
SEVENTH FRAMEWORK PROGRAMME

CAPACITIES

Research Infrastructures

INFRA-2007-1.2.1 Research Infrastructures

DRIVER II

Grant Agreement 212147

“Digital Repository Infrastructure Vision for European Research II”

Monitoring Tools Specification
Deliverable Code: D7.3

D7.3 Overall Research Design Report Page 1 of 18

Document Description

Project

Title: DRIVER, Digital Repository Infrastructure Vision for
European Research II

Start date: 1st December 2007

Call/Instrument: INFRA-2007-1.2.1

Grant Agreement: 212147

Document

Deliverable number: D7.3

Deliverable title: Monitoring Tools Specification

Contractual Date of Delivery: 1st of May 2008

Actual Date of Delivery: 15th of July 2008

Editor(s): CNR

Author(s): Paolo Manghi, Marko Milkulicic

Reviewer(s):

Participant(s):

Workpackage: WP7

Workpackage title: Enhancing Infrastructure Sustainability and Research
Integration

Workpackage leader: CNR

Workpackage participants: NKUA, ICM, CNR

Distribution: Public

Nature: Deliverable

Version/Revision: 3.0

Draft/Final: Final

Total number of pages:

(including cover)

File name:

Key words: Monitoring, orchestration, self-administration, services,
DRIVER applications

D7.3 Monitoring Tools Specification Page 2 of 18

Disclaimer
This document contains description of the DRIVER II project findings, work and products.
Certain parts of it might be under partner Intellectual Property Right (IPR) rules so, prior to
using its content please contact the consortium head for approval.

In case you believe that this document harms in any way IPR held by you as a person or as
a representative of an entity, please do notify us immediately.

The authors of this document have taken any available measure in order for its content to
be accurate, consistent and lawful. However, neither the project consortium as a whole nor
the individual partners that implicitly or explicitly participated in the creation and
publication of this document hold any sort of responsibility that might occur as a result of
using its content.

This publication has been produced with the assistance of the European Union. The content
of this publication is the sole responsibility of DRIVER consortium and can in no way be
taken to reflect the views of the European Union.

The European Union is established in accordance with the
Treaty on European Union (Maastricht). There are currently
25 Member States of the Union. It is based on the European
Communities and the member states cooperation in the
fields of Common Foreign and Security Policy and Justice
and Home Affairs. The five main institutions of the European
Union are the European Parliament, the Council of Ministers,
the European Commission, the Court of Justice and the
Court of Auditors. (http://europa.eu.int/)

DRIVER is a project funded by the European Union

D7.3 Monitoring Tools Specification Page 3 of 18

Table of Contents

Index
 Introduction..7

1.1 Purpose of this document..7

1.2 Document Outline...7

2 Monitoring Activities...8

2.1 Monitoring typologies..8

2.1.1 Service monitoring..8

2.1.2 Application monitoring...9

3 Service Monitoring..10

3.1 Munin...10

 Plugins..10

 Reporting..11

3.2 SmokePing..11

 Master/Slave...11

 Probes..11

 Matchers...12

 Reporting..13

3.3 Integration with the Manager Service...13

4 Application Monitoring Activities..14

4.1 Introduction..14

4.1.1 Aggregation System Application...14

4.1.2 Aggregation System Manager Service...15

5 Future issues...17

D7.3 Monitoring Tools Specification Page 4 of 18

Table of Figures

Index

Figure 1: Munin architecture ...10

Figure 2: Munin Memory Usage graph...11

Figure 3: Smoke ping latency and packet loss graph...............................12

Figure 4: Manager Service Low-Level tools integration...........................13

Figure 5: Repository Verification..16

D7.3 Monitoring Tools Specification Page 5 of 18

Summary
The purpose of this document is to describe the monitoring tools and the monitoring
activities carried on for the D-NET v1.0 production infrastructure.

D7.3 Monitoring Tools Specification Page 6 of 18

Introduction

1.1 Purpose of this document
The purpose of this document is to describe the monitoring tools designed for the D-NET
v1.0 production infrastructure. These tools offer automatic and semi-automatic
functionalities for controlling Quality-of-Service parameters of any Service in the
infrastructure, but also to control the coherency of service interaction ans side effects when
services are combined to deliver a DRIVER Application. To this aim, we shall first describe
the kind of activities we are interested in and then present the tools we adopted to carry
them on.

1.2 Document Outline
Section 2 describes the monitoring activities, while Section 3 presents in details the
features of the tools Munin [2] and SmokePing [3], installed and configured in order to
achieve the expected results. Section 4 describes

D7.3 Monitoring Tools Specification Page 7 of 18

2 Monitoring Activities

2.1 Monitoring typologies
We recognized two main monitoring typologies: service monitoring and application
monitoring.

2.1.1 Service monitoring
Service monitoring activities can be categorized into two main typologies, checking on
different aspects of QoS: host internal status and reachability.

Host internal status monitoring

Services run on hosts which also run other software. Even if the host is completely
dedicated for a given service, there is still system software that is required to run on it in
order to provide basic operating system functionality. This external software uses resources
which may affect the performance and the behavior of the service. Thus, a monitoring
system has to be able to measure the heath status of the whole host in order to be able to
detect possible malfunctions and react to them in a timely manner.

Host-wide measurement can be done in the following areas:

• Memory usage (ram, swap, cache)

• CPU usage

• Disk throughput

• Network throughput

• File System usage

• Entropy (for cryptographic use)

• Number of running processes.

By continuously following the status of these parameters, the monitoring system can detect
potentially anomalous situation and react to them. The monitoring system's ability to follow
the change of the parameters during time and to gain informations from their dynamic
nature, is the key ingredient in adaptive and intelligent automatic resource management,
which has to be able to recognize dangerous patterns and minimize false positives.

Reachability monitoring

Hosts can be perfectly healthy yet the services running on them cannot correctly
interoperate with the rest of the infrastructure because of subtle networking problems
which are normally hard to detect.

IP networks are best effort networks, and even the best links have some amount of packet
loss which sometimes can interfere with the service interoperation. Because of their nature,
these problems are very hard to detect.

One of the duties of a monitoring system is to be able to pinpoint systematic problems in
network communication and also be able to automatically detect when those problems
have been solved.

Independent monitoring tools check the reachability of services and keep every service
informed about node failures. Services can thus avoid costly time-outs arising from
attempts to contact unavailable services.

D7.3 Monitoring Tools Specification Page 8 of 18

2.1.2 Application monitoring

As mentioned above, application monitoring is rather focused on the specific functionalities
and on the specific properties expected by an application running over the infrastructure.
In DRIVER, applications are “declared” in terms of (i) service orchestration, i.e. a number
of actions the available services are supposed to perform in order to maintain certain
functional conditions valid, and (ii) in the specific configuration of service orchestration,
whose parameters may change from application to application.

D7.3 Monitoring Tools Specification Page 9 of 18

3 Service Monitoring

In order to perform the monitoring activities underlined in section 2.1.1 two low-level tools
were chosen: Munin [2] and SmokePing [3], to be described in the following. Such tool
enable distributed control of QoS parameters, thereby alerting administrators when services
fail to provide reasonable QoS or are in the process to do so. To some extent, such tools
can be integrated with DRIVER Manager Services, in order for the service to take
adjustment measures so as to limit the need of human intervention.

3.1 Munin
Munin is a lightweight monitoring tool, whose modular client-server architecture can be
seen in Figure 1. It is able to efficiently fetch informations from hosts, produce graphs from
the gathered informations and trigger alerts whenever the measured parameters go
beyond a given threshold. More specifically, Munin servers fetch performance-counters
from munin nodes which gather raw data from the system through the use of various
munin plugins.

Plugins
Munin offers a number of plug-ins for obtaining various system performance counters:

• cpu usage: categorized in system, user, nice, idle, iowait, softirq

• cpu temperature

• entropy: used for cryptographic-grade random number generation

• load average: unix-style load average

• memory usage: categorized in apps, page_tables, swap_cache, cache, buffers,
unused, swap, committed, mapped, active, inactive.

• swap in/out: paging activity in pages per second.
D7.3 Monitoring Tools Specification Page 10 of 18

Figure 1: Munin architecture

• IOStats: disk IO, block per seconds

• filesystem: free space, open files

• tomcat jvm memory: categorized in free, total, max

• networking: traffic throughput, number of connections (categorized in active,
passive, failed, resets, established)

• MySQL, PostgreSQL: categorized in number of connections, number of queries

Reporting
Munin servers store the data gathered from Munin clients data using RRDTool [4] (a
“Round Robin” database providing detailed stats graphs for human consumption) and
display examples of such graphical information, specifically relative to Memory Usage (see
Figure 2 for an example) and Load Average of the original hosts.

3.2 SmokePing
SmokePing is a latency measurement tool. It can measure, store and display latency,
latency distribution and packet loss. It can be configured in a Master/Slave setup, in order
to measure packet loss from different sources.

Master/Slave
SmokePing is able to probe a single target from multiple locations.

Probes
Despite the name, SmokePing does not only use ICMP echo packets to check reachability.
As frequently happens, the system administrators may put firewalls which filter ICMP echo
D7.3 Monitoring Tools Specification Page 11 of 18

Figure 2: Munin Memory Usage graph

traffic. SmokePing handles this situation by allowing the choice of the probing method
through modular plugins. Here are the most important ones:

• Smokeping::probes::FPing

• Smokeping::probes::EchoPingHttp

• Smokeping::probes::SSH

Each probe can be configured with several parameters. The FPing probe, for example, can
be configured to send big (1k) ICMP datagrams, which are more likely to suffer eventually
from similar problems like real SOAP TCP traffic.

As a practical example, during the initial testbed deployment one of the switching hubs in
one of the facilities hosting the DRIVER servers was misbehaving. The problem caused the
dropping of 1% of the small packets (TCP handshaking packets and standard 56 byte ICMP
packets used by “ping”), but the rate was as high as 68% for 1k sized packets which were
used in the real SOAP payload. The problem would have been very difficult to pinpoint
manually because the machine responded normally to standard “pings”, and the remote
SSH shell worked quite well, but SOAP communication was very slow and usually ended in
timeouts. The monitoring service reported the problem and the services were quickly
disabled during the outage.

Matchers
SmokePing collects the data and analyzes it using one or more “matchers”. The matchers
trigger an alert whenever the data is changing in a suspicious way, taking in consideration
the past trends and using different algorithms:

• Smokeping::matchers::Avgratio : detects changes in average median latency

• Smokeping::matchers::CheckLatency : triggers alert to check latency is under a
value for x number of samples

• Smokeping::matchers::CheckLoss : triggers alert to check loss is under a value for x
number of samples

• Smokeping::matchers::Median : finds persistent changes in latency

• Smokeping::matchers::Medratio : detects changes in the latency median. By looking
at the median value this matcher is largly imune against spikes and will only react
to long term developments.

D7.3 Monitoring Tools Specification Page 12 of 18

Figure 3: Smoke ping latency and packet loss graph

http://oss.oetiker.ch/smokeping/probe/FPing.en.html
http://oss.oetiker.ch/smokeping/matcher/Medratio.en.html
http://oss.oetiker.ch/smokeping/matcher/Median.en.html
http://oss.oetiker.ch/smokeping/matcher/CheckLoss.en.html
http://oss.oetiker.ch/smokeping/matcher/CheckLatency.en.html
http://oss.oetiker.ch/smokeping/matcher/Avgratio.en.html
http://oss.oetiker.ch/smokeping/probe/SSH.en.html
http://oss.oetiker.ch/smokeping/probe/EchoPingHttp.en.html

Reporting
The administrator can take advantage of the SmokePing recording of the sampled data by
looking the graphical representation (see Figure 4 for an example). This information is very
precious in order to pinpoint problems that are not automatically detected by the
monitoring service, especially during the monitoring system parameters configuration and
fine tuning, but also in order to check whether the monitoring service is behaving correctly
when taking automatic decisions in reaction to alerts generated by the SmokePing
matchers. It is also useful as an “after the fact” analysis tool which can be helpful to
provide hints to solving the original cause of the problem.

3.3 Integration with the Manager Service
The Manager Service (see Figure 4) generates the configuration files for the low-level tools,
and schedules the execution of the sampler daemons. Low-level tools in the Integration
Layer send alerts to the Manager Service, which takes decisions based upon the kind and
the severity of the alert.

The possible decisions are currently:

• Lowering the priority of the service (when the machine is highly loaded, consumes a
lot of IO or has a high network latency1);

• Disabling (temporarily) the whole node, with all services on it;

• Sending alerts to the administrators, when critical human intervention is needed.

1Especially for the higher level protocol probes, like SSH and HTTP, as ICMP usually is answered by
the OS kernel and may be answered quickly also by heavy loaded machines.
D7.3 Monitoring Tools Specification Page 13 of 18

Manager Service

Integration Layer

SmokePing Munin

Figure 4: Manager Service Low-Level tools integration

4 Application Monitoring Activities

4.1 Introduction
Application Monitoring takes care of checking that the internal state of a DRIVER
application is consistent.

An application consists of a set of rules, firing actions whose goal is that of preserving
certain conditions, specialized by custom application parameters. The set of possible rules
and parameters is application specific and encoded by one dedicated Manager Service, i.e.
one Manager Service handles a specific DRIVER application. Note that different instances of
the same Manager Service give life to different applications, each offering the same
functionality potentially implemented over the same pool of shared services, but with
different parameter-set and behavior.

In the following we shall describe the orchestration rules and relative parameters encoded
by the Manager Service of the Aggregation System Application. An instance of such
application is currently running on the DRIVER Production infrastructure under the name
DRIVER Information Space, orchestrated by a specific instance of the Manager Service.

4.1.1 Aggregation System Application
The Aggregation System Application orchestrates the DRIVER Services in order to:

1. enable harvesting of external OAI-PMH repositories;

2. persist the harvested metadata records, together with copies of raw data referenced
from within the records, inside store units allocated within the infrastructure;

3. enable processing of stores containing harvested data in order to transform, clean
and enrich it so as to produce high quality uniform information, in turn stored into
other local stores;

4. deliver processed data from stores to index services for indexing.

The application also includes user interface services and search services capable of
answering user queries by means of the available index services .

The rules involved are:

1. whenever a new repository is created: (i) new store units must be allocated to host
the data to be harvested from the repository and (ii) the repository should be
“assigned” to a transformation service, so that aggregator manager administrators
can define the processing rules to be applied to the harvested data in subsequent
processing operations;

2. whenever the processing rules for a repository are provided by an aggregator
manager, the repository data is ready to and must be harvested;

3. whenever an harvesting operation relative to a repository is finished, new store
units must be allocated so as to host the processed data;

4. whenever store units at point 3 are created, the processing operation can take
place;

5. whenever a processing operation is terminated, the data from the store units
involved must be delivered to the index services available;

D7.3 Monitoring Tools Specification Page 14 of 18

6. whenever fresh data is harvested from a repository and placed into the relative
store units, both data processing and indexing operations must be performed in
order to update the Information Space and align the user interfaces and search
services with the current harvesting scenario.

The rules above can be instantiated with robustness parameters defining replica
management specifics. All the data is kept replicated on a number N of different store units
and M of different indices. Furthermore, this process takes into consideration the physical
location of the replicas in order to reduce the probability of a service outage due to local
issues such as connectivity, fire, theft, etc.

4.1.2 Aggregation System Manager Service
The Manager Service is made two main modules:

● Monitoring module: constantly checks whether the conditions established by the
rules above are satisfied and, when this is not the case, will as the Orchestrator
Module to fire the corrective actions so as to reach the intended state.

● Orchestrator Module: uses the information provided by the Monitoring Module and
by the Service Monitoring activities (Section 3.3) and creates a sequence of lower
level tasks which are then executed taking in consideration various aspects such as
load balancing, throttling, task duplication removal, resource discover and
allocation, etc.

For example, the Application Monitoring logic may detect that a given repository has not
enough replicas and will schedule a task to the orchestrator in order to fix the situation.
The orchestrator's ability to recover from errors is deliberately reduced in favor of giving to
the application monitoring the responsibility to trigger a retry. This separation of concerts
allows for a good degree of error recovery while simplifying the overall design.

When corrective actions cannot be taken automatically, special administration user
interfaces can be used to spot and manually fix inconsistencies. For example, Figure 5
shows the administration interface used to verify that repositories reached a consistent
state according to the specific instantiation of the Aggregation System Application, where
N=M=1 (no replicas). The picture reveals that the repository status is consistent with the
Manager Service configuration:

● one store unit created for its Dublin Core records (oai_dc format) with no index
available (not needed in this application, where we only index DMF records);

● one store unit created for the processed data (DMF, DRIVER Metadata Format) with
one index available.

● store units and index content are aligned, i.e up-to-date with the last harvesting
operation.

If any of those condition would not be satisfied, relative error messages would be
displayed, together with buttons enabling the corrective actions: create store, create index,
create replica, process data, etc.

D7.3 Monitoring Tools Specification Page 15 of 18

D7.3 Monitoring Tools Specification Page 16 of 18

Figure 5: Repository Verification

5 Future issues

Currently, only a subset of the corrective actions can be automatically performed by the
Manager Service. Next steps in refining the Manager Service for Aggregation System
Applications are those of stressing the encoding of self-administration mechanisms into the
Service.

D7.3 Monitoring Tools Specification Page 17 of 18

References
[1] DRIVER Annex I - “Description of Work”, Proposal no. IST-034047.

[2] Munin Project. http://munin.projects.linpro.no

[3] SmokePing Project. http://oss.oetiker.ch/smokeping

[4] RRDTool Project. http://oss.oetiker.ch/rrdtool

D7.3 Monitoring Tools Specification Page 18 of 18

http://oss.oetiker.ch/rrdtool
http://oss.oetiker.ch/smokeping
http://munin.projects.linpro.no/

	1.1Purpose of this document
	1.2Document Outline
	2Monitoring Activities
	2.1Monitoring typologies
	2.1.1Service monitoring
	2.1.2Application monitoring

	3Service Monitoring
	3.1Munin
	3.2SmokePing
	3.3Integration with the Manager Service

	4Application Monitoring Activities
	4.1Introduction
	4.1.1Aggregation System Application
	4.1.2Aggregation System Manager Service

	5Future issues

