and l is a real number from [0, 1].
Informally, such formulas encode to what extent φ is possibly resp. necessarily true.
For example, P rain tomorrow > 0.7 encodes that it will rain tomorrow is possible to
degree 0.7, while N father→man > 1 says that a father is necessarily a man. A possi-
bilistic knowledge base KB is a finite set of possibilistic formulas.

A possibilistic interpretation is a mapping π : IΦ → [0, 1]. Intuitively, π(I) is the
degree to which the world I is possible. In particular, every world I such that π(I) = 0
is impossible, while every world I such that π(I) = 1 is totally possible. We say π is
normalized iff π(I) = 1 for some I ∈IΦ. Intuitively, this guarantees that there exists at
least one world, which could be considered as the real one.

The possibility of an event φ in a possibilistic interpretation π, denoted Poss(φ), is
then defined by Poss(φ) = max {π(I) | I ∈IΦ, I |=φ} (where max ∅= 0). Intuitively,
the possibility of φ is evaluated in the most possible world where φ is true. The dual
notion to the possibility of an event φ is the necessity of φ, denoted Nec(φ), which is



defined by Nec(φ) = 1 − Poss(¬φ). It reflects the lack of possibility of ¬φ, that is,
Nec(φ) evaluates to what extent φ is certainly true. The following properties follows
immediately from the above definitions.

for all possibilistic interpretations π and events φ and ψ, the following relationships
hold:

Poss(φ ∧ ψ) 6 min(Poss(φ), Poss(ψ)) ;
Poss(φ ∨ ψ) = max(Poss(φ), Poss(ψ)) ;
Poss(¬φ) = 1−Nec(φ) ;
Poss(⊥) = 0 ;
Poss(>) = 1 (in the normalized case);

Nec(φ ∧ ψ) = min(Nec(φ), Nec(ψ)) ;
Nec(φ ∨ ψ) > max(Nec(φ), Nec(ψ)) ;
Nec(¬φ) = 1− Poss(φ) ;
Nec(⊥) = 0 (in the normalized case);
Nec(>) = 1 .

(2)

A possibilistic interpretation π satisfies a possibilistic formula Pφ> l (resp., Nφ > l),
or π is a model of Pφ> l (resp., Nφ> l), denoted π |= Pφ> l (resp., π |= Nφ> l), iff
Poss(φ) > l (resp., Nec(φ) > l). The notions of satisfiability, logical consequence, and
tight logical consequence for possibilistic knowledge bases are then defined as usual (in
the same way as in the probabilistic case). We refer the reader to [60,107] for algorithms
for possibilistic logic.

2.3 Many-Valued Logics

In the setting of many-valued logics, the convention prescribing that a proposition is
either true or false is changed. A more refined range is used for the function that rep-
resents the meaning of a proposition. This is usual in natural language when words are
modeled by fuzzy sets. For example, the compatibility of “tall” in the phrase “a tall
man” with some individual of a given height is often graded: The man can be judged
not quite tall, somewhat tall, rather tall, very tall, etc. Changing the usual true/false con-
vention leads to a new concept of proposition, whose compatibility with a given state of
facts is a matter of degree and can be measured on an ordered scale S that is no longer
{0, 1}, but e.g. the unit interval [0, 1]. This leads to identifying a “fuzzy proposition”
φ with a fuzzy set of possible states of affairs; the degree of membership of a state of
affairs to this fuzzy set evaluates the degree of fit between the proposition and the state
of facts it refers to. This degree of fit is called degree of truth of the proposition φ in the
interpretation I (state of affairs). Many-valued logics provide compositional calculi of
degrees of truth, including degrees between “true” and “false”. A sentence is now not
true or false only, but may have a truth degree taken from a truth space S, usually [0, 1]
(in that case we speak bout Mathemaical Fuzzy Logic [96]) or { 0

n ,
1
n , . . . ,

n
n} for an

integer n> 1. Often S may be also a complete lattice or a bilattice [86,80] (often used
in logic programming [81]). In the sequel, we assume S = [0, 1].

In the many-valued logic that we consider here, many-valued formulas have the
form φ> l or φ6u, where l, u∈ [0, 1] [94,96], which encode that the degree of truth



of φ is at least l resp. at most u. For example, ripe tomato > 0.9 says that we have a
rather ripe tomato (the degree of truth of ripe tomato is at least 0.9).

Semantically, a many-valued interpretation I maps each basic proposition pi into
[0, 1] and is then extended inductively to all propositions as follows:

I(φ ∧ ψ) = I(φ)⊗ I(ψ) ;
I(φ ∨ ψ) = I(φ)⊕ I(ψ) ;
I(φ→ ψ) = I(φ)⇒ I(ψ) ;
I(¬φ) = 	I(φ) ,

(3)

where ⊗, ⊕,⇒, and 	 are so-called combination functions, namely, triangular norms
(or t-norms), triangular co-norms (or s-norms), implication functions, and negation
functions, respectively, which extend the classical Boolean conjunction, disjunction,
implication, and negation, respectively, to the many-valued case.

Several t-norms, s-norms, implication functions, and negation functions have been
given in the literature. An important aspect of such functions is that they satisfy some
properties that one expects to hold for the connectives; see Tables 1 and 2. Note that in
Table 1, the two properties Tautology and Contradiction follow from Identity, Com-
mutativity, and Monotonicity. Usually, the implication function ⇒ is defined as r-
implication, that is, a⇒ b = sup {c | a⊗ c 6 b}.

Some t-norms, s-norms, implication functions, and negation functions of various
fuzzy logics are shown in Table 3 [96]. In fuzzy logic, one usually distinguishes three
different logics, namely, Łukasiewicz, Gödel, and Product logic; the popular Zadeh
logic is a sublogic of Łukasiewicz logic. Some salient properties of these logics are
shown in Table 4. For more properties, see especially [96,212]. Note also, that a many-
valued logic having all properties shown in Table 4, collapses to boolean logic, that
is the truth-set can be {0, 1} only.

The implication x ⇒ y = max(1 − x, y) is called Kleene-Dienes implication in
the fuzzy logic literature. Note that we have the following inferences: Let a > n and
a ⇒ b > m. Then, under Kleene-Dienes implication, we infer that if n > 1 −m then
b > m. Under r-implication relative to a t-norm ⊗, we infer that b > n⊗m.

Note that implication functions and t-norms are also used to define the degree of
subsumption between fuzzy sets and the composition of two (binary) fuzzy relations.
A fuzzy set R over a countable crisp set X is a function R : X → [0, 1]. The de-
gree of subsumption between two fuzzy sets A and B, denoted A v B, is defined as
infx∈X A(x)⇒ B(x), where⇒ is an implication function. Note that if A(x) 6 B(x),
for all x∈ [0, 1], then A v B evaluates to 1. Of course, A v B may evaluate to a value
v ∈ (0, 1) as well. A (binary) fuzzy relation R over two countable crisp sets X and Y is
a function R : X × Y → [0, 1]. The inverse of R is the function R−1 : Y ×X → [0, 1]
with membership function R−1(y, x) = R(x, y), for every x ∈ X and y ∈ Y . The
composition of two fuzzy relations R1 : X × Y → [0, 1] and R2 : Y × Z → [0, 1]
is defined as (R1 ◦ R2)(x, z) = supy∈Y R1(x, y) ⊗ R2(y, z). A fuzzy relation R is
transitive iff R(x, z) > (R ◦R)(x, z).

A many-valued interpretation I satisfies a many-valued formula φ> l (resp., φ6u)
or I is a model of φ> l (resp., φ6u), denoted I |=φ> l (resp., I |=φ6u), iff I(φ) > l
(resp., I(φ) 6u). The notions of satisfiability, logical consequence, and tight logical



Table 1. Properties for t-norms and s-norms.

Axiom Name T-norm S-norm
Tautology / Contradiction a⊗ 0 = 0 a⊕ 1 = 1
Identity a⊗ 1 = a a⊕ 0 = a
Commutativity a⊗ b = b⊗ a a⊕ b = b⊕ a
Associativity (a⊗ b)⊗ c = a⊗ (b⊗ c) (a⊕ b)⊕ c = a⊕ (b⊕ c)
Monotonicity if b 6 c, then a⊗ b 6 a⊗ c if b 6 c, then a⊕ b 6 a⊕ c

Table 2. Properties for implication and negation functions.

Axiom Name Implication Function Negation Function
Tautology / Contradiction 0⇒ b = 1, a⇒ 1 = 1, 1⇒ 0 = 0 	 0 = 1, 	 1 = 0
Antitonicity if a 6 b, then a⇒ c > b⇒ c if a 6 b, then 	 a > 	 b
Monotonicity if b 6 c, then a⇒ b 6 a⇒ c

Table 3. Combination functions of various fuzzy logics.

Łukasiewicz Logic Gödel Logic Product Logic Zadeh Logic
a⊗ b max(a + b− 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a + b, 1) max(a, b) a + b− a · b max(a, b)

a⇒ b min(1− a + b, 1)

(
1 if a 6 b

b otherwise
min(1, b/a) max(1− a, b)

	 a 1− a

(
1 if a = 0

0 otherwise

(
1 if a = 0

0 otherwise
1− a

Table 4. Some additional properties of combination functions of various fuzzy logics.

Property Łukasiewicz Logic Gödel Logic Product Logic Zadeh Logic
x⊗	x = 0 + + + −
x⊕	x = 1 + − − −
x⊗ x = x − + − +
x⊕ x = x − + − +
		x = x + − − +

x⇒ y = 	x⊕ y + − − +
	 (x⇒ y) = x⊗	 y + − − +
	 (x⊗ y) = 	x⊕	 y + + + +
	 (x⊕ y) = 	x⊗	 y + + + +



consequence for many-valued knowledge bases are then defined in the standard way (in
the same way as in the probabilistic case). We refer the reader to [93,94,96] for algo-
rithms for many-valued logics.

3 Managing Imperfect Knowledge in Semantic Web Languages

3.1 The case of Description Logics

Probabilistic Uncertainty and Description Logics. Although there are several pre-
vious approaches to probabilistic description logics without semantic web background,
P-SHOIN (D) [87,170,174] (see also [178]) is the most expressive probabilistic de-
scription logic, both in terms of the generalized classical description logic and in terms
of the supported forms of terminological and assertional probabilistic knowledge. The
syntax of the probabilistic description logic P-SHOIN (D) uses the notion of a condi-
tional constraint from [160] to express probabilistic knowledge in addition to the axioms
of SHOIN (D). Its semantics is based on the notion of lexicographic entailment in
probabilistic default reasoning [162,166], which is a probabilistic generalization of the
sophisticated notion of lexicographic entailment by Lehmann [134] in default reason-
ing from conditional knowledge bases. Due to this semantics, P-SHOIN (D) allows
for expressing both terminological probabilistic knowledge about concepts and roles,
and also assertional probabilistic knowledge about instances of concepts and roles. It
naturally interprets terminological and assertional probabilistic knowledge as statisti-
cal knowledge about concepts and roles and as degrees of belief about instances of
concepts and roles, respectively, and allows for deriving both statistical knowledge
and degrees of belief. As an important additional feature, it also allows for express-
ing default knowledge about concepts (as a special case of terminological probabilistic
knowledge), which is semantically interpreted as in Lehmann’s lexicographic default
entailment [134].

Roughly, in it we have conditional constraints of the form (ψ|φ)[l, u], where ψ, φ
are concepts, l and u are reals from [0, 1]. Informally, (ψ|φ)[l, u] encodes that the prob-
ability of ψ given φ lies between l and u. A PTBoxes, PABoxes, and probabilistic
knowledge bases as follows: (i) A PTBox PT = (T, P ) consists of a classical (de-
scription logic) knowledge base T and a finite set of conditional constraints P ; (ii)
A PABox P is a finite set of conditional constraints; and (iii) a probabilistic knowledge
base KB = (T, P, (Po)o∈IP

) relative to IP consists of a PTBox PT = (T, P ) and one
PABox Po for every probabilistic individual o∈ IP . The meaning of a conditional con-
straint (ψ|φ)[l, u] depends on whether it belongs to P or to Po for some probabilistic
individual o∈ IP :

– Each (ψ|φ)[l, u] in P informally encodes that “generally, if an object belongs to
φ, then it belongs to ψ with a probability in [l, u]”. For example, (∃R.{o}|φ)[l, u]
in P , where o∈ IC and R∈RA, encodes that “generally, if an object belongs to φ,
then it is related to o by R with a probability in [l, u]”.

– Each (ψ|φ)[l, u] in Po, where o∈ IP , informally encodes that “if o belongs to φ,
then o belongs to ψ with a probability in [l, u]”. For example, (∃R.{o′}|φ)[l, u] in
Po, where o∈ IP , o′ ∈ IC , and R∈RA, expresses that “if o belongs to φ, then o is
related to o′ by R with a probability in [l, u]”.



The main reasoning problems in P-SHOIN (D) are summarized by the following
decision and computation problems are (i) to decide whether a probabilistic knowledge
base KB = (T, P, (Po)o∈IP

) is consistent; and (ii) compute the tightest bounds l, u ∈
[0, 1] such that KB |= (ψ|φ)[l, u].

Note that if the chosen classical description logic allows for decidable knowledge
base satisfiability, then also the main reasoning tasks in the probabilistic extension are
all decidable. (see [170,174] for further details).

There are already implementations of its predecessor P-SHOQ(D) (see [202])
and of a probabilistic description logic based on probabilistic default reasoning as in
[162,166]. Recently, the Pronto system 1, claims to have implemented P-SHOIN (D).

Other approaches. Other approaches to probabilistic description logics can be clas-
sified according to the generalized classical description logics, the supported forms of
probabilistic knowledge, the underlying probabilistic semantics, and the reasoning tech-
niques.

One of the earliest approaches to probabilistic description logics is due to Hein-
sohn [100], who presents a probabilistic extension of the description logic ALC, which
allows to represent terminological probabilistic knowledge about concepts and roles,
and which is based on the notion of logical entailment in probabilistic logics, similar
to [210,5,82,160]. Heinsohn [100], however, does not allow for assertional (classical or
probabilistic) knowledge about concept and role instances. The main reasoning prob-
lems are deciding the consistency of probabilistic terminological knowledge bases and
computing logically entailed tight probability intervals. Heinsohn proposes a sound and
complete global reasoning technique based on classical reasoning in ALC and linear
programming, as well as a sound but incomplete local reasoning technique based on the
iterative application of local inference rules.

Another early approach to probabilistic description logics is due to Jaeger [112],
who also proposes a probabilistic extension of the description logicALC, which allows
for terminological probabilistic knowledge about concepts and roles, and assertional
probabilistic knowledge about concept instances, but does not support assertional prob-
abilistic knowledge about role instances (but he mentions a possible extension in this
direction). The entailment of terminological probabilistic knowledge from terminologi-
cal probabilistic knowledge is based on the notion of logical entailment in probabilistic
logic, while the entailment of assertional probabilistic knowledge from terminologi-
cal and assertional probabilistic knowledge is based on a cross-entropy minimization
relative to terminological probabilistic knowledge. The main reasoning problems are
terminological probabilistic consistency and inference, which are solved by linear pro-
gramming, and assertional probabilistic consistency and inference, which are solved by
an approximation algorithm.

The recent work by Dürig and Studer [67] presents a further probabilistic exten-
sion of ALC, which is based on a model-theoretic semantics as in probabilistic logics,
but which only allows for assertional probabilistic knowledge about concept and role
instances, and not for terminological probabilistic knowledge. The paper also explores
independence assumptions for assertional probabilistic knowledge. The main reasoning

1 http://clarkparsia.com/weblog/2007/09/27/introducing-pronto/



problem is deciding the consistency of assertional probabilistic knowledge, but neither
an algorithm nor a decidability result is given.

Jaeger’s recent work [113] focuses on interpreting probabilistic concept subsump-
tion and probabilistic role quantification through statistical sampling distributions, and
develops a probabilistic version of the guarded fragment of first-order logic. The se-
mantics is different from the semantics of all the other probabilistic description logics
in this paper, since it is based on probability distributions over the domain, and not on
the more commonly used probability distributions over a set of possible worlds. The pa-
per proposes a sound Gentzen-style sequent calculus for the logic, but it neither proves
the completeness of this calculus nor decidability in general.

Koller et al.’s work [126] presents the probabilistic description logic P-CLASSIC,
which is a probabilistic generalization (of a variant) of the description logic CLASSIC.
Similar to Heinsohn’s work [100], it allows for encoding terminological probabilistic
knowledge about concepts, roles, and attributes (via so-called p-classes), but it does not
support assertional (classical or probabilistic) knowledge about instances of concepts
and roles. However, in contrast to [100], its probabilistic semantics is based on a reduc-
tion to Bayesian networks. The main reasoning problem is to determine the exact prob-
abilities for conditionals between concept expressions in canonical form. This problem
is solved by a reduction to inference in Bayesian networks. As an important feature of
P-CLASSIC, the above problem can be solved in polynomial time, when the underlying
Bayesian network is a polytree. Note that a recent implementation of P-CLASSIC is
described in [116].

Closely related work by Yelland [292] proposes a probabilistic extension of a de-
scription logic close to FL, whose probabilistic semantics is also based on a reduction
to Bayesian networks, and it applies this approach to market analysis. The approach
allows for encoding terminological probabilistic knowledge about concepts and roles,
but it does not support assertional (classical or probabilistic) knowledge about instances
of concepts and roles. Like in Koller et al.’s work [126], the main reasoning problem is
to determine the exact probabilities for conditionals between concepts, which is solved
by a reduction to inference in Bayesian networks.

Probabilistic Web Ontology Languages. The literature contains several probabilistic
generalizations of web ontology languages. Many of these approaches focus especially
on combining the web ontology language OWL with probabilistic formalisms based on
Bayesian networks.

In particular, da Costa [28], da Costa and Laskey [29], and da Costa et al. [30]
suggest a probabilistic generalization of OWL, called PR-OWL, whose probabilistic se-
mantics is based on multi-entity Bayesian networks (MEBNs). The latter are a Bayesian
logic that combines first-order logic with Bayesian networks. Roughly speaking, PR-
OWL represents knowledge as parameterized fragments of Bayesian networks. Hence,
it can encode probability distributions on the interpretations of an associated first-order
theory as well as repeated structure.

In [55,56], Ding et al. propose a probabilistic generalization of OWL, called Bayes-
OWL, which is based on standard Bayesian networks. BayesOWL provides a set of
rules and procedures for the direct translation of an OWL ontology into a Bayesian net-



work, and it also provides a method for incorporating available probability constraints
when constructing the Bayesian network. The generated Bayesian network, which pre-
serves the semantics of the original ontology and which is consistent with all the given
probability constraints, supports ontology reasoning, both within and across ontolo-
gies, as Bayesian inferences. In [215,56], Ding et al. also describe an application of the
BayesOWL approach in ontology mapping.

In closely related work, Mitra et al. [196] describe an implemented technique, called
OMEN, to enhancing existing ontology mappings by using a Bayesian network to rep-
resent the influences between potential concept mappings across ontologies. More con-
cretely, OMEN is based on a simple ontology model similar to RDF Schema. It uses a
set of meta-rules that capture the influence of the ontology structure and the semantics
of ontology relations, and matches nodes that are neighbors of already matched nodes
in the two ontologies.

Yang and Calmet [289] present an integration of the web ontology language OWL
with Bayesian networks, called OntoBayes. The approach makes use of probability and
dependency-annotated OWL to represent uncertain information in Bayesian networks.
The work also describes an application in risk analysis for insurance and natural disaster
management. Pool and Aikin [217] also provide a method for representing uncertainty
in OWL ontologies, while Fukushige [84] proposes a basic framework for representing
probabilistic relationships in RDF. Nottelmann and Fuhr [211] present two probabilistic
extensions of variants of OWL Lite, along with a mapping to locally stratified proba-
bilistic Datalog.

Another important work is due to Udrea et al. [278], who present a probabilis-
tic generalization of RDF, which allows for representing terminological probabilistic
knowledge about classes and assertional probabilistic knowledge about properties of
individuals. They provide a technique for assertional probabilistic inference in acyclic
probabilistic RDF theories, which is based on the notion of logical entailment in prob-
abilistic logic, coupled with a local probabilistic semantics. They also provide a proto-
type implementation of their algorithms.

An important application for probabilistic ontologies (and thus probabilistic de-
scription logics and ontology languages) is especially information retrieval. In particu-
lar, Subrahmanian’s group [277,109] explores the use of probabilistic ontologies in rela-
tional databases. They propose to extend relations by associating with every attribute a
constrained probabilistic ontology, which describes relationships between terms occur-
ring in the domain of that attribute. An extension of the relational algebra then allows
for an increased recall (which is the proportion of documents relevant to a search query
in the collection of all returned documents) in information retrieval. In closely related
work, Mantay et al. [184] propose a probabilistic least common subsumer operation,
which is based on a probabilistic extension of the description logic ALN . They show
that applying this approach in information retrieval allows for reducing the amount of
retrieved data and thus for avoiding information flood. Another closely related work
by Holi and Hyvönen [102,103] shows how degrees of overlap between concepts can
be modeled and computed efficiently using Bayesian networks based on RDF(S) on-
tologies. Such degrees of overlap indicate how well an individual data item matches
the query concept, and can thus be used for measuring the relevance in information re-



trieval tasks. Finally, Weikum et al. [287] and Thomas and Sheth [274] describe the use
of probabilistic ontologies in information retrieval from a more general perspective.

Possibilistic Uncertainty and Description Logics. Similar to probabilistic extensions
of description logics, possibilistic extensions of description logics have been developed
by Hollunder [107]; Dubois et al. [59] and more recently in [221].

A possibilistic axiom is of the form Pα> l or Nα> l, where α is a classical de-
scription logic axiom, and l is a real number from [0, 1]. A possibilistic RBox (resp.,
TBox, ABox) is a finite set of possibilistic axioms Pα> l or Nα> l, where α is an
RBox (resp., TBox, ABox) axiom. A possibilistic knowledge base KB = (R, T ,A)
consists of a possibilistic RBoxR, a possibilistic TBox T , and a possibilistic ABox A.
The semantics is a straightforward extension from the propositional case to the FOL
case.

The main reasoning problems related to possibilistic description logics are deciding
whether a possibilistic knowledge base is satisfiable, deciding whether a possibilistic
axiom is a logical consequence of a possibilistic knowledge base, and computing the
tight lower and upper bounds entailed by a possibilistic knowledge base for the neces-
sity and the possibility of a classical description logic axiom. As shown by Hollunder
[107], deciding logical consequences, and thus also deciding satisfiability and comput-
ing tight lower and upper bounds can be reduced to deciding logical consequences in
classical description logics. A recent implementation of reasoning in possibilistic de-
scription logics using KAON22 is reported in [223,222].

We recall that Liau and Yao [141] report on an application of possibilistic descrip-
tion logics in information retrieval. More concretely, they define a possibilistic general-
ization of the description logicALC and show that it can be used in typical information
retrieval problems, such as query relaxation, query restriction, and exemplar-based re-
trieval. Possibilistic description logics can also be used for handling inconsistencies in
ontologies [223,222]. Another important application of possibilistic description logics
is the representation of user preferences in the Semantic Web. For example, the recent
work by Hadjali et al. [91] shows that possibilistic logic can be nicely used for encoding
user preferences in the context of databases.

Vagueness and Description Logics. There are several extensions of description logics
and ontology languages using the theory of fuzzy logic. They can be classified accord-
ing to (a) the description logic resp. ontology language that they generalize, (b) the
allowed fuzzy constructs, (c) the underlying fuzzy logics, and (d) their reasoning algo-
rithms.

In general, fuzzy DLs allow expressions of the form (a : C, n), stating that a is
an instance of concept C with degree at least n, that is the FOL formula C(a) is true
to degree at least n (it is straightforward to map DL expressions into FOL formulae).
Similarly, (C1 v C2, n) and (R1 v R2, n) state vague subsumption relationships. In-
formally, (C1 v C2, n) dictates that the FOL formula ∀x.C1(x) → C2(x) is always

2 http://kaon2.semanticweb.org/



true to degree at least n (note that in mathematical fuzzy logic, the universal quantifi-
cation ∀x is interpreted as infx, and similarly, ∃x is interpreted as supx and, that not
always ¬∀ is the same as ∃¬, –this is true only for Zadeh logic and Łukasiewicz logic).
In addition to the standard problems of deciding the satisfiability of fuzzy knowledge
bases, deciding the satisfiability of concepts relative to fuzzy knowledge bases, and de-
ciding logical consequences of fuzzy axioms from fuzzy knowledge bases, two other
important reasoning problems are the best truth value bound problem and the best sat-
isfiability bound problem, that is (i) to determine the tightest bound n ∈ [0, 1] of an
axiom α, denoted glb(KB , α), and defined as glb(KB , α) = sup {n | KB |= (α, n)};
and (ii) to determine glb(KB , C) = supI supx∈∆I{CI(x) | I |= KB} (intuitively,
among all models I of KB , we determine the maximal degree of truth that the concept
C may have over all individuals x ∈ ∆I).

The first work about fuzzy DLs is due to Yen [293], who proposes a fuzzy extension
of a very restricted sublanguage of ALC, called FL− [19,135]. The work includes
fuzzy terminological knowledge, but no fuzzy assertional knowledge, and it is based on
Zadeh logic. It already informally talks about the use of fuzzy modifiers and fuzzy
concrete domains. Though, the unique reasoning facility, the subsumption test, is a
crisp yes/no questioning. Tresp and Molitor [275] consider a more general extension of
fuzzy ALC. Like Yen, they also allow for fuzzy terminological knowledge along with
a special form of fuzzy modifiers (which are a combination of two linear functions),
but no fuzzy assertional knowledge, and they assume Zadeh logic as underlying fuzzy
logic. The work also presents a sound and complete reasoning algorithm testing the
subsumption relationship using a linear programming oracle.

Another fuzzy extension of ALC is due to Straccia [249,251,257,262,271], who al-
lows for both fuzzy terminological and fuzzy assertional knowledge, but not for fuzzy
modifiers and fuzzy concrete domains, and again assumes Zadeh logic as underlying
fuzzy logic. Straccia [249,251] also introduces the best truth value bound problem
and provides a sound and complete reasoning algorithm based on completion rules.
In [250], Straccia reports a four-valued variant of fuzzy ALC. In the same spirit, Höll-
dobler et al. [104,105] extend Straccia’s fuzzy ALC with concept modifiers of the
form fm(x) =xβ , where β > 0, and present a sound and complete reasoning algorithm
(based on completion rules) for the graded subsumption problem.

Straccia’s works [253,261,267] are essentially as [251], except that now the set
of possible truth values is a complete lattice rather than [0, 1].

Sanchez and Tettamanzi [232,233,234] consider a fuzzy extension of the descrip-
tion logic ALCQ (without assertional component) under Zadeh logic, and they start
addressing the issue of a fuzzy semantics of quantifiers. Essentially, fuzzy quantifiers
allow to state sentences such as FaithfulCustomer u (Most)buys.LowCalorie- Food
encoding “the set of all individuals that mostly by low calorie food”. An algorithm is
presented, which calculates the satisfiability interval for a fuzzy concept.

Hájek [97,98] considers a fuzzy extension of the description logic ALC under arbi-
trary t-norms. He provides in particular algorithms for deciding whether (C vD, 1)> is
a tautology and whether (C v D, 1)> is satisfiable, which are based on a reduction to
the propositional BL logic for which a Hilbert-style axiomatization exists [96] (but see



also [98] for the complexity of rational Pavelka logic, and see [17] for some complexity
results on reasoning in fuzzy description logics).

Straccia [252] provides a translation of fuzzy ALC (with general concept inclu-
sion axioms) into classical ALC. The translation is modular, and thus expected to be
extendable to more expressive fuzzy description logics as well. The main idea is to
translate a fuzzy assertion of the form (a : C, n)> into a crisp assertion a : Cn, with
the intended meaning “a is an instance of C to degree at least n”. Then, concept in-
clusion axioms are used to correctly relate the Cn’s. For example, C0.7 v C0.6 is used
to encode that whenever an individual is an instance of C to degree at least 0.7, then
it is also an instance of C to degree at least 0.6. The translation is at most quadratic
in the size of the fuzzy knowledge base. Note that the translation does not yet work in
the presence of fuzzy modifiers and fuzzy concrete domains. Bobillo et al. [13] extend
the approach to a variant of fuzzy SHOIN . The idea has further been considered in
the works [139,140], which essentially provide a crisp language in which expressions
of, e.g., the form a : ∀R0.8.C0.9 are allowed, with the intended meaning “if a has an
R-successor to degree at least 0.8, then this successor is also an instance of C to de-
gree at least 0.9”. The idea has further been extended to a distributed variant of fuzzy
description logics in [151]. A mapping to classical DLs under Łukasiewicz semantics
has been provided in [16] for the fuzzy DL ALCHOI.

In [180], a fuzzy extension (based on Zadeh logic) of CARIN [136] is provided,
which combines fuzzy description logics with non-recursive Horn rules.

Other extensions of fuzzy description logics concern their integration with fuzzy
logic programs, which however goes beyond the scope of the present paper (see, e.g.,
[267,263,261,169,280]). An interesting extension is due to Kang et al. [44], who ex-
tends fuzzy description logics by comparison operators, e.g., to state that “Tom is taller
than Tim”. Another interesting extension is proposed by Dubois et al. [59], who com-
bine fuzzy description logics with possibility theory. Essentially, since (a : C, n)> is
Boolean (either an interpretation satisfies it or not), we can build on top of it an uncer-
tainty logic, which is based on possibility theory in [59].

We recall that usually the semantics used for fuzzy description logics is based on
Zadeh logic, but where the concept inclusion is crisp, that is, C vD is viewed as
∀x.C(x) 6D(x). In [106,275], a calculus for fuzzy ALC [235] with fuzzy modifiers
and simple TBoxes under Zadeh logic is reported. No indication for the BTVB prob-
lem is given. Straccia [249,251] reports a calculus for fuzzy ALC and simple TBoxes
under Zadeh logic and addresses the BTVB problem. How the satisfiability problem
and the BTVB problem can be reduced to classical ALC, and thus can be solved by
means of tools like FaCT and RACER is shown in [252]. Results providing a tableaux
calculus for fuzzy SHIN under Zadeh logic (but only allowing for a restricted form
of concept inclusion axioms, which are called fuzzy inclusion introductions and fuzzy
equivalence introductions), by adapting similar techniques as for the classical coun-
terpart, are shown in [247,245]. Fuzzy general concept inclusion axioms under Zadeh
logic can be managed as described in [248]. Also interesting is the work [290], which
provides a tableau for fuzzy SHI with general concept inclusion axioms. Finally, the
reasoning techniques for classical SHOIN (D) [108] can be extended to [251], as
[247,245,244,246] already show.



On the other hand, fuzzy tableaux algorithms under Zadeh semantics do not seem
to be suitable to be adapted to other semantics, such as Łukasiewicz logic. Even more
problematic is the fact that they are yet unable to deal with fuzzy concrete domains [254],
that is the possibility to allow an explicit representation of fuzzy membership functions.
Despite these negative results, recently, [255,254] report a calculus for fuzzy ALC(D)
whenever the connectives, the modifiers, and the fuzzy datatype predicates are repre-
sentable as bounded mixed integer linear programs (MILPs). For example, Łukasiewicz
logic satisfies these conditions as well as the membership functions for fuzzy datatype
predicates that we have presented in this paper. Additionally, modifiers should be a
combination of linear functions. In that case, the calculus consists of a set of constraint
propagation rules and an invocation to an oracle for MILP. The method has been ex-
tended to fuzzy SHIF(D) [268] (the description logic behind OWL Lite) and a rea-
soner, called fuzzyDL [15], has been implemented and is available at Straccia’s web
page. FuzzyDL supports more features, which we do not address here. The use of MILP
for reasoning in fuzzy description logics is not surprising as their use for automated de-
duction in many-valued logics is well-known [93,94]. Bobillo and Straccia [14] provide
a calculus for fuzzy ALC(D) under product semantics.

A very recent problem for fuzzy description logics is the top-k retrieval problem.
While in classical semantics, a tuple satisfies or does not satisfy a query, in fuzzy de-
scription logics, a tuple may satisfy a query to a degree. Hence, for example, given a
conjunctive query over a fuzzy description logic knowledge base, it is of interest to
compute only the top-k answers. While in relational databases, this problem is a cur-
rent research area (see, e.g., [74,110,137]), very few is known for the case of first-order
knowledge bases in general (but see [265]) and description logics in particular. The
only works that we are aware of are [260,266,272], which deal with the problem of
finding the top-k result over knowledge bases in a fuzzy generalization of DL-Lite [24]
(note that [213,214] is subsumed by [266], though in [213,214] the storage systems is
no-longer a database, but a RDF storage system).

Fuzzy logic has numerous practical applications in general (see, e.g., [125]). Related
to fuzzy description logics, we point out that they have first been proposed for logic-
based information retrieval [194], which originated from the idea to annotate textual
documents with graded description logic sentences, which goes back to [195]. The idea
has been reconsidered in [247,272,295]. In particular, (i) Zhang et al. [295] describe
a semantic portal that is based on fuzzy description logics; (ii) Li et al. [138] present
an improved semantic search model by integrating inference and information retrieval
and an implementation in the security domain; (iii) Straccia and Visco [272] report on a
multimedia information retrieval system based on a fuzzy DLR-Lite description logic,
which is capable to deal with hundreds of thousands of images. D’Aquin et al. [43]
provide a use case in the medical domain, where fuzzy concrete domains are used to
identify tumor regions in x-ray images. Agarwal and Lamparter [1] use fuzzy descrip-
tion logics to improve searching and comparing products in electronic markets. They
provide a more expressive search mechanism that is closer to human reasoning and that
aggregates multiple search criteria to a single value (ranking of an offer relative to the
query), thus enabling a better selection of offers to be considered for the negotiation.
Liu et al. [142] use a fuzzy description logic to model the management part in project



selection tasks. Finally, [15] shows also how to use fuzzyDLs for e-Commerce Match-
making and Semantic Fuzzy Control.

3.2 The case of Logic Programs

In logic programming, the management of imperfect information has attracted the at-
tention of many researchers and numerous frameworks have been proposed. Addressing
all of them is almost impossible, due to both the large number of works published in
this field (early works date back to early 80-ties [241] ) and the different approaches
proposed (see the appendix for a list of references). Like for the DL case, essentially
they differ in the underlying notion of uncertainty theory and vagueness theory (prob-
ability theory, possibilistic logic, fuzzy logic and multi-valued logic) and how uncer-
tainty/vagueness values, associated to rules and facts, are managed.

Basically [143], a logic program P is made out by a set of rules and a set of facts.
Facts are atoms of the form P (t1, . . . , tn), where ti is a term (usually, a constant or
a variable). In most cases, facts are ground. On the other hand rules are of the form
A ← B1, . . . , Bn, where each A and Bi is an atom. B1, . . . , Bn is called body, while
A is called head of the rule. The intended meaning of a rules is that “if all Bi are true,
then alsoA is true”. From a FOL perspective, a rule is just a FOL formula ∀x.B1∧ . . .∧
Bn → A, where x are all the variables occurring in the rule. Such logic programs are
called positive as no literal occurs. In case a literal occurs in the body, then we speak
about normal logic programs. We may also have a disjunction of atoms in the head,
and then we talk about disjunctive logic programs ([239]). In the most general setting,
literals are allowed in the head as well and from a semantics point of view, the stable
model semantics [85] is widely adopted.

Probabilistic Uncertainty and Logic Programs. The variety of proposals of logic
programming under probability theory is huge and an description of most of them is
out of the scope of this work. We describe here some groups of works.

In probabilistic generalizations of (annotated) logic programs (see [123]) based on
probabilistic logic fall works such as [47,49,45,46,48,203,204,281,115], where rules
have the form of annotated logic programming rules. Facts are expressions of the form
A : µ, where µ is an interval in [0, 1]. The intended meaning of an expressionA : [m,n]
is “the probability of the event corresponding to A to occur (have occurred) lies in the
interval [m,n]”. Rules have the form A : µ ← B1 : µ1, . . . , Bn : µ2, where µ, µi are
intervals in [0, 1].

In probabilistic generalizations of logic programs based on Bayesian networks /
causal models fall works such as [11,12,224,225,154,285,118,119,133,209,206,218,219,220].
Interesting is Poole’s Independent Choice Logic (ICL) approach. It is based on acyclic
logic programs P under different “choices”. Each choice along with P produces a first-
order model. By placing a probability distribution over the different choices, one then
obtains a distribution over the set of first-order models. Roughly, rules and facts are
as for classical logic programs. Additionally, there is a set C of choices of the form
{(A1 : α1), ..., (An : αn)}, where Ai is an atom and the αi sum-up to 1. A total choice
TC is a set of atoms such that from each choice Cj ∈ C there is exactly one atom



Aii ∈ Cj in TC . The probability of a query q w.r.t. to P is the sum of the probabilities
pC of total choices TC such that P ∪ TC |= q, where pC is the product of the αji , for
Cji ∈ TC . It is worth to note that the ICL approach generalizes Bayesian networks,
influence diagrams, Markov decision processes, and normal form games.

In the third group fall first-order generalization of probabilistic knowledge bases
in probabilistic logic (based on logical entailment, lexicographic entailment, and maxi-
mum entropy entailment) and comprises works such as [156,165,163]. In these works,
similarly to P-SHOIN (D), expressions are of the form (ψ|φ)[l, u], but now ψ, φ are
formulae rather than concepts. The development of the semantics parallels to the case
of P-SHOIN (D).

Possibilistic Uncertainty and Logic Programs. In possibilistic logic programs [58],
facts are of the form (P (t1, . . . , tn),N l), while rules are of the form (A← B1, . . . , Bn,N l).
The meaning of them is given directly by the possibilistic FOL formulae, NP (t1, . . . , tn), > l
and N (∀x.B1∧ . . .∧Bn → A) > l, respectively (the necessity of the formula is greater
or equal than l). This basic form has been extended in [208] (which describes also an
implementation) to the case of disjunctive logic programming under the stable model
semantics, while [3,4,2,26] allow explicitly to deal with fuzzy sets in the language.

Vagueness and Logic Programs. While there is a large literature related to the man-
agement of vagueness in logic programs, there are rule forms that are general enough to
cover a large amount of them (see e.g., [282,256,177]). Roughly, rules are of the form
A ← f(B1, ..., Bn), where A,Bi are atoms and f is a total function f : Sn → S
over a truth space S. Computationally, given an assignment/interpretation I of val-
ues to the Bi, the value of A is computed by stating that A is at least as true as
f(I(B1), ..., I(Bn)). The form of the rules is sufficiently expressive to encompass
many approaches to many-valued logic programming. [177] provides an even more
general setting as the function f may also depend on the variables occurring in the
rule body. On the other hand there are also some extensions to many-valued disjunctive
logic programs [188,189,259]. In some cases, e.g. [131] there is also a function g, which
dictates how to aggregate the truth values in case an atom is head of several rules.

Most works deal with logic programs without negation and some may provide some
technique to answer queries in a top-down manner, as e.g.[35,123,131,282,258]. On the
other hand, there are very few works dealing with normal logic programs
[38,79,81,144,145,146,147,148,149,150,188,256,259,264,269,176], and little is know
about top-down query answering procedures. The only exceptions are [256,264,269].

Another rising problem is the problem to compute the top-k ranked answers to a
query, without computing the score of all answers. This allows to answer queries such
as “find the top-k closest hotels to the conference location”. Solutions to this problem
can be found in [265,270,177].

3.3 Description Logic Programs

Description Logic Programs [88,197,230] are a combination of description logics with
logic programming. There is a large body of work on integrating rules and ontologies,



which is a key requirement of the layered architecture of the Semantic Web. Significant
research efforts focus on hybrid integrations of rules and ontologies, called descrip-
tion logic programs (or dl-programs), which are of the form KB = (L,P ), where L
is a description logic knowledge base and P is a finite set of rules involving either
queries to L in a loose integration (see especially [72,73,69,70,71]) or concepts and
roles from L as unary resp. binary predicates in a tight integration (see especially
[228,229,171,197,198]). Roughly, in the loosely coupled approach, DL atoms may ap-
pear in rule bodies and act as queries to an underlying DL system, while in the tightly
coupled approach the integration is more involved.

In parallel to these to approaches (loosely coupled vs. tightly coupled) there has
been some works on the extension of these approaches towards the management of
imperfect information: (i) under probability fall works such as [167,172,173,21,22];
(ii) under vagueness fall the works [169,176,177,267,263]; while a combination of
probability and vagueness in description logic prrograms can be found in the work
(unique so far) [175].

A Some references related to logic programming, uncertainty and
vagueness

Below a list of references and the underlying imprecision and uncertainty theory in
logic programming frameworks. The list of references is by no means intended to be
all-inclusive. The author apologizes both to the authors and with the readers for all the
relevant works, which are not cited here.

Probability theory: [11,12,7,8,40,42,47,49,45,46,48]
[224,225,154,285,83,118,119,117,133,209,130,132,155,156,158]
[159,161,165,163,186,199,203,204,205,207,218,219,220,227,242,281,115,288]

Possibilistic logic: [3,4,2,26,58,208]
Fuzzy set theory: [187,9,10,20,25,27,68,101,111,124,90,89,187,201,200,216]

[226,240,241,243,179,273,279,283,282,284,286,291]
Multi-valued logic: [23,34,35,36,31,32,37,38,39,41,33,54,50,53,51,52]

[79,81,76,77,78,92,120,121,122,123,127,128,129,131]
[144,145,146,147,148,149,150,152,153,181,183,182,185,188,189,192,192,190,191,193]
[231,236,237,238,258,256,259,264,265,270,269,276]

References

1. S. Agarwal and S. Lamparter. Smart: A semantic matchmaking portal for electronic
markets. In CEC ’05: Proceedings of the Seventh IEEE International Conference on
E-Commerce Technology (CEC’05), pages 405–408, Washington, DC, USA, 2005. IEEE
Computer Society.

2. T. Alsinet and L. Godo. Towards an automated deduction system for first-order possibilis-
tic logic programming with fuzzy constants. International Journal of Intelligent Systems,
17(9):887–924, September 2002.



3. T. Alsinet, L. Godo, and S. Sandri. On the semantics and automated deduction fo PLFC, a
logic of possibilistic uncertainty and fuzzyness. In Proceedings of the 15th Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI-99), 1999.

4. T. Alsinet and L. G. L. Godo. A complete calcultis for possibilistic logic programming
with fuzzy propositional variables with fuzzy propositional variables. In Proceedings of
the 16th Conference in Uncertainty in Artificial Intelligence (UAI-00), pages 1–10. Morgan
Kaufmann, 2000.

5. S. Amarger, D. Dubois, and H. Prade. Constraint propagation with imprecise conditional
probabilities. In Proceedings UAI-1991, pages 26–34. Morgan Kaufmann, 1991.

6. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, 2003.

7. J. F. Baldwin. Evidential support of logic programming. Fuzzy Sets and Systems, 24(1):1–
26, 1987.

8. J. F. Baldwin. A theory of mass assignments for artificial intelligence. Lecture Notes in
Computer Science, 833:22–34, 1994.

9. J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. Fril - Fuzzy and Evidential Reasoning in
Artificial Intelligence. Research Studies Press Ltd, 1995.

10. J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. Applications of fuzzy computation:
Knowledge based systems: Knowledge representation. In E. H. Ruspini, P. Bonnissone,
and W. Pedrycz, editors, Handbook of Fuzzy Computing. IOP Publishing, 1998.

11. C. Baral, M. Gelfond, and N. Rushton. Probabilistic reasoning with answer sets. In Pro-
ceedings of the 7th International Conference in Logic Programming and Nonmonotonic
Reasoning (LPNMR-04), number 2923 in Lecture Notes in Artificial Intelligence, pages
21–33, Fort Lauderdale, FL, USA, 2004. Springer Verlag.

12. C. Baral and M. Hunsaker. Using the probabilistic logic programming language p-log for
causal and counterfactual reasoning and non-naive conditioning. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IJCAI-07), pages 243–249, 2007.
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192. J. Medina, M. Ojeda-Aciego, and P. Vojtáš. A procedural semantics for multi-adjoint logic
programming. In Proceedings of the10th Portuguese Conference on Artificial Intelligence
on Progress in Artificial Intelligence, Knowledge Extraction, Multi-agent Systems, Logic
Programming and Constraint Solving, pages 290–297. Springer-Verlag, 2001.
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inference tools. In Proceedings of the Workshop on Protégé and Reasoning held at the
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