

SEVENTH FRAMEWORK PROGRAMME

CAPACITIES

Research Infrastructures

INFRA-2007-1.2.1 Research Infrastructures

DRIVER II

Grant Agreement 212147

“Digital Repository Infrastructure Vision for European Research II”

Compound Object Model Specification
Deliverable Code: D8.1

D8.1 Compound Object Model Specification Page 1 of 26

D8.1 Compound Object Model Specification Page 2 of 26

Document Description

Project

Title: DRIVER, Digital Repository Infrastructure Vision for
European Research II

Start date: 1st December 2007

Call/Instrument: INFRA-2007-1.2.1

Grant Agreement: 212147

Document

Deliverable number: D8.1

Deliverable title: Compound Object Model Specification

Contractual Date of Delivery: 1st of October 2008

Actual Date of Delivery: 27th of October 2008

Editor(s): CNR

Author(s): Paolo Manghi

Reviewer(s): Wolfram Horstmann, Jaroslaw Wypychowski, Natalia
Manola

Participant(s): Leonardo Candela, Donatella Castelli, Yannis Ioannidis,
Marko Mikulicic, Pasquale Pagano

Workpackage: WP8

Workpackage title: Project Management

Workpackage leader: CNR

Workpackage participants: NKUA, ICM, CNR, SURF

Distribution: Public

Nature: Deliverable

Version/Revision: 0.1

Draft/Final: Final

Total number of pages:

(including cover)

26

File name: D8.1.pdf

D8.1 Compound Object Model Specification Page 3 of 26

Key words: Data Layer, Content Services, Compound Objects, Data
models

D8.1 Compound Object Model Specification Page 4 of 26

Disclaimer
This document contains description of the DRIVER II project findings, work and products.
Certain parts of it might be under partner Intellectual Property Right (IPR) rules so, prior to
using its content please contact the consortium head for approval.

In case you believe that this document harms in any way IPR held by you as a person or as
a representative of an entity, please do notify us immediately.

The authors of this document have taken any available measure in order for its content to
be accurate, consistent and lawful. However, neither the project consortium as a whole nor
the individual partners that implicitly or explicitly participated in the creation and publication
of this document hold any sort of responsibility that might occur as a result of using its
content.

This publication has been produced with the assistance of the European Union. The content
of this publication is the sole responsibility of DRIVER consortium and can in no way be
taken to reflect the views of the European Union.

The European Union is established in accordance with the
Treaty on European Union (Maastricht). There are currently
25 Member States of the Union. It is based on the European
Communities and the member states cooperation in the
fields of Common Foreign and Security Policy and Justice
and Home Affairs. The five main institutions of the European
Union are the European Parliament, the Council of Ministers,
the European Commission, the Court of Justice and the
Court of Auditors. (http://europa.eu.int/)

DRIVER-II is a project funded by the European Union

D8.1 Compound Object Model Specification Page 5 of 26

Table of Contents

Document Description...2

Disclaimer ...4

Table of Contents ..5

Table of Figures...6

Summary...7

1 Introduction ..8

2 The Model ..9

3 Low-level Model ..10

3.1 Data Model Primitives ...10

3.2 Type Definition Language (TDL) ..11

3.3 Data Definition Language (DDL) ..13

3.4 Data Manipulation Language (DML) ...15

3.5 Data Query Language (DQL) ...17

4 High-level Model ...20

4.1 TDL and DDL extensions ...20

4.2 DML and DQL extensions ..23

5 References...26

D8.1 Compound Object Model Specification Page 6 of 26

Table of Figures
Figure 1 – Relationships between Types, Sets and Objects ...10

Figure 2 – Object type’s interrelation...11

Figure 3 – Type Definition Language ...12

Figure 4 – Compatibility relation <:...13

Figure 5 – Data Definition Language ...13

Figure 6 – Graphical representation of the Proceedings DL ...15

Figure 7 – Data Manipulation Language...16

Figure 8 – Castability of Objects..16

Figure 9 – Data Query Language...18

Figure 10 – Extended Type Definition Language...20

Figure 11 – Example of Version Type instantiation ...21

Figure 12 – Example Proceedings-Articles in the high-level data model............................23

D8.1 Compound Object Model Specification Page 7 of 26

Summary
This deliverable presents the Compound Object data model to be adopted in DRIVER. The
model will serve the implementation of Content Services capable of supporting efficient
storage and search of DRIVER Compound Objects.

D8.1 Compound Object Model Specification Page 8 of 26

1 Introduction

Compound Objects are generically intended as sets of digital objects, associated with each
other according to relationships that express the form of their relations. Compound Object
models differ by the modeling primitives they offer, i.e. the way they characterize the
nature of the digital objects and the relationships into play, and thus by the kind of
Document Models, i.e. digital document structure, they can represent. A number of
Compound Object models have been defined, whose features range from very flexible,
where the model can potentially describe any document model (e.g. Fedora), to very strict,
where the model defines one specific document model (DSpace).

The DRIVER-II project is expected to produce experimental services for the management
of Enhanced Publications, a document model whose specification has to be defined in WP4.
In particular, the aim is to define services for the efficient storage and retrieval of this kind
of digital objects, then capable of serving the needs of Enhanced Publication User
Interfaces, to be designed and developed in WP9.

The roadmap to achieve these goals starts from this deliverable, which proposes a new
Compound Object model capable of:

(i) Capturing the modeling abstractions required to describe document models of any
Digital Library application domain, and thus also Enhanced Publications defined in
WP4;

(ii) Inspiring the design of Content Services supporting efficient and optimized storage
and search of such objects.

The novelty of the model is that of being statically-typed, in the traditional database
sense.1 The Content Services implementing the model will support construction of DL
databases based on the static definition of the structure of the compound objects involved.
By exploiting static information about the object structure (so called “object types”), the
Services will offer their safe, optimized and efficient management.

1 The type of an object is the description in a formal language of the object structure. When a data
model imposes that objects must be preceded by the definition of their type, the model is called
statically-typed.

D8.1 Compound Object Model Specification Page 9 of 26

2 The Model

The data model we propose is presented in two stages. First we introduce a low-level typed
data model, capable of representing typed graphs of complex objects. The model is flexible
enough to provide DL content designers with basic primitives for the definition of
customized document models for Compound Objects. In the second stage, we introduce a
high-level typed data model, whose primitives are expressed in terms of the low-level
model primitives and offer common DL-abstractions for Compound Objects, such as
versioning, aggregation, collections, etc. The high-level model should be interpreted as
modeling syntactic sugar for DL-content designers, who could anyway express the same
document model structures through the low-level primitives of the language, but at a finer
and therefore more complex granularity.

The main difference between the low-level data model and the high-level data model is
that the former is meant to be “minimal”, while the latter can be in principle be extended
and modified according to the DL designers needs. The low-level data model provides the
minimal set of primitives required to design efficient Compound Object DLs, i.e. removing
one of such primitives would compromise the expressivity of the language and leave a
subset of our application domain out of our solution domain. The high-level model offers
modeling primitives that can be expressed in terms of the low-level primitives and can be
therefore seen as add-ons, i.e. extensions to the core model.

D8.1 Compound Object Model Specification Page 10 of 26

3 Low-level Model

3.1 Data Model Primitives

The low-level model supports the notions of Type, Set and Object. Types define the
abstract structure and the operators of the Object entities in our data model. Sets are
instead the instantiation of Types, i.e. the concrete type, of the Objects they contain. More
specifically, the relation between the three entities is:

 Types can be instantiated to create new Sets conformant to the type properties; A
Set is therefore the result of the instantiation of one Type and also acts as
“generator” of Objects of that Set.

 Sets have unique names and are referred to add, delete or update the Objects
therein; in that sense, each Set defines a new unique Named Type for all Objects it
will contain, whose structure and operators will be that of the Set’s Type; Sets are
therefore (possibly empty) containers of “structurally homogenous” Objects.

 Objects have unique identifiers and they conform to the Name Type of the Set
through which they were created; Objects can be casted to belong to other Named
Types, i.e. to other Sets with “compatible” Types.

Figure 1 depicts how a Type T can be instantiated in a number of Sets, here with unique
names A and B. Such Sets will have type T (A::T) and will be able to generate and contain
Objects o with named types TA and TB respectively (o:{TA} and o:{TB}). Objects in A and B
share the same structure and behavior, but belong to different Types. We shall see how
Objects can be casted to belong to different Sets of “compatible” Types.

Figure 1 – Relationships between Types, Sets and Objects

Sets can be of three main Types:

 Atom Type: Atoms are intended as “simple digital objects”, i.e. files or URN
references to files. A Set of atoms can be specialized to contain Objects of a specific
format/media;

 Description Type: Descriptions are human/machine readable descriptions of digital
or physical entities in the real world. As such, Descriptions can be given in terms of
“properties”, i.e. attributes-value pairs, or more complex structures, such as trees of
records;

 Relations Type: Relations represent binary relationships between Objects of two
given Sets, i.e. they consist of two pointers at two existing objects in the given

D8.1 Compound Object Model Specification Page 11 of 26

target sets. As all other objects, relation objects have an identity; unlike other
objects, relation objects cannot exist without the relative target Objects to exist.

The Object Model attempts to capture the essence of modern Digital Libraries, whose
content may be the result of the combination of new content with existing content, in turn
possibly heterogeneous and not locally available. In this scenario, Atom objects might be
available from different sources and might come or not come with a human/machine
readable “description”; e.g. metadata description. Equally, Description objects might exist
in the system without for the objects they describe to be present; e.g. metadata catalogs.
Finally, given a DL populated with objects, relations between such objects are and should
be defined independently by DL communities, based on their needs of connecting the
objects. This is why relation objects are independent from the objects they connect, i.e.
they are always added in a “second stage” and can be removed with no implicit impact on
the objects they were binding together.

Figure 2 depicts the relation between Set Types, where the triangles represent Sets and
the other shapes the different kinds of Objects therein. The picture illustrates how Relation,
Atom and Description Sets are all specializations (can be casted to) of Object Sets while
Relation Sets depend on two other Sets, and relation Objects relate two Objects in two
such Sets. In particular, for any object o (be it a or r) that is “linked” to a description object
d through one relation object r, we say that o is described by d, or that d is a description of
o.

Figure 2 – Object type’s interrelation.

3.2 Type Definition Language (TDL)

A Type definition declares the structure and nature of a Set of Objects obtained as
instantiation of the Type (see Data Definition Language). The TDL enables the definition of
types by appropriately combining type declarations, i.e. type variables assigned to type
definitions, according to the abstract syntax in Figure 3.

T ::= (X = T),T’ // type variable declaration

 | atom(F) // atom type

 | des(D) // description type

 | obj // generic object type

 | rel(A,B,M,TP) // relation type

D8.1 Compound Object Model Specification Page 12 of 26

 | union(A1, … ,Ak) // union type

 | ε

F ::= pdf | xml | avi | other file formats…

M ::= 1:1 | 1:N | N:1 | M:M // relation multiplicity

TP ::= t:p | p:t | p:p | t:t // relation partiality/totality

D ::= [l1:K1, … lk:Kk] // description type

K ::= D // nested description type

 | coll(D) // collection type

 | int | string | date | bool | others…

Figure 3 – Type Definition Language

Type semantics (informal)
atom(F)

When instantiated, the Type defines a Sets of Atom Objects of type (format) F. Note that
the same Set may contain Atoms of different formats (F,F). Moreover, although not
specified by the grammar, each format can be accompanied by parameters specifying
further static physical customization of the format; e.g. compression, max size, etc.

des(D)

When instantiated, the Type defines a Set of Objects that are descriptions of others
according to the description type D. The Type [l1:K1, … lk:Kk]declares a Set of
description objects with unique identity and a set of properties with name li and value vi
of type Ki. The type coll(D) defines a set of values of type D, which has to be at least
one level below a record type (we simplify collection treatment, by enabling collection
evaluation through a record label). Description objects are strongly typed and are used for
internal search purposes and the like.

rel(A,B,M,TP)

The Type depends on two Sets A and B. Such a type, when instantiated, defines a set of
Relation Objects linking object pairs in the two sets A and B. Special constraints can be
defined on the relation objects, regarding multiplicity and partiality of the relation set.
Given the Sets A and B, then 1:1, 1:N and N:M state that the relation between their
objects must be one-to-one, one-to-many or many-to-many, respectively. Besides, the
constraints p:t, p:p or t:t define the partiality or totality of the relation in one direction
and the other.

union(A1, … ,Ak)

The Type depends on k Sets Ai. Such a Type, when instantiated, defines the Set of Objects
that contains the union of all Objects in the Sets A1, … ,Ak.

obj

It is a special type, whose objects represent the existence of a fact or concept in the real
world; objects of all types can be casted-generalized to Object type.

Type Equivalence

Two types are equal if they share the same structure.

Type Compatibility

D8.1 Compound Object Model Specification Page 13 of 26

If T is compatible with T’ (T <: T’), then the objects in sets of type T can be
potentially used in context where objects of sets of type T’ are expected. Compatibility is
determined by the structure similarity relation <: (see Figure 4) and is the property
required to enable the cast operation in the DML (see Figure 7).

T = T’

T <: T’

T <: obj

D <: D’ or D = D’

des(D) <: des(D’)

for all t:{1…k} exists q:{1…s} such that l’t = lq and Kt <: Kq

[l1:K1, … lk:Kk] <: [l’1:K’1, … l’s:Ks]

D <: D’

coll(D) <: coll(D’)

F <: F’

atom(F) <: atom(F’)

Figure 4 – Compatibility relation <:

3.3 Data Definition Language (DDL)

The core of DDL enables the creation of sets of objects with a given type (see Figure 5).

C ::= C;C

 | A = create T \\ instantiation of a set A of type T

 | delete A \\ deletion of a set A and its objects

 | ε

Figure 5 – Data Definition Language

The informal semantics of such commands is the following.

A = create T

The command generates a new Set with name A of type T (A::T). Note that a
subsequent command B = create T would generate another Set from the same type.
Although the type, i.e. the underlying structure, is the same, objects in A could not be used
in contexts where objects in B are expected. The objects oA in A and oB in B would have
named types oA:{TA} and oB:{TB}.

D8.1 Compound Object Model Specification Page 14 of 26

3.3.1 Example Proceedings of Articles

In the following we show the steps required to define a Digital Library storing Conference
Proceedings. In our example, Proceedings are sets of scientific articles in PDF format,
where both proceedings and articles are described by Dublin Core records. Proceedings are
therefore compound objects, whose existence represents a set of articles accepted to a
given conference.

The type definitions are the following:

ProceedingType = obj();

ArticleType = atom(PDF);

DCType = des([DCField1:DCFieldType1,…, DCField15:DCFieldType15]);

where the DCFieldk‘s are the fields of the Dublin Core metadata format. Through such
types we can define the following Sets

Proceedings = create ProceedingType;

ProceedingsDC = create DCType;

ProceedingsMetadata = create rel(Proceedings, ProceedingsDC,1:1,t:t);

Article = create ArticleType;

ArticleDC = create DCType;

ArticleMetadata = create rel(Article, ArticleDC,1:1,p:t);

ProcArticle = create rel(Proceedings,Article,1:n,p:t);

Figure 6 exemplifies a possible instance of the DLDB resulting from this Set instantiation.
Note how Proceedings can exist without related articles and how articles can exist without
a corresponding DC description.

D8.1 Compound Object Model Specification Page 15 of 26

Figure 6 – Graphical representation of the Proceedings DL

The first three commands create the set of objects Proceedings, a special set
ProceedingsDC for the relative description objects and then a relation object set
ProceedingsMetadata, which will include the relation objects linking proceedings to
their descriptions. Note that the constraints on such relation objects are: (i) from 1:1,
there cannot be more than one object referring to one object in Proceedings or in
ProceedingsDC; (ii) from t:t, there cannot be a ProceedingsDC object without one
related Proceedings object and viceversa.

Similarly, the subsequent three commands define a set scenario where PDF files can be
created and associated to their metadata objects. In this case, however, Article objects
can also exist without the relative ArticleMetadata object. Finally, a relation set
ProcArticle between Proceedings objects and Article objects is created,
according to which all Article objects must be associated to one Proceedings object.

The DDL can be extended with special clauses for the customization of the physical
storage. For example description object sets can also include the indexing features, if any,
to be applied; atom sets can specify the compression algorithm to be applied or the kind of
access granted to the file format involved. The physical storage management will be dealt
with in a later stage of design.

3.4 Data Manipulation Language (DML)

The core of the DML (see Figure 7) enables the creation/deletion/update/casting of objects
into/from the sets created in the DDL.

C ::= C;C

 | x = new A(pars) \\ instantiation of an object in A

 | A.cast(o) \\ object o cast

 | A.drop(o) \\ deletion of an object o from A

D8.1 Compound Object Model Specification Page 16 of 26

 | A.update(o,pars) \\ update of an object o w.r.t. A

 | {C} \\ ACID transaction

 | ε

Figure 7 – Data Manipulation Language

x = new A(pars)

The command generates a new object of type TA (x:{TA}), where A::T, assigns it to the
variable x of type TA, and inserts it into A. Note that pars is a set of parameters whose
number and structure depends on the nature of the type T:

 T=atom(F): here pars is a pair (object, mode) where object is an URN to
a file and mode can be either reference or payload. In the first case the object
stores the file, i.e. the system uploads it from the URN; in the second case only the
URN is stored with the object.

 T=des(D): here pars is a value expression of type D.

 T=rel(A,B,M,TP): here pars is a pair (fst, snd) where fst and snd are
respectively objects in the two sets A and B.

 T=union(A1, … Ak): here pars is a pair (pars,Ai) where pars is the set of
parameters required to create an element of the set Ai.

A.cast(o)

The command declares that the object o:{T1,…,Tk} also belongs to the set A, thus
o:{TA, T1,…,Tk}. This is possible only if for all k: Tk <:: TA. The castability relation <::
is defined in Figure 8, based on the compatibility relation in Figure 4.

T <: T’, A = new T, B = new T’

TA <:: TB

k>s, for all t:{1…k} exists q:{1…s} such that TAt = TAq

union(A1, … As) <:: union(A1, … Ak)

exists q:{1…s} such that TB <: TAq

T <:: Union(A1, … Aq)

Figure 8 – Castability of Objects

A.drop(o)

The command removes the object o:{TA,T1,…,Tk} from A, thus making it of type
o:{T1,…,Tk}. If TA is the only type of o, then o is removed from the system.

{C}

The command executes a sequence of commands in one transactional step. The clause
ensures that all commands it contains are executed or none. It is typically used to ensure

D8.1 Compound Object Model Specification Page 17 of 26

that relations set constraints are respected. Transaction side effects and constraints on Sets
are verified when the transaction is committed. If a transaction violates Set constraints, the
state is rolled back to the one before the transaction.

For example if we want to insert a new article to a proceeding object o, we should execute
the following transaction:

 {a = new Article(URN,payload); \\ URN: ref to the article

 DC = new ArticleDC(v); \\ v: DC record for the article

 r1 = new ArticleMetadata(a,DC); \\ creation of relation r1

 r2 = new ProcArticle(o,a); \\ creation of relation r2

 };

which creates the object a in Article, creates the relative description object DC in
ArticleDC, creates the relation r1 between the article and its metadata in
ArticleMetadata, and finally creates the relation r2 between the proceedings o and
the article a in ProcArticle.

Constraint integrity checking
Constraint checking is performed at every execution step, i.e. execution of individual
commands C. If the check returns an error, the last operation is unrolled and an error
reported for exception handling.

3.5 Data Query Language (DQL)

DQL queries, given a set of objects, return a set of objects satisfying certain conditions.
Queries are type-checked against the Set types, i.e. their “correctness” can be determined
before execution. The Data Model’s DQL offers two query typologies, which can be
combined to perform complex navigation patterns:

 Target-oriented queries: the query returns the set of objects that are reachable
from a given initial set, based on some navigational/conditional criteria; e.g. “return
all Articles that are reachable from Proceedings published in year 2007”.

 Source-oriented queries: the query returns the subset of objects in a given source
set that satisfy some navigational/conditional criteria within the graph of objects;
e.g. “return all Proceedings that contain an Article published in year 2006”.

The former kind selects objects from a source set, while the second kind returns objects
that are reachable from the initial set. In order to express the semantics of the query
language, we first need to introduce some definitions.

Definition (Relationship) o is in relation R with o’ and vice versa (o R o’) if and only if
there exists rR such that R rel(A,B,M,TP), r.A = o and r.B = o’ (o r o’).

Definition (Reachability) o is reachable from o’ and vice versa (o * o’) if and only if
there exist R1,…,Rk rel(…) such that o R1 o1 R2 o2 … ok-1 Rk o’.

Figure 9 shows DQL’s grammar.

D8.1 Compound Object Model Specification Page 18 of 26

Q ::= Q!L // target-oriented navigation

 | Q?L // source-oriented by navigation

 | Q|label // relation-oriented navigation

 | label // Sets of objects

 | ε

L ::= L/label | L/*

 | L//label | L//*

 | L[P]

 | ε

P ::= (P) | not P | P Bop P | V Con V | inSet(A) | ofType(T) | count()

Con ::= > | < | =

Bop ::= And | Or

V ::= Des | At

Des ::= [l1:Val,…,lk:Val]

Val ::= De | {De,…,De} | v // v is Int, String or Bool

At ::= .label At | ε // label: Set name, description label

 // or atom attribute

Figure 9 – Data Query Language

The semantics of the language is expressed in terms of relationship and reachability
relations, through the functions Sem(Q) and sem(L)(), where is a set of Objects.

Sem: Q (), where is the Set of Objects.

Sem(Q!L) = sem(L)(Sem(Q))

Sem(Q?L) = {o Sem(Q) | o’ Sem(Q!L): o * o’}

Sem(Q|label) = {r label | o Sem(Q): o r o’}

Sem(A) = {o A}

Sem(ε) =

Sem: L ()

 sem(L/label)() = {o| o’ sem(L)(): o’ label o}

 sem(L/*)() = {o| label o’ sem(L)(): o’ label o}

sem(L//*)() = {o| o’ sem(L)() o’ * o})

 sem(L//label)() = {o| o’ sem(L)() o’’: o’ * o’’ label o})

 sem(L[P])() = sem(P)(sem(L)())

sem(P)() = {o | o satisfies P }

The definition of sem(P)() is standard and therefore not fully expressed here.

D8.1 Compound Object Model Specification Page 19 of 26

The query Q!L returns all objects reachable through the navigation path L from the set of
Objects Q. The query semantics matches standard X-Path navigation behavior.

The query Q?L returns all objects in Q for which there exists an object satisfying the
navigation path L; note that such semantics is expressed in terms of Q!L, which is the set
of L-reachable objects from Q.

The query Q|label returns all relation objects in the Set named label that are reachable
from objects in Q. In the model, relationships are represented as objects, which are
themselves navigable from others through such special query clauses.

Navigation paths can introduce predicates, in order to skim the objects they reached in the
last navigation step according to some conditions they respect. The predicate language
introduces simple logical algebra and a value language for objects of type atom,
description, relation and union; special functions capable of verifying object structure
properties, such as Set membership (inSet(A)) and type conformance (ofType(T)), are
also provided.

Sample queries:

 “Find all proceedings having one paper whose author is Yannis Ioannidis”
Proceedings?ProcArticles[author=”Yannis Ioannidis”]

 “Find all articles about computers in proceedings of year 2007”
(Proceedings?ProceedingsMetadata[year=2007])!ProcArticles[subject=”Co
mputer Science”]

D8.1 Compound Object Model Specification Page 20 of 26

4 High-level Model

The high-level data model offers primitives, i.e. Types, that aim at representing Compound
Objects best practices at a coarser granularity. The structure and operators of such Types
are expressed in terms of the low-level model type and set primitives. As such they could
be seen as add-ons to the core data model, which can be then further extended, varied
and customized in the future by DL designers with further primitives according to the same
principles shown in this section.

4.1 TDL and DDL extensions

The TDL is extended with the following Types, matching common abstractions in the DL
world:

T ::= objDes(T,D,Pt)

 | aggregation(A,Tp)

 | version(T)

 | annotation(A)

Pt ::= p:t | t:t

Tp ::= p:p | t:p

Figure 10 – Extended Type Definition Language

objDes(T,D,M,Pt)

This Type models the common Digital Library pattern according to which “digital objects
are described by human and/or machine readable metadata information”. In that sense,
this notion matches the more generic pattern of objects with properties, which are instead
represented as separated concepts in the low-level model. The type “hides” the definition
of the relation set required to associate objects of type T to the respective descriptions of
type D through an intermediate relation set.

A = objDes(T,D,Pt), where A is a set, D is a description type, executes the following
DDL-core transaction:

{A = create T;

Desc_of_A = create des(D);

BlendingRel = rel(A,Desc_of_A,1:1,Pt);

};

Sets of this type contain objects of type T that also inherit the properties defined by D. For
this “blending” operation to be consistent, the type T should not inherit from another
objDes type (or own itself) properties whose labels are equal to those in D.

aggregation(A,TP)

The Type models the common DL pattern of objects that are used to aggregate others
according to some application domain set-logic; e.g. a proceeding object aggregates a
number of article objects. Aggregation objects are expressed as des type objects in
relation with objects in the set A according to the partiality criteria Tp (this criteria leaves
the set A independent from the set B, by enforcing partiality from A to B); such objects
feature the cardinality property, stating the number of objects present in the

D8.1 Compound Object Model Specification Page 21 of 26

aggregation. The type “hides” the definition of the object, its properties and the relation
Set required to satisfy such pattern and introduces special extra methods in the DDL and
DQL languages for aggregation object manipulation.

B = aggregation(A,Tp) executes the following DDL-core transaction:
{B = create des([cardinality:int]);

AggregationRel = rel(B,A,1:n,Tp);

};

version(T)

The Type models the common DL pattern of “versioning objects”, which are capable, at
any update, to keep the history of old versions. Special operations are possible on such
objects, in order to add, remove, update and search their different versions.

A = version(T) executes the following DDL-core transaction:
{A = create obj;

 VersionSet = create T;

 VersionInfoType=des([vers_name:string;

 vers_number:int;

 vers_date: date]

);

 VersionRelation =

 create objDes(rel(A,VersionSet,1:n),VersionInfoType,t:t)

};

Figure 11 exemplifies the generic instantiation of a version type Set. Applications interact
with the Set A, unaware of the manipulation of the object Sets created to support it.

Figure 11 – Example of Version Type instantiation

D8.1 Compound Object Model Specification Page 22 of 26

annotation(A,M,Tp)

The Type models the common DL pattern of “object annotations, meant as special text or
notes to be attached to objects of given set A. Annotations may be mandatory or not (Tp)
and can be one or more per object in A (M).

B = annotation(A,M,Tp) executes the following DDL-core transaction:
{B = create des([ann_owner:string;

 ann_text:string;

 ann_creation_date: date;

])

AnnotationRelation = create rel(B,A,M,Tp)

};

4.1.1 Example Proceedings of Articles

The example proceedings-article in Section 3.3.1 can be rewritten in the high-level data
model as follows:

DCType = des([DCField1:DCFieldType1,…,DCField15:DCFieldType15])

Articles = objDes(PDF,DCType,p);

Proceedings = objDes(aggregation(Article),DCType,t);

It is clear how high-level abstractions eased the definition of the same document model.
The graphical representation of the example is shown in Figure 12, where the grey circle
represent the hidden sets, whose management and consistency is delegated to the
operators of the objDes Type’ Sets. For example if we want to insert a new article to a
proceeding object o, we should execute the following transaction:

 {a = new Article(URN,payload,d);

 \\ URN: ref to the article

 \\ d is a value of type DCType

 Proceedings.addObj(o,a);

 \\ operator for adding objects to aggregation objects

 };

D8.1 Compound Object Model Specification Page 23 of 26

Figure 12 – Example Proceedings-Articles in the high-level data model

4.2 DML and DQL extensions

DML and DQL language have to be extended to support operators and query semantics
over the new type abstractions.

objDes(T,D,Pt)

In the DML, for A = objDes(T,D,Pt), objects are created and updated with
parameters required by T and D, where parameters for D can be optional if TP = p:t.
Creation of new objects has the following transactional semantics:

x = new A(pars,d) executes the transaction
 {x = new A(pars);

 dOfx = new(d);

 r = hiddenRel(x,d)

 };

Similarly, in the DQL, the semantics of an object o:objDes(T,D,Pt)A is as if the object
o could respond to dereference expressions for both T and D.

Removal of such objects has the following transactional semantics:

A.drop(o) executes the transaction
 {Desc_of_A.drop(o.BlendingRel);

 A.drop(o)

 };

aggregation(A,Tp)

In the DML, for B = aggregation(A,Tp), objects are created and updated with
parameters required by T if Tp = p:p. Creation of new objects has the following
transactional semantics:

x = new B(o), where o is of type A, executes the transaction,

D8.1 Compound Object Model Specification Page 24 of 26

 {x = new B([cardinality=0]);

 };

The removal of an aggregation object in B causes the removal of all relation objects
connecting the object to objects in A.

The addition of an object o’ of type A to an aggregation object o of type B has the
following transactional semantics:

B.addObj(o,o’) executes the transaction,
 {rel = new AggregationRel(o,o’)

 B.update(o,[cardinality=o.cardinality+1]);

 };

Similarly, the operation B.addObj(o,o’)removes o’ from the aggregation object o in B.
The operation causes the elimination of the relation object connecting them and decreases
by one the cardinality property of the object o.

The command B.getObj(o) returns the set of objects in A aggregated by o.

version(T)

In the DML, for A = version(T), objects are created and updated with parameters
required by T plus a name for the current version. Creation of new objects has the
following transactional semantics:

x = new A(pars,version_name) executes the transaction
 {x = new A;

 y = new VersionSet(pars)

rel = new VersionRelation((x,y),

 [vers_name = version_name;

 vers_number = 0;

 vers_date = Date()]

);

 };

The update of version objects causes the creation of a new version of the same object. In
particular:

A.update(o,pars,version_name) executes the transaction
 {y = new VersionSet(pars)

 rel = new VersionRelation((x,y),

 [vers_name = version_name;

 vers_number = o.vers_number+1;

 vers_date = Date()]

);

 };

Version objects respond to particular operators:

 A.getVersionByDate(o,dateRange): the command returns the set of objects
whose version was release in the given date range;

D8.1 Compound Object Model Specification Page 25 of 26

 A.getVersionByNumber(o,versNumberRange): the command returns the set
of object versions in the given number range;

 A.removeVersion(o,number): the command removes version at position
number; the position numbers of the remaining version objects are adapted to
restore the sequence.

annotation(A,Tp)

In the DML, for B = annotation(A,Tp), objects are created and updated with
parameters required to set the annotation properties for a given object in A. Creation of
new objects has the following transactional semantics:

x = new B(annOwner, annText, o) executes the transaction
 {x = new B([ann_owner = annOwner;

 ann_text = annText;

 ann_creation_date = Date()

];)

rel = new AnnotationRelation(x,o);

 };

The removal of an annotation object in B consists in the deletion of the corresponding
description object and in the relation objects that connect it to objects in A. Annotation
objects respond to special operators:

 B.getAnnotationsByObject(o): the command returns the annotation objects
relative to the object o in A.

 B.getAnnotations(owner,dateRange): the command returns the annotation
objects created by the given entity owner in the given date range.

D8.1 Compound Object Model Specification Page 26 of 26

5 References

[1] Typed Compound Objects Models for Digital Library Repository Systems. Leonardo
Candela, Donatella Castelli, Paolo Manghi, Marko Mikulicic, Pasquale Pagano. ISTI
Technical Report 2008-TR-023

	1 Introduction
	2 The Model
	The main difference between the low-level data model and the high-level data model is that the former is meant to be “minimal”, while the latter can be in principle be extended and modified according to the DL designers needs. The low-level data model provides the minimal set of primitives required to design efficient Compound Object DLs, i.e. removing one of such primitives would compromise the expressivity of the language and leave a subset of our application domain out of our solution domain. The high-level model offers modeling primitives that can be expressed in terms of the low-level primitives and can be therefore seen as add-ons, i.e. extensions to the core model.

	3 Low-level Model
	3.1 Data Model Primitives
	3.2 Type Definition Language (TDL)
	3.3 Data Definition Language (DDL)
	3.3.1 Example Proceedings of Articles

	3.4 Data Manipulation Language (DML)
	3.5 Data Query Language (DQL)

	4 High-level Model
	The high-level data model offers primitives, i.e. Types, that aim at representing Compound Objects best practices at a coarser granularity. The structure and operators of such Types are expressed in terms of the low-level model type and set primitives. As such they could be seen as add-ons to the core data model, which can be then further extended, varied and customized in the future by DL designers with further primitives according to the same principles shown in this section.
	4.1 TDL and DDL extensions
	4.1.1 Example Proceedings of Articles

	4.2 DML and DQL extensions

	5 References

