
IST STREP Project

Deliverable D4.3
Test Framework:

Assessment and Revision

http://www.ist-plastic.org

January 2008 PLASTIC Consortium

Project Number : IST-26955

Project Title : PLASTIC

Deliverable Type : Prototype, Report

Deliverable Number : D4.3

Title of Deliverable : Test Framework:

Assessment and Revision :

Nature of Deliverable : Prototype,Report

Dissemination Level : Public

Internal Document Number : D4.3V.0.3

Contractual Delivery Date : 29 February 2008

Actual Delivery Date : 28 February 2008

Contributing WPs : WP4

Editor(s) : Antonia Bertolino

Author(s) : Antonia Bertolino, Domenico Bianculli, Guglielmo
De Angelis, Lars Frantzen, Zsolt Gere Kiss, Carlo
Ghezzi, Andrea Polini, Franco Raimondi, Antonino
Sabetta, Giovanni Toffetti Carughi, Alexander Wolf

Reviewer(s) : Paola Inverardi

PLASTIC IST-26955 2/104

January 2008 PLASTIC Consortium

Abstract

This document is Deliverable D4.3 of PLASTIC Work Package 4 (WP4), titled: Test Framework:
Assessment and Revision. It provides a detailed description of the most up-to-date version of
the tools developed within WP4 along with guidelines for installing and using them.

A first version of the tools with a preliminary accompanying description had been firstly
released in Deliverable D4.2: Test Framework: Prototype Implementation, which can be con-
sidered superseded by this Deliverable. We refer throughout to WP4 Deliverable D4.1: Test
Framework Specification and Architecture, which provided a comprehensive specification of the
proposed PLASTIC validation framework, with state-of-the-art overview and justification for the
adopted techniques. Although some of the basic principles underlying the framework are sum-
moned up for completeness, the present deliverable must anyhow be considered together with
D4.1.

The PLASTIC validation framework is organised around two main phases, respectively called
off-line and on-line. Off-line validation concerns validation at development time. In this phase
services are tested in a fake/simulated environment that reproduces functional and/or extra-
functional run-time conditions. The tools made available for this stage are:

1. JAMBITION (see Chapter 2): this is a model-based testing tool that allows to automatically
derive and execute invocation sequences on a service, checking whether the responses
conform to a given specification, expressed as a Service State Machine (SSM). Jambition
is based on a model based testing engine called Ambition , defined in D4.1, of which Jam-
bition is the Java front-end. To facilitate the usage of Jambition, a library called MINERVA

(see Chapter 3) has been embedded into the tool. Minerva permits to model SSMs via an
UML modelling tool.

2. PUPPET (see Chapter 4): this is a tool to automatically generate stubs implementing exter-
nal services invoked by the service under development. The mock services generated by
Puppet exhibit a correct behaviour with respect to given non-functional properties. At the
same time Puppet can generate stubs making invocations on the service under evaluation
according to certain workload profiles.

3. WEEVIL (see Chapter 5): it consists of a synthetic-workload generator coupled with an en-
vironment for managing the deployment and execution of experiments. Weevil is intended
to facilitate experimentation activities for distributed systems by providing engineers with
a flexible, configurable, automated and, thus, repeatable process for evaluating their soft-
ware on a networked testbed.

On-line validation foresees testing of a service when it is ready for deployment and final
usage. In particular, the PLASTIC validation framework supports validation during Live Usage,
i.e., service behaviours are observed during real execution to reveal possible deviations from
the expected behaviour. Also on-line validation can cover both functional and extra-functional
properties. Tools developed to support this phase are:

1. DYNAMO-AOP (see Chapter 6): it is a framework for monitoring functional properties of
external services which a BPEL process interacts with, to realize a composite service.

2. SLANGMON (see Chapter 7): it permits to dynamically detect violations of non-functional
properties specified in SLAng (the PLASTIC language to specify service level specifica-
tions and service level agreements, developed within Work Package 2). Events related to
the non-functional characteristics are logged and possibly used to redeem controversy.

PLASTIC IST-26955 3/104

January 2008 PLASTIC Consortium

Keyword List

On-line testing, Off-line testing, Model-Based Testing, QoS testing, Monitoring, Testbed Harness

PLASTIC IST-26955 4/104

January 2008 PLASTIC Consortium

Document History

Version Type of change Author(s)
0.1 Proposed Outline CNR (with all)
0.2 First Complete Release for internal review CNR (with all)
0.3 Final Version CNR (with all)
0.4 Final Version, some typos adjusted, added section

on novelty in Intro chapter(AB)
CNR (with all)

PLASTIC IST-26955 5/104

January 2008 PLASTIC Consortium

Contents

List of Figures . 9

List of Tables . 11

1 Introduction . 12
1.1 PLASTIC validation stages . 12
1.2 Testing challenges and opportunities . 13
1.3 Development-time testing . 14
1.4 Admission testing . 15
1.5 Live-usage verification . 15
1.6 PLASTIC validation framework novelty . 16
1.7 Tool download . 16

2 Jambition . 17
2.1 Jambition Overview . 17
2.2 Technical info . 18
2.3 Deployment . 19

2.3.1 Install . 20

2.3.2 Configure. 21

2.4 Tutorial . 22
2.4.1 Web Service Description Language . 22

2.4.2 Service State Machines. 24

2.4.3 The Warehouse Example . 28

2.5 Appendix . 37
2.5.1 The Dumont Grammar in BNF . 37

3 Minerva . 39
3.1 Minerva Overview . 39
3.2 Technical info . 39
3.3 Deployment . 39

3.3.1 Install . 39

3.3.2 Configure/Usage . 40

3.4 Tutorial . 40
3.4.1 Creating the project . 40

3.4.2 Modeling the types and data structures . 41

3.4.3 Creating the service description . 44

PLASTIC IST-26955 6/104

January 2008 PLASTIC Consortium

3.4.4 Creating the Service State Machine . 46

3.4.5 Location variables . 49

3.4.6 Exporting the SSM . 50

4 Puppet. 51
4.1 Puppet Overview . 51
4.2 Technical info . 51
4.3 Deployment . 52

4.3.1 Install . 52

4.3.2 Configure. 53

4.3.3 Usage . 54

4.4 Tutorial . 54
4.4.1 Terms in the Agreement and Generation Process . 54

4.4.2 The Syntax for the Terms in the WS-Agreement Contracts . 54

4.4.3 Writing an Agreement. 56

4.4.4 Functional Behavior with Jambition . 59

4.4.5 Example . 63

4.5 Appendix . 67
4.5.1 WS Agreement. 67

5 Weevil . 75
5.1 Weevil Overview . 75
5.2 Technical info . 75
5.3 Deployment . 76

5.3.1 Install . 76

5.3.2 Configure. 76

5.4 Tutorial . 78
5.4.1 Workload. 78

5.4.2 Experiment . 80

6 DynamoAOP .. 82
6.1 DynamoAOP overview . 82
6.2 Technical info . 82
6.3 Deployment . 83

6.3.1 Install . 83

6.3.2 Configure/Usage . 84

6.4 Tutorial . 84
6.4.1 WS-CoL . 84

PLASTIC IST-26955 7/104

January 2008 PLASTIC Consortium

6.4.2 Demo . 87

6.5 Appendix . 88
6.5.1 WS-CoL grammar . 88

6.5.2 Architecture . 90

7 SLAngMon .. 92
7.1 SLAngMon Overview . 92
7.2 Technical info . 92
7.3 Deployment . 93

7.3.1 Install . 93

7.4 Tutorial . 94
7.4.1 Demo . 96

7.5 Appendix . 99
7.5.1 Structure of the source code. 99

7.5.2 FAQ . 99

7.5.3 An SLA in SLAng (XMI representation). 99

8 Conclusions and ongoing improvements. 101

Bibliography. 103

PLASTIC IST-26955 8/104

January 2008 PLASTIC Consortium

List of Figures

Figure 1.1: PLASTIC Validation Framework . 12

Figure 1.2: PLASTIC Testing stages . 13

Figure 2.1: Jambition Concepts . 19

Figure 2.2: Jambition Inputs. 20

Figure 2.3: Jambition Initial Screenshot. 21

Figure 2.4: Jambition Preferences Screenshot. 22

Figure 2.5: The Warehouse SSM. 33

Figure 3.1: Creating a new project . 40

Figure 3.2: The basic types and data structures. 41

Figure 3.3: Creating an enumeration. 42

Figure 3.4: Applying a stereotype . 43

Figure 3.5: The warehouse types diagram . 44

Figure 3.6: The service . 44

Figure 3.7: The service diagram . 45

Figure 3.8: The service state machine diagram . 46

Figure 3.9: Setting initial state . 47

Figure 3.10: Selecting an operation. 48

Figure 3.11: Editing a guard. 48

Figure 3.12: The SSM diagram in MagicDraw . 49

Figure 3.13: Location variables in the SSM. 50

Figure 4.1: Expressions in the Qualifying Condition . 55

Figure 4.2: AND in the Qualifying Condition. 55

PLASTIC IST-26955 9/104

January 2008 PLASTIC Consortium

Figure 4.3: OR in the Qualifying Condition . 56

Figure 4.4: NOT in the Qualifying Condition . 56

Figure 4.5: Operators in the Qualifying Condition . 57

Figure 4.6: Extra-Functional Properties in the Service Level Objective . 58

Figure 4.7: Defining the Scope of a Term . 58

Figure 4.8: Scenario 3 Deployment Diagram . 64

Figure 4.9: Scenario 3 Sequence Diagram . 66

Figure 5.1: Weevil Experimentation Process . 77

Figure 5.2: An example of workload . 78

Figure 5.3: Simulation-Based Workload Generation . 79

Figure 5.4: Workload Scenario Conceptual Model. 80

Figure 6.1: Process PizzaDeliveryCompany deployed successfully.. 87

Figure 6.2: The result of inserting two monitoring rules. 88

Figure 6.3: Output console of the monitored process. 88

Figure 6.4: Monitoring rules modified with the “Dynamo Supervision Manager” 89

Figure 6.5: Dynamo-AOP components architecture. 91

Figure 7.1: Plugin screenshot for SLAngMon: generation of checkers. 95

Figure 7.2: Service description diagram for the eHealth scenario . 96

Figure 7.3: Use case service description diagram for the eHealth scenario . 96

Figure 7.4: Latency clause for e-Health Provider and Patient. 97

Figure 7.5: Excerpts from the automatically generated Java code for the Axis handler 98

PLASTIC IST-26955 10/104

January 2008 PLASTIC Consortium

List of Tables

Table 4.1: Enabling the code generation in PUPPET . 54

Table 4.2: QoS Properties . 67

PLASTIC IST-26955 11/104

January 2008 PLASTIC Consortium

1 Introduction
The PLASTIC project aims at enabling the development and deployment of mobile adaptable

robust services for Beyond 3G (B3G) networks, by providing a comprehensive platform integrating
both adequate software methodologies and tools, and the supporting middleware. Within PLAS-
TIC, the goal of Work Package 4 is to investigate, develop, and integrate with the PLASTIC platform
a suitable validation technology for the B3G computing domain.

We recall in this chapter the main concepts of the conceived validation framework and then in
the following chapters we provide in detail a description of the tools that have been developed.
In particular this chapter shortly illustrates the novel aspects of the proposed approaches and the
key reasons why each of them is suitable for testing in the B3G and service-oriented domain.

1.1 PLASTIC validation stages

An overall picture of the PLASTIC Validation Framework is illustrated below in Figure 1.1.

Figure 1.1: PLASTIC Validation Framework

An in-depth discussion of the state-of-the-art and of the approaches proposed has been given
in Deliverable D4.1, produced in the first year. We have decomposed the problem into more easily
solvable subproblems, by identifying a set of distinct validation stages and by developing a set
of testing techniques for each stage. Figure 1.2 below illustrates the different testing stages that
make up the PLASTIC testing framework.

Development-time testing refers to activities that are carried out by service developers before
the services are deployed; this is the more conventional testing stage. On-line testing refers to
monitoring and testing performed after deployment, which is further subdivided between testing at
admission stage, and (passive) testing during live-usage.

In the second year we have then developed and deployed the tools supporting the specified
approaches. In particular, in Deliverable D4.2 (released in Month 18) we provided a first release of

PLASTIC IST-26955 12/104

January 2008 PLASTIC Consortium

Figure 1.2: PLASTIC Testing stages

the tools implemented, with a preliminary description of their offered functionality. In the present
document we release a more mature version of the validation framework, with assessment and
revision of the deployed testing tools.

The implementation of the validation framework follows the first year review, in which a general
recommendation to the whole PLASTIC consortium consisted into avoiding ”spreading project re-
sources too thinly over too many ambitious sub-areas” and considering to ”keep focus and ensure
thorough depths in the work performed”. To address such recommendation, we have critically
revisited the D4.1 methodology specification, and have focused the implementation effort of the
second year towards the most promising approaches (from feedback with the Consortium). From
the approaches originally proposed in D4.1, we have thus dropped from further revision the Ws-
Guard tool, implementing the Audition approach, and we have also dropped from further consid-
eration alternative approaches to on-line testing which had been originally investigated in D4.1
(OSLAC) as well as alternative approach to off-line testing (simulation-based). Nevertheless, as
a quite preliminary version of Ws-Guard tool had already been developed before the review, we
deemed it useful to still make it publicly available in D4.2 repository for interested researchers.

The next sections provide some detail on the techniques developed within PLASTIC, according
to the strategy shown in Figure 1.2, highlighting how the challenges are tackled and the opportu-
nities are exploited.

1.2 Testing challenges and opportunities

As said, service-oriented systems and in particular software developed to be deployed over B3G
network presents new challenges to software testers. PLASTIC targets more in particular services
developed for mobile devices. In deliverable D4.1 the challenges faced by testers in such domain
have been extensively discussed, nevertheless it can be useful to recall here briefly some of them.

The first challenge that testers have to address concerns the fact that in general service inte-
gration does not become apparent until run-time. According to the SOA paradigm, services can
discover each other in dynamic way and they can select the partner to interact with based on
parameters that are only defined at run-time. Therefore, it is difficult to anticipate at testing time
which services will interact with a given service under development. This is particularly true for
mobile devices. Besides, even if a service could be statically bound to an external service, the
lifecycle of the latter will generally under the control of a different organisation, who could change
its implementation without notice.

Another important issue in the B3G and service-oriented domain is the relevance of extra-
functional characteristics, which are central to the PLASTIC approach. Service clients have no
control on the services they use and on the underlying platform, but at the same time require that
certain requirements on the service extra-functional properties are met. This raises the neces-

PLASTIC IST-26955 13/104

January 2008 PLASTIC Consortium

sity of languages to define agreements among parties (this issue in PLASTIC is being tackled in
WorkPackage 2). Also, developers need techniques and approaches to evaluate extra-functional
properties of systems built using web-services before the real system is actually deployed. Finally
it is necessary to develop mechanisms to check whether the agreements are fulfilled at run-time.

Besides the new challenges that must be faced within this new development paradigm, new
opportunities can be envisaged as well.

An extraordinary opportunity is the general increased availability of service specification in a
machine-readable format. At the current state of art, only the specification of syntax pertaining
to the services undergo standardised approaches, see e.g. the adoption of WSDL specifications
for Web Services. Nevertheless, many researchers suggest that syntactical published informa-
tion should be complemented with behavioural specifications. As a natural consequence, such
specifications could be fruitfully applied in order to derive test cases automatically. We apply such
methodology, for example, by using the SSM specifications to derive functional test cases (see the
tool Jambition).

Finally the introduction of another intermediate phase in the software lifecycle, i.e., the regis-
tration phase, augments the opportunities for testing by providing the possibility of an additional
testing phase in the whole validation strategy, which is what we outlined with the Audition [8] stage.

1.3 Development-time testing

As remarked in the previous section, in a B3G service-oriented setting, where services are dis-
covered and integrated only at run-time, it is difficult – if at all possible – to establish in advance
appropriate guarantees on the behaviour of composite services. This is particularly true when
extra-functional properties are considered. Nevertheless, developers need tools and techniques
to assess the quality of a service before its final deployment.

Moreover, services in general may invoke other services in order to carry out the computation
requested by the clients. If this invocation is directed to a service that does not refer to stateful
resources, then it is possible to use existing real services for testing purposes. Conversely, if an in-
voked service accesses stateful resources, this option must be ruled out and the required services
have to be simulated. Within PLASTIC the problem of reproducing predictable run-time environ-
ment is addressed providing two different tools, Puppet and Weevil, which allow the developers to
reproduce different live usage scenarios.

In particular Puppet can be used to to automatically derive the elements necessary to recreate
a predictable “live” environment that is suitable for the evaluation of extra-functional properties.
Puppet allows testers to generate automatically the required services in such a way that they show
a “correct extra-functional behaviour” with respect to a given specification. Chapter 4 discusses
how to install and use Puppet.

Weevil is meant to ease the reproduction of distributed experimental environments. In particular
it permits to recreate expected workload to stimulate the service under test, to remotely deploy the
various element required by the experiment, and to collect data during the experiment. The usage
of Weevil is illustrated in Chapter 5.

Finally a testing tool targeting design-time functional testing of PLASTIC applications, called
Jambition, is used to automatically derive test suites for services under development. The con-
crete usage of Jambition is illustrated in Chapter 2. The key idea of this tool is to exploit as much
as possible the behavioural description often available for deployed services. The extreme dynam-
icity of the service domain suggested to augment service with operational specification in order to
characterize services in a richer way. Jambition exploits this kind of information in order to derive
test cases that are suitable for service evaluation. Jambition assumes that such specifications are

PLASTIC IST-26955 14/104

January 2008 PLASTIC Consortium

available as Service State Machine (SSM), for which a sound theoretical foundation is also being
developed. We understand, though, that they could sound unfamiliar and difficult for practitioners.
However, SSMs can be seen as a formal semantics for a variant of UML 2.0 state machines [19].
In integrated way with the development environment produced by WP2, we have then also devel-
oped an automatic mapping of the output generated by the MagicDraw UML modeling tool [18]
to an XML format describing a corresponding SSM. The mapping is performed by the Jambition
embedded library Minerva which is described in Chapter 3. Thus, a developer can use this visual
tool to model the functionality of service interfaces in the common formalism of UML 2.0 state
machines.

1.4 Admission testing

As discussed in Section 1.2 one of the main challenges of testing is to test the service in the
environment where it will operate at run-time. At the same time, the Service-Oriented Architecture
(SOA) foresees the existence of a service broker that is used by services to search and obtain
references to each other. The idea of the Admission testing is to have the service undergo a pre-
liminary testing stage (also referred to as audition) whose results will decide the actual registration
of the service in the directory.

The intuition of the Admission testing is that the quality of registered services can be increased
by granting the registration into the directory only to those services that pass the audition testing
phase. At the same time this should provide better confidence in the fact that services will interact
in a correct way even if they discover each other at run-time.

Admission testing clearly raises issues regarding the invocations to fully-operating services (as
opposed to services being auditioned). This may be particularly dangerous if the services invoked
are related to stateful resources. In order to avoid side effects resulting from invocations fired in
the process of auditioning a service, suitable countermeasures must be taken.

Following the recommendations coming from the first year review, plans for the subsequent pe-
riod of experimentation of the PLASTIC platform do not include however admission testing. D4.2
includes however the release of a directory service, called WS-Guard, conforming the UDDI spec-
ification that implements the Audition idea and permits to test services before their registration.

1.5 Live-usage verification

Difficulties in applying verification techniques before live usage, suggested to extend the verifica-
tion phase till run-time. Within workpackge 4 two different activities, aiming at the development
of monitoring mechanisms, have been activated. The idea is to add suitable mechanisms to the
platform so as to detect violations with respect to the expected behaviour of services.

The first of these approaches, called Dynamo-AOP, focuses on functional behaviour of orches-
trated services, and provides support to augment orchestrating services with checks, in order to
verify that the orchestrated services behave as expected. Chapter 6 describes how to install and
use Dynamo-AOP.

Another approach in this category supports the monitoring and logging of extra-functional prop-
erties for running services. SLAngMon implements a mechanism to parse Service Level Agree-
ment specifications defined in SLAng automatically generates the code of efficient checkers,
whose operation is based on timed automata theory. Chapter 7 is devoted to the description
of how to set and use SLAngMon.

PLASTIC IST-26955 15/104

January 2008 PLASTIC Consortium

1.6 PLASTIC validation framework novelty

Summarising, the described PLASTIC framework spans over the whole service lifecycle, covering
with a coherent set of tools both off-line and on-line stages, and addressing both functional and
QoS concerns. Although verification and validation of SOA is a very active research topic, solu-
tions that can be found in the literature address a specific limited objective. The WP4 concerted
effort for service validation in PLASTIC provided the opportunity for developing a consistent ma-
trix methodology which is unique in terms of comprehensiveness and flexibility. The contribution
does not consist only in the combination of different techniques though: Jambition, Puppet, and
Weevil, allow service developers to rigorously test a service (using the original SSM model) be-
fore deployment in a realistic reproduction of the deployment context (as opposed to testing in
the real environment or to manually mocking it). SlangMon and Dynamo-AOP support monitoring
against the defined properties improving in efficiency with respect to existing solutions and directly
deriving the monitor from the SLA contracts.

1.7 Tool download

All the prototypes described in this document can be freely downloaded from:

http://plastic.isti.cnr.it

PLASTIC IST-26955 16/104

http://plastic.isti.cnr.it

January 2008 PLASTIC Consortium

2 Jambition
2.1 Jambition Overview

Every Web Service provides a set of operations to its potential users. To know which operations
are available, an interface specification is needed. Commonly, Web Service interfaces are speci-
fied in the Web Service Description Language (WSDL).

For instance, a Web Service representing a warehouse may offer operations to check the avail-
ability of products, and to order such products. In the first case, an object representing a quote
request is sent, and an object represeting a quote is returned. The corresponding WSDL file
makes the signature of these operations public. This information is sufficient to connect to the
Web Service, and to invoke the operations, but it does not give any kind of semantic information.
For instance, the warehouse may only accept quote-requests of a certain quantity. Or it may only
allow to order products when the availability has been requested beforehand. Or it may guaran-
tee that every offered quote deals with the same quantity as the requested quote has indicated.
WSDL files are not intended to provide such kind of information.

One natural way to extend a Web Service description in this direction is to use state machines.
Jambition uses a dedicated variant of state machines which is especially useful for Model-Based
Testing – Service State Machines (SSM). Such a state machine can be used to express constrains
on the data as it is passed via the operations, and it gives a legal ordering of the invocations of
operations. Hence, properties like the ones stated above for the warehouse can be expressed via
SSMs.

Such an SSM model can suit several needs. For instance, it gives a specification of the dynamic
aspects of the Web Service invocations. A user of the Web Service knows which operations are
allowed to be invoked at what point in time. She also knows the restrictions on the data to be sent
and received. SSMs are a valuable means to extend Web Service specifications.

Furthermore, an SSM can be used to automatically test a Web Service. This is what Jambition
does. It takes a WSDL and a SSM specification of a Web Service as input. Based on these it
fully automatically generates invocations to the Web Service, receives the returned messages,
and checks if this data is conforming to the SSM specification.

Following the warehouse example, Jambition will respect the protocol as it is encoded in the
SSM, for instance that it will always check the availability before making an order. It will also
respect the data constraints, for instance making orders with a quantity of at least 3 products.
With respect to testing, Jambition will receive the responses of the operation calls it makes, and
then check if also the warehouse respects its constraints on the data. For instance, Jambition will
check if the warehouse makes only offers for the requested products.

If Jambition spots a failure it will report so and stop the testing. While no failure is found, it does
a random walk through the SSM, meaning that when there are several inputs specified, it chooses
one randomly. With respect to the parameters of operations, Jambition only chooses data values
which respect the constraints (like a quantity ≥ 3). Usually the first solution of the constraint is
chosen (like quantity = 3).

To visualize and to keep track of how the test proceeds, Jambition offers a GUI which mon-
itors the testing events. It is also possible to log the ongoing testing to rotating log files. Fur-
thermore, Jambition can be connected to the open source tool Quick Sequence Diagram
Editor, which displays the communication between Jambition and the Web Service in real time
as an UML sequence diagram.

The execution of Jambition on a Web Service corresponds to the automatic generation and ex-
ecution of thousands of test cases within minutes. The only thing needed in addition to the WSDL

PLASTIC IST-26955 17/104

January 2008 PLASTIC Consortium

is the SSM specification. Having that, Jambition can be a great help in testing the functionality of
Web Services.

Note, that as a result of recent efforts, the testing engine of Jambition has been integrated into
the Puppet tool. Please refer to chapter 4 and section 8 for further details.

2.2 Technical info

Provider CNR

Introduction Jambition is a prototype tool to automatically test the functionality of stateful Web
Services based on Service State Machine (SSM) specifications. SSMs are similar to UML
state machines, but tailored to the domain of Web Services. They have a precise seman-
tics and are especially suited to perform Model-Based Testing. SSMs specify a single
port type. The Web Service to be tested is assumed to be passive, meaning that only
request-response and one-way operations are defined in the corresponding WSDL.
Jambition supports a subset of the XML-Schema data types.

Development status Version 301107 is available for download

Intended audience Developers of stateful services

License GPLv3 (open source) with some exceptions to include libraries

Language Java 6, GNU Prolog 1.3.0

Environment (set-up) Hardware: no special requirements
Software: Java 6 Runtime Environment, treeSolver, dot(optional), Quick Sequence Diagram
Editor (optional)

Platform Java 6 Runtime Environment. treeSolver is available for Linux and Windows. Other
operating systems are supported by recompiling. Ideally, the Web Service to be tested
should be deployed on a Glassfish server. Other applications servers may demand minor
adaptions of Jambition.

Download The official version can be retrieved at http://plastic.isti.cnr.it/download/
tools

Tasks SSMs can in principle also be used to model the communication between several Web
Services. To do so they have to involve the message flow at several ports. Testing based
on such multi-port SSM would allow to test more complex scenarios like coordinated and
composed Web Services.

Many Web Services use lists as data types. Lists correspond to an unbounded sequence in
XML, which is not supported by the current version. Supporting lists is another eligible future
step.

With respect to the testing itself, the purely random approach might not always be satisfac-
tory. Specific coverage criteria can be conceived.

The constraint solving can be more flexible and general. For instance, dealing with negative
integers can be achieved by changing the underlying constraint solver. Also, a “first solution
found” approach is sometimes too restrictive.

Bugs N/A

PLASTIC IST-26955 18/104

http://plastic.isti.cnr.it/download/tools
http://plastic.isti.cnr.it/download/tools

January 2008 PLASTIC Consortium

Patches N/A

Contact Lars Frantzen<lars.frantzen@isti.cnr.it>

2.3 Deployment

The relevant concepts of Jambition are depicted in Fig. 2.1. The structural aspects (data types,

SSM object

Web Service

describes structural aspects
and binding of

describes behavioral aspects of

JAmbition

tests

structural aspects behavioral aspects

binding

structural and
behavioral aspects

WSDL
instance

SSM
instance

Figure 2.1: Jambition Concepts

messages, operations, port types) of the Web Service to be tested are described in a WSDL in-
stance. The behavioral aspects (states of the Web Service, ordering of invocations, constraints on
the data flow) are described in an SSM instance. Both aspects are combined together in an SSM
object. This object is the main reference of Jambition to do the automatic testing. Furthermore,
the binding information of the WSDL file (service, port) is used to physically connect to the Web
Service.
Concretely, Jambition needs four inputs, see Fig. 2.2.

1. The URL of the WSDL instance

2. The service name of the Web Service to be tested as being given in the WSDL instance
(since a single WSDL can define several services)

3. The port name of the Web Service to be tested as being given in the WSDL instance (since
a single WSDL can define several ports per service)

4. The URL of the SSM instance

Based on these inputs, the SSM object is generated and the testing can be started.

PLASTIC IST-26955 19/104

January 2008 PLASTIC Consortium

Web Service

describes structural aspects
and binding of

describes behavioral aspects of

JAmbition

tests

URL

WSDL
instance

SSM
instance

Service
Port URL

Figure 2.2: Jambition Inputs

2.3.1 Install

Jambition is written in Java 6, hence it needs a Java 6 JRE installed. It comes as a Jambition.zip
archive. Within the archive there is the Jambition directory. Just extract this directory to a de-
sired place. Within the directory there is the Jambition.jar archive. A simple double click
should start Jambition on all common operating systems.

Jambition needs access to a constraint solver to do the testing. It uses GNU Prolog for this
purpose. It is necessary to install and run the treeSolver program, which opens a socket
connection to the constraint solver. treeSolver can be freely downloaded here:

http://www.cs.ru.nl/˜lf/tools/treesolver/
The web page provides executables for Windows and Linux. Also the source code is available,
so it can be compiled for several other operating systems, see http://www.gprolog.org/
#platform. The treesolver gets as only input the socket-port to open. Before starting Jam-
bition, invoke treeSolver for instance with the port number 60002. You should get something
like:

user@pc-plastic:˜$ treeSolver 60002
treeSolver V180607
By Lars Frantzen (lars@frantzen.info)
A socket interface to the constraint solver of GNU Prolog
GNU Prolog is copyright (C) Daniel Diaz
Listening on pc-plastic port 60002

A tool which is not mandatory for Jambition, but useful to visualize the testing process, is the
Quick Sequence Diagram Editor - sdedit. It is written in Java and can be freely down-
loaded here:

sdedit.sourceforge.net/
After sdedit is launched, turn on its real-time server by choosing in the File menu Start/stop
RT server. For the socket-port accept the suggestion 60001.

Another tool which is not mandatory for Jambition, but useful to visualize the SSM, is dot. It is
part of the Graphviz toolsuite. Binaries for Windows and Linux can be freely downloaded here:

http://www.graphviz.org/
Now Jambition can be launched, see the screenshot in Fig. 2.3. The first thing to tell Jambition is
where to find the WSDL and SSM specifications of the Web Service to test. The following sections
will give further details about these files.

PLASTIC IST-26955 20/104

http://www.cs.ru.nl/~lf/tools/treesolver/
http://www.gprolog.org/#platform
http://www.gprolog.org/#platform
http://www.graphviz.org/

January 2008 PLASTIC Consortium

Figure 2.3: Jambition Initial Screenshot

2.3.2 Configure

Via the Jambition menu the Preferences window can be displayed, see the screenshot in
Fig. 2.4. We explain the options from top to bottom.

At the top the socket of the treeSolver can be modified. The default values here are port
60002 on the local host. The option Always New Inputs is experimental, it means that when-
ever Jambition has to find a solution for a constraint, it tries to find a new solution. For instance, the
constraint quantity ≥ 3 will always be solved by choosing quantity = 3, since this is the
first solution found. This may not always be desirable, turning this option on will find the solutions
3,4,5,et cetera. But this generates very huge and inefficient constraints, so this option should be
treated with care.

Next the sdedit socket can be modified. The Enabled option allows to turn on and off the
usage of sdedit. This means that Jambition does not send the testing messages to the sdedit
tool, which can nicely display those in form of a sequence diagram. Still, it is possible to generate
the input for sdedit later, for instance when a failure was found. To do so it is necessary to turn

PLASTIC IST-26955 21/104

January 2008 PLASTIC Consortium

Figure 2.4: Jambition Preferences Screenshot

on the Remember Trace option.
Jambition logs per default to its Monitor window. This can be turned off. Note that logging

to the Monitor increasingly consumes memory since the window remembers all test events.
Instead, or additionally, it is possible to log to rotating log files. The name of the file, the bytes per
file, and the number of files can be set.

Finally, the Debug Mode can be turned on or off. This means that additional information is
logged, for instance the exchanged SOAP messages. All options can be reset to its default values,
and saved.

2.4 Tutorial

2.4.1 Web Service Description Language

The structural aspects (data types, messages, operations, port types) of the Web Service to be
tested are described in a WSDL instance. Also the binding information is encoded here. Normally,
WSDL files are automatically generated by the IDE which is used to develop the Web Service.

To define the data types of the message parameters, commonly the data types of XML Schema
are used in the WSDL.

PLASTIC IST-26955 22/104

January 2008 PLASTIC Consortium

2.4.1.1 XML Schema Simple Types

Jambition supports the following simple types:

• xs:boolean

• xs:integer

• xs:string

• xs:enumeration (a restriction on xs:string)

• xs:double

Two limitations are important to note. Firstly, Jambition can only deal with positive integers. This
is due to the fact that GNU Prolog (which is used by the treeSolver) can only solve constraints
over positive integers.

Secondly, the support for doubles is very limited. This is due to the fact that constraint solving
over double variables is not feasible in the way Jambition needs it. What Jambition does is sup-
porting double variables with a fixed precision. For instance, doubles with a fixed precision of two
positions after the decimal point can be used to model amounts of money. Such “fake” doubles can
be mapped internally to integers. But this mapping easily leads to large integers, which may be
too large again for the constraint solver. In its current version Jambition assumes a fixed precision
of two positions after the decimal point.

2.4.1.2 XML Schema Complex Types

Complex types are used to represent classes of Object-Oriented languages in the WSDL. For
instance, given a Java method which returns an object of class c. The class c has two fields. If
this method is exposed as a Web Service method, the corresponding WSDL can define a complex
type for c which is a sequence of two elements representing the two fields. Jambition supports
such complex types.

Jambition does not support elements in a sequence which are of the kind maxOccurs =
"unbounded". Such elements are used to model, for instance, lists.

2.4.1.3 WSDL Operations

Four kinds of operations can be defined in a WSDL:

• request-response

• one-way

• solicit-response

• notification

Jambition does only support the first two kinds — request-response and one-way. We call such a
service a passive service since it does never send messages actively, only after being requested.

PLASTIC IST-26955 23/104

January 2008 PLASTIC Consortium

2.4.1.4 SOAP Binding

The XML parameter mapping is defined by the soap:body use and the soap:binding style
attributes. Jambition assumes that:

• use = "encoded" or

• use = "literal" and style = "document" and each message has exactly one part
called parameters.

2.4.2 Service State Machines

The behavioral aspects (states of the Web Service, ordering of invocations, constraints on the data
flow) are described in an SSM instance. An SSM is a state machine, consisting of typed variables,
states, and transitions between the states. Every transition consists of these elements:

1. The state where the transition starts.

2. The name of a WSDL operation.

3. The kind of the corresponding message. This can be either input or output for request-
response operations, and is always input for one-way operations.

4. A guard which restricts the conditions under which the transition can be executed. The
language of the guard is described below.

5. An update of the variables.

Every SSM has an initial state.

2.4.2.1 The Language of the Guards

There are five kind of literals, i.e. constants of a certain type:

• Integer literal – a numberstring (e.g. 3423432)

• Boolean literal – true or false

• Double literal – numberstring followed by a dot ’.’ and optional another numberstring (e.g.
23.2324)

• String literal – string between double quotes, e.g., “Hello World”

• Enumeration literal – a string of the form element@enumname, where enumname is the
name of an enumeration type, and element one of its elements, e.g. BOOK@product

An identifier is a name of a variable. If a variable has a complex type, then one can refer to the
fields by the dot-notation, e.g. q.product. Every literal and identifier are expressions which have
a corresponding type, i.e. one of integer, boolean, float, string, complex or enumeration. One can
combine literals and identifiers via operations, yielding more complex expressions, which again
have a type. Next we mention the operations currently supported by the parser. By number we
mean integers or doubles. Note that here by writing for instance boolean or number we refer to
any expression of this type.

First we mention the operations which lead to an expression of type boolean:

PLASTIC IST-26955 24/104

January 2008 PLASTIC Consortium

• == compares booleans, numbers, strings and enumeration instances for equality

• != compares booleans, numbers, strings and enumeration instances for inequality

• < compares numbers for being less than

• <= compares numbers for being less than or equal

• > compares numbers for being greater than

• >= compares numbers for being greater than or equal

• && the logical and of two booleans

• || the logical or of two booleans

• ! the logical not of a boolean

Next we mention the operations which lead to expressions of type integer or double:

• ++ increments (+1) an integer

• -- decrements (-1) an integer

• + adds numbers or strings (i.e., a concatenation of two strings)

• - subtracts two numbers

• * multiplies two numbers

• % The remainder operator for numbers

• / divides two numbers

A guard is an expression of type boolean. Sometimes one wants to express an empty guard,
meaning an expression which has the logical value always true. This cannot be done by giving an
empty string, nor by writing just the boolean literal true, one has to write true == true here.
One also cannot just mention the name of a variable of type boolean like p or !p, it is necessary
to write p == true or p == false.

2.4.2.2 Variable Updates

There is another operator we have not mentioned yet, it is the assignment operator ’=’. Here we
assign a value to a variable. An update can consist of several such assignments, but one can
also have no assignment at all by giving the empty string “”, meaning that all variables remain
unchanged. All assignments must be terminated by a semicolon ;.

2.4.2.3 Designing SSM in MagicDraw

Please refer to the Minerva chapter 3.

2.4.2.4 Defining SSM directly in XML

Jambition expects an instance of an XML schema for SSM called SP-SSM. After giving the the full
schema it is further explained below.

PLASTIC IST-26955 25/104

January 2008 PLASTIC Consortium

An XML Schema for SSM

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace=
"http://frantzen.info/testing/ssmsimulator/schema/"
xmlns:tns="http://frantzen.info/testing/ssmsimulator/schema/"
elementFormDefault="qualified">

<xsd:annotation>
<xsd:documentation xml:lang="en">

A schema for Singleport Symbolic State Machines (SP-SSM).
Version: 010807
Copyright (C) 2007 Lars Frantzen

</xsd:documentation>
</xsd:annotation>
<xsd:element name="spssm" type="tns:SPssm"></xsd:element>
<xsd:complexType name="SPssm">

<xsd:sequence>
<xsd:element name="wsdlURI" type="xsd:anyURI"/>
<xsd:element name="porttype" type="xsd:token"/>
<xsd:element name="states">

<xsd:complexType>
<xsd:sequence maxOccurs="unbounded">

<xsd:element name="state" type="xsd:token"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="initialState" type="xsd:token"/>
<xsd:element name="variables">

<xsd:complexType>
<xsd:sequence maxOccurs="unbounded">

<xsd:element name="var" type="tns:Variable"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="switches">

<xsd:complexType>
<xsd:sequence maxOccurs="unbounded">

<xsd:element name="switch" type="tns:Switch"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Variable">

<xsd:sequence>
<xsd:element name="name" type="xsd:token"/>
<xsd:element name="type" type="xsd:token"/>

</xsd:sequence>

PLASTIC IST-26955 26/104

January 2008 PLASTIC Consortium

</xsd:complexType>
<xsd:complexType name="Switch">

<xsd:sequence maxOccurs="1">
<xsd:element name="from" type="xsd:token"/>
<xsd:element name="operationName" type="xsd:token"/>
<xsd:element name="kind" type="tns:Kind"/>
<xsd:element name="restriction" type="xsd:string"/>
<xsd:element name="update" type="xsd:string"/>
<xsd:element name="to" type="xsd:token"/>

</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="Kind">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="input"/>
<xsd:enumeration value="output"/>
<xsd:enumeration value="unobservable"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Explanation of the Schema
We describe its elements:

• <wsdlURI> Every SP-SSM instance specifies a port-type which is given in an external
WSDL file. This external file is referenced by this tag via an URI. For Jambition, this tag
has no relevance.

• <porttype> Here the specific port-type from the referenced WSDL is named (there could
be several in the WSDL). For Jambition, this tag has no relevance.

• <states> Here all the state-names are listed.

• <initialState> The name of the initial state is given here.

• <variables> Here all the variables are listed.

– <name> Every variable has a name.

– <type> Every variable has a type. This is either one of the XML schema simple types
like xs:boolean, or the name of a complex type or an enumeration. In case of a
complex type or an enumeration the namespace indicator must be the same as the
target namespace of the referenced WSDL.

• <switches> Here the SSM transitions, called switches, are given.

– <from> This is the state-name where the switch starts.

– <operationName> This is the name of the operation (as defined in the WSDL) where
the switch-message belongs to.

– <kind> This is he kind of the message which is transported by this switch. For every
operation this can be either input or output. A special third kind is unobservable
which denotes an internal message which is not observable at the interface.

– <restriction> This is guard.

PLASTIC IST-26955 27/104

January 2008 PLASTIC Consortium

– <update> This is the variable update.

– <to> This is the state-name where the switch leads to.

Note that especially when dealing with <restriction> and <update> elements there may be
the need to map special characters like ’&’ or ’<’ to a different representation in the schema
instances. The next section gives an example instance of this schema.

2.4.3 The Warehouse Example

In this section a simple example is given which demonstrates the usage of Jambition. We follow
here again the warehouse scenario. We have seen that Jambition needs as input the WSDL
file, and an SSM specification, of the Web Service to be tested. Since the WSDL file is usually
generated automatically by some programming language specific tool, we start this example by
showing the warehouse operations as Java methods. Note that for Jambition it does not matter
how the WSDL was generated, by a Java specific tool, another language’s tool, or manually.

2.4.3.1 The Warehouse Web Service in Java

We use here the JAX-WS 1 implementation to handle Web Services in Java. We assume the
familiarity of the reader with the JAX-WS (or a similar) package, and will not explain its usage
further.
The warehouse service shall offer three operations, which appear in Java as methods:

• Quote checkAvail(QuoteRequest r)
This operation allows a user of the warehouse to request a quote for a given product and
quantity. This is realized via a parameter of type QuoteRequest having the attributes
Product and quantity. We assume the class Product to be a simple enumeration,
and quantity to be an integer. As a return value, this operation shall send a Quote object,
which consists also of a Product and quantity; additionally it has the attributes price of
type double, and refNumber of type integer.

• void cancelTransact(int ref)
This operation shall be invoked if the user rejects a quote offered. To do so, the user sends
as a parameter the reference number which has been issued in a corresponding quote (see
attribute refNumber of the Quote object in operation checkAvail above).

• void orderShipment(int ref, Address adr)
This operation shall be invoked if the user accepts a quote offered. To do so, the user sends
also here as a parameter the reference number which has been issued in a corresponding
quote, and a shipment Address object.

Next we show the signatures of the corresponding Java methods:

@WebMethod
public Quote checkAvail(@WebParam(name = "r") QuoteRequest r)

@WebMethod
@Oneway
public void cancelTransact(@WebParam(name = "ref") int ref)

1Available at https://jax-ws.dev.java.net/.

PLASTIC IST-26955 28/104

https://jax-ws.dev.java.net/

January 2008 PLASTIC Consortium

@WebMethod
@Oneway
public void orderShipment(@WebParam(name = "ref") int ref,

@WebParam(name = "adr") Address adr)

The auxiliary classes and their attributes are as follows:

public class QuoteRequest {
Product product;
int quantity;
...

}

public enum Product {
foo,
bar

}

public class Quote {
Product product;
int quantity;
double price;
int refNumber;
...

}

public class Address {
String firstName;
String lastName;
...

}

2.4.3.2 The Warehouse WSDL

We assume here that the reader has a basic understanding of WSDL files and XML Schema. We
have created the Java-files in a package called services. Next we generate the corresponding
WSDL for the warehouse Web Service, which is one of the input files of Jambition. Important
for the further modeling of the service are the operation names, and the names of the operation
parameters as they appear in the WSDL. The operations names usually match exactly the Java
method names. The parameter names should also match the parameter names given in the
Java code (in case of JAX-WS this name can be explicitly set via the @WebParam annotation,
see above). A special case is the return parameter. In Java this parameter has no name on its
own, just a type. For instance, the method checkAvail returns a Quote object, but this return
parameter has no extra name. In the WSDL, also these returned parameters have names.

Let us check the WSDL generated by JAX-WS. We only give the relevant parts, here. First
we check the definition of the messages and operations. In a WSDL, every operation consists
of messages. Input parameters are modeled by input messages, and the returned parameter
is modeled via an output message. In case of a Java void operation just an input message is
present. In the WSDL this looks like this:

<message name="checkAvail">

PLASTIC IST-26955 29/104

January 2008 PLASTIC Consortium

<part name="parameters" element="tns:checkAvail"/>
</message>
<message name="checkAvailResponse">

<part name="parameters" element="tns:checkAvailResponse"/>
</message>
<message name="cancelTransact">

<part name="parameters" element="tns:cancelTransact"/>
</message>
<message name="orderShipment">

<part name="parameters" element="tns:orderShipment"/>
</message>

<portType name="Warehouse">
<operation name="checkAvail">

<input message="tns:checkAvail"/>
<output message="tns:checkAvailResponse"/>

</operation>
<operation name="cancelTransact">

<input message="tns:cancelTransact"/>
</operation>
<operation name="orderShipment">

<input message="tns:orderShipment"/>
</operation>

</portType>

We see here two things. First of all, the names of the operations equal the names of the Java
methods (the <operation name=XYZ"> attribute). Secondly, the definition of the message pa-
rameters refers to XSD elements (e.g. tns:checkAvail). To find these elements, we next check
the definition of the types:

<types>
<xsd:schema>

<xsd:import namespace="http://services/"
schemaLocation="http://localhost:8080/Fuppet/WarehouseService/...
WEB-INF/wsdl/WarehouseService_schema1.xsd"
[...]

</xsd:schema>
</types>

Here we see that the WSDL refers to an external XML Schema file which defines the types (the
schemaLocation). We check that file, next:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" targetNamespace="http://services/"

xmlns:tns="http://services/" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="cancelTransact" type="tns:cancelTransact"/>
<xs:element name="checkAvail" type="tns:checkAvail"/>
<xs:element name="checkAvailResponse" type="tns:checkAvailResponse"/>
<xs:element name="orderShipment" type="tns:orderShipment"/>

PLASTIC IST-26955 30/104

January 2008 PLASTIC Consortium

<xs:complexType name="checkAvail">
<xs:sequence>

<xs:element name="r" type="tns:quoteRequest" minOccurs="0"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="checkAvailResponse">
<xs:sequence>

<xs:element name="return" type="tns:quote" minOccurs="0"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="orderShipment">
<xs:sequence>

<xs:element name="ref" type="xs:int"/>
<xs:element name="adr" type="tns:address" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="cancelTransact">
<xs:sequence>

<xs:element name="ref" type="xs:int"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="quoteRequest">
<xs:sequence>

<xs:element name="product" type="tns:product" minOccurs="0"/>
<xs:element name="quantity" type="xs:int"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="quote">
<xs:sequence>

<xs:element name="price" type="xs:double"/>
<xs:element name="product" type="tns:product" minOccurs="0"/>
<xs:element name="quantity" type="xs:int"/>
<xs:element name="refNumber" type="xs:int"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="address">
<xs:sequence>

<xs:element name="firstName" type="xs:string" minOccurs="0"/>
<xs:element name="lastName" type="xs:string" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

<xs:simpleType name="product">
<xs:restriction base="xs:string">

PLASTIC IST-26955 31/104

January 2008 PLASTIC Consortium

<xs:enumeration value="bar"/>
<xs:enumeration value="foo"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

We find here the names of the parameters, and their corresponding XML-Schema types. Summa-
rized, we get:

• Operation checkAvail
Input message parameters: r of type quoteRequest
Output message parameters: return of type quote

• Operation cancelTransact
Input message parameters: ref of type xs:int

• Operation orderShipment
Input message parameters: ref of type xs:int and adr of type address

The corresponding complex types are:

• quoteRequest
Elements: product of type product and quantity of type xs:int

• quote
Elements: price of type xs:double, product of type product, quantity of type
xs:int, and refNumber of type xs:int

• address
Elements: firstName of type xs:string and lastName of type xs:string

This is very close to what we have written in the Java code. Still, it is necessary to check the
concrete names and types, since this is crucial for the definition of the SSM, as we will see next.

Note: this information can also be automatically extracted and displayed by the showWSDL
tool. It is part of the Jambition distribution (see the showWSDL directory).

2.4.3.3 The Warehouse SSM

Now comes the part where we specify the dynamic aspects of the warehouse via an SSM. Re-
member that an SSM consists of static constituents like types, messages, parameters, and oper-
ations. This information is already present in the WSDL file, as we have seen in the last section.
Still to be modeled are the dynamic constituents like states, and transitions between the states.
SSMs can be seen as a dynamic extension of a WSDL. They specify the legal ordering of the
message flow at the service port, together with constraints on the data exchanged via message
parameters.

A SSM can store information in SSM-specific variables. Every SSM transition corresponds
to either a message sent to the service (input), or a message sent from the service (output).
Furthermore, a transition can be guarded by a logical expression. After a transition has fired, the
values of the variables can be updated. Take the WSDL operation checkAvail. This request-
response operations has an input message with parameter r of complex type quoteRequest,
and an output message return of complex type quote. In the SSM we model the call of the

PLASTIC IST-26955 32/104

January 2008 PLASTIC Consortium

checkAvail operation by two succeeding transitions, the first representing the input message,
and the second the output message.

Figure 2.5 shows the SSM we want to use for this example, which specifies the warehouse
service. What we specify here is the session protocol a user of the warehouse service has to
follow.

Initially, the warehouse is in state 1. Now a user of the warehouse can invoke the checkAvail

1

2

checkAvail?<r:quoteRequest>
[r.quantity > 0]

qr = r;

checkAvail!<return:quote>
[return.product == qr.product &&

 return.quantity == 0 &&
 return.price == 0.0 &&
 return.refNumber == 0]

3

checkAvail!<return:quote>
[return.product == qr.product &&

 return.quantity == qr.quantity &&
 return.price > 0.0 &&
 return.refNumber > 0]

qi = return;

orderShipment?<ref:ST_Int,adr:address>
[ref == qi.refNumber]

cancelTransact?<ref:ST_Int>
[ref == qi.refNumber]

Figure 2.5: The Warehouse SSM

operation by sending the corresponding input message with parameter r of complex type
quoteRequest. This corresponds to the transition from state 1 to state 2. The first line of
the label is checkAvail?<r:QuoteRequest>. This states that this transition refers to the
checkAvail operation. The appended question mark indicates that here the input message
is modeled. The guard of the transition r.quantity > 0 restricts the attribute quantity of
parameter r to be greater than zero. After the transition has fired, r is saved in the SSM-specific
variable qr (which must also be of type QuoteRequest). Next, the warehouse has to return a
Quote object via the return parameter return. Two things can happen. Firstly, the requested
product may not be on stock with the requested quantity. In this case a Quote object is returned
with a zero quantity, refNumber and price (transition from 2 to 1). Additionally it is ensured
that the returned product attribute is the same as the requested one. This is achieved by re-
lating the returned attribute product of return with the saved requested attribute product of
qr: return.product == qr.product. Secondly, if the product is on stock, a Quote object
is returned with the same quantity as being requested, and a price and refNumber greater
than zero (transition from 2 to 3). We save the issued quote in the SSM-specific variable qi. Not
that the appended exclamation mark indicates that these two transitions model possible output
messages of the checkAvail operation.

Now again two things can happen. Either the user of the warehouse decides to reject the quote.
He/she invokes the one-way operation cancelTransact by sending the message
?cancelTransact (rightmost transition 3 to 1). Here he/she must refer to the correct issued
reference number refNumber. Or he/she decides to accept the quote. In this case, in addition
to the correct reference number, an address must be provided as a second parameter (leftmost
transition 3 to 1).

Note that in the picture the XML Schema type xs:int appears as ST Int. This is due to an

PLASTIC IST-26955 33/104

January 2008 PLASTIC Consortium

automatic mapping of the XML Schema types to internal SSM types when the WSDL is read by
Jambition.

2.4.3.4 Denoting the SSM in XML

We denote the SSM now directly in XML, meaning we create an instance of the SP-SSM schema
which denotes exactly the SSM from Fig. 2.5:

<?xml version="1.0" encoding="UTF-8"?>

<spssm xmlns=’http://frantzen.info/testing/ssmsimulator/schema/’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:package=’http://services/’
xsi:schemaLocation=’http://frantzen.info/testing/ssmsimulator/schema/

file:///home/lf/NetBeans/Audition/.../SP-SSM.xsd’>

<wsdlURI>not needed</wsdlURI>
<porttype>Warehouse</porttype>
<states>

<state>1</state>
<state>2</state>
<state>3</state>

</states>
<initialState>1</initialState>
<variables>

<var>
<name>qr</name>
<type>package:quoteRequest</type>

</var>
<var>

<name>qi</name>
<type>package:quote</type>

</var>
</variables>
<switches>

<switch>
<from>1</from>
<operationName>checkAvail</operationName>
<kind>input</kind>
<restriction>r.quantity > 0</restriction>
<update>qr = r;</update>
<to>2</to>

</switch>
<switch>

<from>2</from>
<operationName>checkAvail</operationName>
<kind>output</kind>
<restriction>return.product == qr.product &&
return.quantity == qr.quantity &&
return.price > 0.0 && return.refNumber > 0</restriction>

PLASTIC IST-26955 34/104

January 2008 PLASTIC Consortium

<update>qi = return;</update>
<to>3</to>

</switch>
<switch>

<from>2</from>
<operationName>checkAvail</operationName>
<kind>output</kind>
<restriction>return.product == qr.product &&
return.quantity == 0 && return.price == 0.0
&& return.refNumber == 0</restriction>
<update></update>
<to>1</to>

</switch>
<switch>

<from>3</from>
<operationName>cancelTransact</operationName>
<kind>input</kind>
<restriction>ref == qi.refNumber</restriction>
<update></update>
<to>1</to>

</switch>
<switch>

<from>3</from>
<operationName>orderShipment</operationName>
<kind>input</kind>
<restriction>ref == qi.refNumber</restriction>
<update></update>
<to>1</to>

</switch>
</switches>

</spssm>

2.4.3.5 Modeling the SSM in MagicDraw

Please refer to the Minerva chapter 3.

2.4.3.6 Starting Jambition, treeSolver, sdedit, and Checking the Preferences

We now have the necessary specifications ready – the WSDL and the SSM. We assume that the
corresponding (stateful) warehouse Web Service is successfully deployed. We start Jambition
and see the main GUI (see Fig. 2.3). In the WSDL URL textfield we enter the URL of the WSDL,
and in the SSM URL textfield the URL of the SSM. Not that in case of a local file one can use the
file://PathToFile notation. Since a WSDL can in principle define several services and ports,
it is additionally necessary to name the specific service and port to be tested. If unsure what to
put here, consult here the WSDL. For our example the relevant WSDL-part looks like this:

<service name="WarehouseService">
<port name="WarehousePort" binding="tns:WarehousePortBinding">

[...]
</port>

</service>

PLASTIC IST-26955 35/104

January 2008 PLASTIC Consortium

Hence, we put WarehouseService in the Service textfield, and WarehousePort in the Port
textfield.

Next we check the preferences by choosing Preferences from the Jambition menu. For
all preferences options we keep the default values. Make sure that the treeSolver is running
under the port given. Also start sdedit and make sure that its real-time server is running on the
right port (via its File menu item Start/stop RT server...). Close the preferences.

2.4.3.7 Generating the SSM Object

Now we are ready to generate the SSM object. We do so by pressing the Generate SSM button.
After a short while a little notification window should report SSM successfully generated!.
The Monitor of the Jambition GUI should report something similar to:

08/10/07 11:54:10:161: treeSolver is bound to local port 59132
08/10/07 11:54:10:283: treeSolver sends: treeSolver V180607 ready
08/10/07 11:54:10:285: qsdeServer is bound to local port 56311
08/10/07 11:54:10:451: STSimululator ready.

The treeSolver reports something like Connected with 127.0.0.1, and sdedit shows
in a new tab called Jambition the two actors Jambition and SUT (which is the Web Service
Under Test).

2.4.3.8 Using dot to Visualize the SSM

Note that after having successfully generated the SSM object, the button dot Input is enabled.
Pressing this button outputs the generated SSM in a textual format understood by the dot tool
from the Graphviz toolsuite. For our example, we get this output in the Jambition Monitor:

digraph STS {
1 -> 2 [label = "checkAvail?<r:quoteRequest[product:product{bar,foo},

quantity:ST_Int]>\n[r.quantity > 0]\nqr = r;"];
2 -> 1 [label = "checkAvail!<return:quote[price:ST_PseudoPosDouble,

product:product{bar,foo},quantity:ST_Int,refNumber:ST_Int]>\n
[return.product == qr.product &&\n return.quantity == 0 &&\n
return.price == 0.0 &&\n return.refNumber == 0]\n"];

2 -> 3 [label = "checkAvail!<return:quote[price:ST_PseudoPosDouble,
product:product{bar,foo},quantity:ST_Int,refNumber:ST_Int]>\n
[return.product == qr.product &&\n return.quantity == qr.quantity
&&\n return.price > 0.0 &&\n return.refNumber > 0]\nqi = return;"];

3 -> 1 [label = "orderShipment?<ref:ST_Int,adr:address[firstName:ST_String,
lastName:ST_String]>\n[ref == qi.refNumber]\n"];

3 -> 1 [label = "cancelTransact?<ref:ST_Int>\n[ref == qi.refNumber]\n"];
}

Now one can copy-paste this into a text editor and save it as a file. Running the dot tool on
it generates a graph representing the SSM. Figure 2.5 shows a slightly simplified version of the
generated graph where the details of the complex types have been removed.

2.4.3.9 Testing the Warehouse Service

Finally we are in the position to test if the warehouse service does conform to the SSM specifi-
cation we have developed. Let us recapitulate what we have done so far. The initial assumption

PLASTIC IST-26955 36/104

January 2008 PLASTIC Consortium

in this running example was that we have developed a warehouse Web Service in the Java pro-
gramming language. To access this service the JAX-WS package automatically generates a corre-
sponding WSDL file which specifies the operations available at the service’s port, and its physical
address (also called the endpoint) of the service.

To specify dynamic aspects of the service we have additionally modeled an SSM. This SSM
specifies the legal ordering in which the warehouse operations must be invoked, and restricts the
data which is exchanged via the operations. On the one hand, the SSM specifies a protocol for a
potential user of the warehouse. For instance, it postulates that firstly the checkAvail operation
must be called with a positive quantity. On the other hand, the SSM specifies a protocol to which
the warehouse service itself must conform. For instance, the quote returned by the checkAvail
operation must always deal with the same product that being requested.

In other words, the SSM deals with two actors. One is the user of the warehouse invoking its op-
erations. The other is the warehouse itself receiving and responding to the operation calls. When
testing the warehouse, Jambition is playing the role of the user of the warehouse. Initially, being
in state 1, the only specified call is checkAvail. To invoke this operation, a parameter of type
quoteRequest must be constructed. The guard additionally restricts the parameter quantity
to be greater zero (see transition from state 1 to 2). Jambition will randomly choose a product
(foo or bar), and a quantity greater zero. With this quoteRequest parameter it then invokes the
checkAvail operation. Now, being in state 2, Jambition receives the quote object returned by
the warehouse. The SSM dictates, that this quote has to have a zero quantity, price, and refer-
ence number (transition from 2 to 1), or the same quantity as requested and a positive price and
reference number (transition from 2 to 3). For both transitions must hold that the quote’s product
must be the same as the requested product. Jambition checks now, which of the two cases holds
for the received quote, and moves to the respective next state (1 or 3). If none holds, a failure has
been detected. For instance, this is the case if the returned quote deals with a different product
than requested. Or, if the quantity and price are zero, but the reference number is not.

Assuming the quote was correct and Jambition moved to state 3, then it will next send either
a cancelTransact or an orderShipment to the warehouse (taking care of using the correct
reference number). And so on.

While no failure is found, the testing continues. If enabled, sdedit shows the messages ex-
changed in realtime. The user can halt the testing by pressing Stop Testing. Doing so enables
the Detailed Coverage button. Pressing it detailed coverage information of the SSM are dis-
played (which state and which transition has been visited how often up to now). The testing can
be continued by pressing Continue Testing, or ended by pressing End Testing.

2.5 Appendix

2.5.1 The Dumont Grammar in BNF

SwitchRestriction ::= BooleanExpression <EOF>
UpdateMapping ::= (VarAssignment)* <EOF>
VarAssignment ::= Id "=" TermExpression ";"

BooleanExpression ::= LogicalOrExpression ("&&" LogicalOrExpression)*
LogicalOrExpression ::= LogicalNotExpression ("||" LogicalNotExpression)*
LogicalNotExpression ::= "!" LogicalNotExpression

| TermExpression TermEqualityExpression
| "(" BooleanExpression ")"

TermEqualityExpression ::= "==" TermExpression
| "!=" TermExpression

PLASTIC IST-26955 37/104

January 2008 PLASTIC Consortium

| "<=" TermExpression
| "<" TermExpression
| ">=" TermExpression
| ">" TermExpression

TermExpression ::= TermAddExpression
TermAddExpression ::= TermSubtractExpression

("+" TermSubtractExpression)*
TermSubtractExpression ::= TermMultExpression ("-" TermMultExpression)*

TermMultExpression ::= TermDivExpression ("*" TermDivExpression)*
TermDivExpression ::= TermModExpression ("/" TermModExpression)*
TermModExpression ::= TermUnaryExpression ("%" TermUnaryExpression)*

TermUnaryExpression ::= "++" TermUnaryExpression
| "--" TermUnaryExpression
| "(" TermExpression ")"
| PrimaryTermExpression

PrimaryTermExpression ::= Literal
| Id

Name ::= <IDENTIFIER> ("." <IDENTIFIER>)*
Id ::= Name

Literal ::= (<INTEGER_LITERAL>)
| (<BOOLEAN_LITERAL>)
| (<STRING_LITERAL>)
| (<ENUMERATION_LITERAL>)

PLASTIC IST-26955 38/104

January 2008 PLASTIC Consortium

3 Minerva
3.1 Minerva Overview

Minerva is a tool for using SSM models designed in MagicDraw [18] in the testing environment
of Jambition. It reads such models and converts them to an internal representation, suitable to
be used by Jambition to test a web service. It also contains showWSDL and other library utilities
called by Jambition in order to accomplish its validation and testing activities.

3.2 Technical info

Provider 4D Soft Ltd.

Introduction Minerva is a library containing the following services:

• showWSDL This is a tool which parses a WSDL document and outputs its structure in a
human readable format.
• getSSMFromWSDL

This command takes a WSDL document and an SSM XML description and creates an
internal representation of the SSM, passing it to Jambition for testing a web service.
• getSSMFromUML

This call takes an XMI file, containing an UML representation of an SSM model and
generates an internal SSM used further by Jambition for testing and validating a web
service.

Development status The currently available version is 2.0.

Intended audience Software developers who wish to validate and functionally test their services
designed conform to the SP SSM model and modelled with the MagicDraw UML tool.

License This software is open source. GPL version 3 license is used.

Language Java

Environment (set-up) Minerva runs in a Java environment, so a Java 5 or higher Runtime Envi-
ronment is needed in order to use it. The libraries used are open-source and packaged with
the installation. Because it is a library for Jambition, a Jambition installation is also needed.
There are no special hardware or software requirements beside this.

Platform Java Runtime Environment 5 or later.

Download http://plastic.isti.cnr.it/download/tools

Documents Javadoc API, this guide.

Contact Zsolt G. Kiss, zsolt.kiss@4dsoft.hu

3.3 Deployment

3.3.1 Install

To install Minerva, unzip the archive showWSDL.zip in a directory of choice, referred later as
$MINERVA_HOME in this document.

PLASTIC IST-26955 39/104

http://plastic.isti.cnr.it/download/tools

January 2008 PLASTIC Consortium

Figure 3.1: Creating a new project

3.3.2 Configure/Usage

The java (version ≥ 5.0) should be in the PATH, other configuration is not needed. The used
libraries are contained in the package.

ShowWSDLElements tool usage:

1. Change directory to $MINERVA_HOME

2. Type java -jar showWSDL.jar <wsdl-uri>

3.4 Tutorial

We’ll follow the steps of modeling the Warehouse service, described in the Jambition chapter, with
an SSM, using MagicDraw.

3.4.1 Creating the project

First we create a PLASTIC project.

• From the File menu, choose New Project

The New Project dialog box opens.

PLASTIC IST-26955 40/104

January 2008 PLASTIC Consortium

Figure 3.2: The basic types and data structures

1. Select the Project from Template icon.

2. Specify the name (e.g. Warehouse) in the Name text box.

3. Choose the Project Location.

4. Select PLASTIC Template from the templates available and click Ok (fig. 3.1).

Click on the <Top Level Service Name> in the Containment browser and rename it to Ware-
house (choose Rename from the context menu, obtained by right-clicking the name.)

The created PLASTIC project contains the necessary module imports (PLASTIC Profile and
UML Standard Profile) and a package structure already based on the PLASTIC Conceptual Model,
containing the 5 basic views. For the SSM we are interested mainly on the Service View, which
consists of a Structural View and a Behavioral View.

Next we need to model the composite and other user-defined types which will be used through
the project.

3.4.2 Modeling the types and data structures

The Warehouse example contains the following user-defined types: Product, Address, Quote and
QuoteRequest. These are shown in Fig. 3.2.

We model these types in a class diagram:

1. From the elements browser pane on the left choose, then right-click “Warehouse — 002.Ser-
vice View — Structural View”.

2. Select New Diagram — Class Diagram, and specify a name (WarehouseTypes)

PLASTIC IST-26955 41/104

January 2008 PLASTIC Consortium

Figure 3.3: Creating an enumeration

3. Add the type elements to the diagram, using the Class and Enumeration shape buttons on
the diagram toolbar, found in the “Class Diagram” button group.

First create the enumeration called Product. On the Class Diagram toolbar click the arrow found
at the right side of the Class button, then select Enumeration (fig. 3.3):

Create the enumeration by clicking on the canvas. Then, open the specification dialog and set
the name (“Product”) and the desired values. For the values, click “Enumeration Literals” on the
left pane of the specification dialog, then press the “Create” button for each String literal you want
to add. Specifying a name for a literal is enough.

Next create the classes similarly. For each class specify the Name, Applied Stereotype and the
class Attributes.

To set the stereotype, click on the Value cell of the Applied Stereotype line in the specification
dialog. Then click the small rectangle button on the right side, labelled [. . .]. This will open a
list box containing all stereotypes which can be applied to the element. Typing “d” the list will
be filtered to the stereotypes starting with “d” – in our case the list will contain only one element,
“DataType”, defined in the PLASTIC Profile. Select this element with the check box and click Apply
(fig. 3.4).

Next define the class attributes. Select Attributes in the left browser tree of the specification
dialog, then hit Create.

The following data should be specified for each attribute:

• Name

• Type

PLASTIC IST-26955 42/104

January 2008 PLASTIC Consortium

Figure 3.4: Applying a stereotype

PLASTIC IST-26955 43/104

January 2008 PLASTIC Consortium

For the type, there is also a context-sensitive list box, which filters by the first entered characters.
For the primitive types, use the [UML Standard Profile::MagicDraw Profile::datatypes] package.

After defining the classes needed by the Warehouse project, the class diagram will look like in
fig. 3.5.

Figure 3.5: The warehouse types diagram

The next step is the specification of services. For this, the Service Description Diagram will be
used.

3.4.3 Creating the service description

Next, we create the service (fig. 3.6):

Figure 3.6: The service

In the Service Structural View there is already an empty Service Description Diagram, created
by the PLASTIC template. Double-click it in the elements browser to open the diagram for editing.
Select the “Service Description” button in the diagram toolbar and click in the canvas to create

PLASTIC IST-26955 44/104

January 2008 PLASTIC Consortium

a new Service Description (this is the service interface.) Open its specification dialog and en-
ter “Warehouse” for the name. Then choose Operations on the left browser pane and add the
necessary operations.

For each operation we should define the following:

• Name

• Kind (REQUEST RESPONSE, ONE WAY, NOTIFICATION or SOLICIT RESPONSE)

• Parameters

For each parameter, we should specify:

• its name

• type (primitive, or user-defined, as discussed above) and

• direction (in, out, inout or return)

Note: you have to define a parameter for the return value, which has to be unique between all
parameter names (e.g.: rq return, and not just return)

After defining the service description, the service diagram will look like in fig. 3.7.

Figure 3.7: The service diagram

Then we can move on specifying the services dynamic behavior, with the SSM.

PLASTIC IST-26955 45/104

January 2008 PLASTIC Consortium

3.4.4 Creating the Service State Machine

Now follows the most interesting part of the design, specifying the SSM. We define this by drawing
an SSM diagram, which will look like in fig. 3.8.

Figure 3.8: The service state machine diagram

We will create an SSM for our Warehouse service.

1. From the elements tree browser pane on the left choose, then right-click “Warehouse —
002.Service View — Behavioral View”.

2. Select New Diagram — JSSM Diagram.

At this point, MagicDraw has done the following: it created an SSM called “Untitled1” and an
SSM Diagram underneath, as a child element, called also “Untitled1”. To rename the elements,
right-click on each of them and choose Rename from the context menu.

Double-clicking on the newly created diagram name will open the diagram window. The tool-
bar will have a group called “JSSM Diagram” with 2 shape buttons: State <<SSMState>> and
Transition <<SSMTransition>>. We create the diagram using these element types.

The SSMState is a very simple element. We specify its name (usually a number) and if it is
the initial state, we set its initialState property to true. This property can be found under Tags,
under the <<SSMState>> group, listed at the bottom. Select the tag (“initilaState”), then press
the “Create Value” button. After double-clicking the Value check-box on the right the value is set
(fig. 3.9).

PLASTIC IST-26955 46/104

January 2008 PLASTIC Consortium

Figure 3.9: Setting initial state

For the other states it is not necessary to deal with this, because the default value is false.
In our example we have 3 states. Let us model these first, then create the state transitions using

SSMTransition elements.
After creating a transition, select and delete the label <<SSMTransition>> which appears

next to it. For each state transition (called “switch” in SSM language) the following information
should be entered:

• Operation (in the Trigger group)

To see this property, first choose an EventType of CallEvent. This selection will show the
Operation property in the Trigger group. Click on the small dialog button ([. . .]) to open the
operation value dialog. On the tree which appears, select the operation checkAvail() from
the Warehouse service (fig. 3.10).

• TransitionKind (in the SSMTransition group)

This is the message kind. For the first transition (from 1→ 2), choose INPUT.

• Guard

This is the guard of the transition (“r.quantity > 0” for the 1 → 2 transition). By opening
the Edit dialog (with the right-most button), you can write a large guard using a text box.
Choose Language = English. For better display, it is recommended to format the text using
new-lines, which are stripped out during the analysis. In fig. 3.11 you see the guard format
of the transition from state 2→ 3.

PLASTIC IST-26955 47/104

January 2008 PLASTIC Consortium

Figure 3.10: Selecting an operation

Figure 3.11: Editing a guard

PLASTIC IST-26955 48/104

January 2008 PLASTIC Consortium

• Update

Represents the switch update command, usually a simple assignment. For the 1→ 2 transi-
tion, it is “qr = r”.

Create all transitions in the same manner. For a better visual experience, you can arrange
the label positions in a convenient way. For some transitions (e.g. 2 → 1 and 3 → 1)
some manual formatting of the arrows is also desirable, in order to produce a decent-looking
diagram. After the SSM is modeled, its diagram would look like similar to fig. 3.12.

Figure 3.12: The SSM diagram in MagicDraw

3.4.5 Location variables

When setting the guard and update statements, you might have noticed that there were used some
new variables, which were not operation parameters. These are the so-called location variables,
which record the state of a conversation.

Location variables have to be defined as attributes of the SSM. In the containment browser
right-click the SSM object and select Specification. In the specification dialog, on the left pane
select Attributes. Then create each variable with the Create button. A name and a type should
be specified. The type can be selected from a dialog, like all other parameter types.

In our case we have 2 location variables, qr and qi (fig. 3.13).

PLASTIC IST-26955 49/104

January 2008 PLASTIC Consortium

Figure 3.13: Location variables in the SSM

3.4.6 Exporting the SSM

After having created the model, we have to export it for further use. Because there will be one file
exported for each (sub)module, the Warehouse project will be exported in 17 files.

Create a directory when the output will be stored, then select File | Export | EMF UML2 (v1.x)
XMI. After selecting the output directory, the project will be exported.

PLASTIC IST-26955 50/104

January 2008 PLASTIC Consortium

4 Puppet
This chapter is the user’s guide for PUPPET . Please refer to [7] for the detailed description of

the whole approach, the architectural description of the proposed implementation, the tools and
the standard that have been used, or for any kind of motivation of the work.

4.1 Puppet Overview

To ensure consistent cooperation for business-critical services, with contractually agreed levels
of Quality of Service, SLA specifications as well as techniques for their evaluation are nowadays
irremissible assets. Puppet (Pick UP Performance Evaluation Test-bed) is an original approach
developed within PLASTIC for the automatic generation of test-beds to empirically evaluate the
QoS features of a Web Service under development. Specifically, the generation exploits the infor-
mation about the coordinating scenario, the service description (WSDL) and the specification of
the agreements (WS-Agreement).

As described in [7, 6, 5], PUPPET was originally designed in order to automatically generate
stubs conforming only to SLA behaviors ignoring functional aspects. In other words, if invoked the
stub were able to provided good QoS values but the responses were not built to be semantically
meaningful (i.e. always returning constant values). However, in the general case extra-functional
aspects are tightly coupled with functional characteristics. The current version of PUPPET inte-
grates the emulation of the functional specifications as part of the generated testbed. The ob-
tained environment can expose not only the specified extra-functional parameters but also mean-
ingful functional behavior. Specifically, PUPPET generates stubs for Web Services which respect
both an extra-functional contract expressed via a Service Level Agreement (SLA), and a functional
contract modeled via a Service State Machine (SSM, see Chapter 2).

4.2 Technical info

Provider CNR

Introduction PUPPET is a tool for the automatic generation of test-beds to empirically evaluate
the QoS features of a Web Service under development. The stubs generated with PUPPET

conform both the extra-functional contract expressed via a Service Level Agreement (SLA),
and to the functional contract modeled via a state machine.

Development status Version PuppetD4.3

Intended audience Developers who intend to test a PLASTIC service in composition with 3rd
party Web Services

License Open source under GPLv3 with some exceptions to include libs

Language Java, XML

Environment (set-up) In the following the required software and hardware :

Hardware: No specific hardware is required.

Software: The following JAR library are required in order to compile and to launch PUPPET

:

PLASTIC IST-26955 51/104

January 2008 PLASTIC Consortium

Apache Axis 1.4 Libs : axis-ant.jar, axis.jar, commons-discovery.jar, commons-logging.jar,
jaxrpc.jar, jsr173 1.0 api.jar, log4j-1.2.8.jar, wsdl4j.jar, saaj.jar – availabe at http:
//ws.apache.org/axis.

Apache XMLBeans Libs : xbean.jar – availabe at http://xmlbeans.apache.org.
String Template Libs : stringtemplate.jar – availabe at http://www.stringtemplate.

org.
INI4J Libs : ini4j.jar, ini4j-compat.jar – availabe at http://ini4j.sourceforge.

net.
Jambition Libs : SSMSimulator.jar, minerva.jar (see Chapter 2)
Other Libs : antlr-2.7.7.jar, xercesImpl.jar, xmlsec.jar, mail.jar, activation.jar, java-getopt-

1.0.13.jar

Please note that PuppetD4.3.tgz archive includes a version of these libraries in the
directory PuppetD4.3/externalLibs.

Platform Java jdk1.6 or later

Download Download the official version of PUPPET in PLASTIC at http://plastic.isti.
cnr.it/download/tools

Documents Related documents on the approach, the architectural description, and the imple-
mentation of PUPPET are [7, 6, 5].

Tasks N/A

Bugs N/A

Patches N/A

Contact guglielmo.deangelis@isti.cnr.it, andrea.polini@isti.cnr.it

4.3 Deployment

4.3.1 Install

Unzip the archive PuppetD4.3.tgz and configure the environmental CLASSPATH with the required
libs indicated above.

The directory structure is the following:

• PuppetD4.3

– doc

– example

– externalLibs

– puppet.jar

– puppetLibs

– puppet.sh

– runPuppet.bat

– src

– xml

PLASTIC IST-26955 52/104

http://ws.apache.org/axis
http://ws.apache.org/axis
http://xmlbeans.apache.org
http://www.stringtemplate.org
http://www.stringtemplate.org
http://ini4j.sourceforge.net
http://ini4j.sourceforge.net
http://plastic.isti.cnr.it/download/tools
http://plastic.isti.cnr.it/download/tools

January 2008 PLASTIC Consortium

The directory PuppetD4.3/doc contains this manual. The directory PuppetD4.3/xml contains the
definitions mapping of the WS-Agreement statements into the Java code. The directories Pup-
petD4.3/externalLibs and PuppetD4.3/puppetLibs contains the libraries required by PUPPET in or-
der to run. As your preference, you would append the name of the .jar files in PuppetD4.3/puppetLibs
and PuppetD4.3/externalLibs to the Java CLASSPATH variable. PuppetD4.3/puppet.sh and Pup-
petD4.3/runPuppet.bat are exacutable batch scripts that set the Java CLASSPATH variable and
run PUPPET on a given input file.

4.3.2 Configure

PUPPET generates stubs for web services according to what defined in a given configuration file.
The configuration file is supposed to compile with the standard INI File Format. In such file,
PUPPET looks for the section named [mainSection]. PUPPET loads its parameters as specified in
the configuration held by this section.

The parameters that could be specified into the input configuration file are:

wsdlPath : It is the path to the directory holding the WSDL specifications of all the services whose
emulators would be generated by means of PUPPET . Required.

targetPath : It is the path to the directory where PUPPET will dump the generated stubs. Required.

JarPath : It is the path to the required JAR file libraries listed above.1. Required.

wsaFilename : It is the name of the WS-Agreement file describing the agreements among the
considered services. If it is not specified, PUPPET would look for a file named: agree-
ment.xml. Optional

trueTermsFilename : It is the name of the file holding the terms of the agreement that have to be
considered as fulfilled. As described in Sec 4.4.1, for each term in the agreement, PUPPET

will generate code that emulates an extra functional behavior if and only if the term is fulfilled.
If this file name is not specified, PUPPET would look for a file named: gtTrueItemList.xml.
Optional

wsaPath : It is the path to the directory holding the WS-Agreement file. Required.

trueTermsPath : It is the path to the directory holding the trueTermsFilename. If it is not specified,
PUPPET would assign to this parameter the path to the directory holding the WS-Agreement
file (wsaPath). Optional.

qcMappingFilename : It is the path to the file holding the template mapping of the Qualifying
Conditions in WS-Agreement on to the the Java code that will be generated. PUPPET already
includes a predefined mapping file. Even though it is possible to change this mapping, we
strongly discourage from changing it. Optional.

sloMappingFilename : It is the path to the file holding the template mapping of the Service Level
Objectives in WS-Agreement on to the Java code that will be generated. PUPPET already
includes a predefined mapping file. Even though it is possible to change this mapping, we
strongly discourage from changing it. Optional.

ambitionMode : If it is set to “on” enables the emulation of the functional behavior with Jambition.
By default it is set to “off”. Optional.

1In the future releases it would be deprecated

PLASTIC IST-26955 53/104

January 2008 PLASTIC Consortium

1 <wsag:AgreementOffer xsi:schemaLocation="..." xmlns:wsag="...">
2 ...
3 <wsag:GuaranteeTerm wsag:Name="WarehouseGT"
4 wsag:Obligated="ServiceProvider">
5 ...
6 </wsag:GuaranteeTerm>
7 ...
8 </wsag:AgreementOffer>

1 <tns:TrueGTList xmlns:tns="..." xmlns:xsi="..." xsi:schemaLocation="...">
2 ...
3 <tns:GTItemName>WarehouseGT</tns:GTItemName>
4 ...
5 </tns:TrueGTList>

Table 4.1: Enabling the code generation in PUPPET

4.3.3 Usage

Let us assume that the variable CLASSPATH of the JVM you are executing includes both the JAR
files listed in the item Tools above, and those contained in PuppetD4.3/puppetLibs. PUPPET usage
is:

java -cp $CLASSPATH:puppet.jar puppet.Puppet <IniConfigurationFile>

An alternative way to run PUPPET is executing the batch scripts PuppetD4.3/puppet.sh and Pup-
petD4.3/runPuppet.bat 2 on a given <IniConfigurationFile>.

4.4 Tutorial

4.4.1 Terms in the Agreement and Generation Process

In WS-Agreement [17], an agreement specification is composed by one or more terms. These
terms are grouped in a logic formula by means logic connectors (All – logic AND, OneOrMore –
logic OR, and ExactlyOne – logic XOR).

Different scenarios could be considered defining a set of terms in the agreement that are as-
sumed fulfilled. This set of terms enables in PUPPET the generation of the Java code emulating the
extra functional behavior. PUPPET loads the list of these terms parsing an XML file. The value of
each element in the XML file refers to the name of a term in the WS-Agreement specification. The
example in Table 4.1 shows how to enable the code generation for the term named WarehouseGT
in the agreement specification.

4.4.2 The Syntax for the Terms in the WS-Agreement Contracts

This section describes the domain specific syntax adopted in order to instantiate the generic con-
tents defined by the Terms in WS-Agreement. The section is organized in tree main parts: Sec-
tion 4.4.2.1 introduces the syntax that PUPPET uses in order to specify under which conditions a
Term is applicable. Section 4.4.2.2 introduces the syntax that PUPPET uses in order to specify the
extra-functional property the Term predicates about. Section 4.4.2.3 introduces the syntax that
PUPPET uses in order to limit the scope of a Term only to some operations among all the ones
that a Service exports.

2Respectivelly under Unix-like and Windows operating systems

PLASTIC IST-26955 54/104

January 2008 PLASTIC Consortium

Figure 4.1: Expressions in the Qualifying Condition

Figure 4.2: AND in the Qualifying Condition

4.4.2.1 Qualifying Conditions

In WS-Agreement the Qualifying Conditions of a Term may appear to express a precondition under
which a Term holds [17]. In PUPPET , a Qualifying Condition can be formulated in terms of atomic
expressions typed as Numeric, Boolean, or String (see Figure 4.1). The atomic expressions can
be combined by means of the Boolean operators: AND (see 4.2), OR (see 4.3), and NOT (see 4.4).

Figure 4.5 depicts the elements that can be used in order to construct an atomic expressions.
Also, for each operation type, it shows the operators supported in this release.

4.4.2.2 Service Level Objective

The specification of WS-Agreement defines the Service Level Objective (of type xsd:anyType), as
the element expressing the condition that must be met to satisfy the guarantee Term [17].

This version of PUPPET handles constraints on the maximum admissible response time (i.e.
service latency) and constraints on reliability (see Figure 4.6).

The time elapsed by a service when invoked (latency) is defined specifying the maximum ad-
missible response time and a probability function describing how the delays are distributed. In this
version, is it possible to define delays that are normally distributed or that follow the Poisson’s law.

PLASTIC IST-26955 55/104

January 2008 PLASTIC Consortium

Figure 4.3: OR in the Qualifying Condition

Figure 4.4: NOT in the Qualifying Condition

The constraints on the reliability of a Service are defined in terms of the maximum number of
failure (ReliabilityPerc in Figure 4.6) in a given window of time. Also in this case, this release offer
to describe the distribution of the failures in the window either as normal or as Poisson’s.

4.4.2.3 Scope

The scope of a Term describes to what service element specifically a term applies. For example,
a term might only apply to one operation of a Web service at a particular end point. According
to the specification of WS-Agreement [17], the scope of a Term contains a ServiceName attribute
and any other XML structure describing a sub-structure of a service to which the scope applies.

In this version of PUPPET it is possible to define the list of the operations affected by a specific
Term as depicted in Figure 4.7. If a Term does not specify any scope, PUPPET would generate the
emulation of the extra-functional property in all the operations exported by the service the Term
refers to.

4.4.3 Writing an Agreement

In PLASTIC there are two possible way to write WS-Agreement specification for PUPPET . The
former is to write it directly according to the indications given in [7]. The latter is to exploit the
PLASTIC’s editor of SLA as explained in the following.

The PLASTIC conceptual model [16] defines the reference SLA concepts adopted the in the
project. This means that the specific implementations of the various environments should consider
to manage at least the QoS annotations expressed in [16] and then refined in D1.2 [12].

According to the conceptual model, [10] defines with SLAng [20] an abstract syntax for the
agreements. Such syntax would be instantiated in several concrete syntax. Each concrete syntax

PLASTIC IST-26955 56/104

January 2008 PLASTIC Consortium

Figure 4.5: Operators in the Qualifying Condition

PLASTIC IST-26955 57/104

January 2008 PLASTIC Consortium

Figure 4.6: Extra-Functional Properties in the Service Level Objective

Figure 4.7: Defining the Scope of a Term

PLASTIC IST-26955 58/104

January 2008 PLASTIC Consortium

refers to a given kind of specification. For example in [10] the SLAng concepts were expressed
using the HUTN (Human-Usable Textual Notation) as a concrete syntax.

The concrete syntax of SLAng could also refer to other languages for SLA specification. In that
sense, a WS-Agreement specification could be seen as a concrete instantiation of the SLAng’s ab-
stract syntax. Note that such association is valid under the assumption that the two specifications
predicate on the same kind of concepts.

In deliverable D2.2, the consortium presents a tool support for SLAng. It is an Eclipse-based
editor for SLAng, in the form of an Eclipse plugin. The joint work between WP2 and WP4 de-
veloped an extension to the SLAng editor including a syntactic translation engine that generates
WS-Agreement specification. The output produced by the plugin extension of the SLAng editor
could be used as input for PUPPET .

4.4.4 Functional Behavior with Jambition

The integrated work of the team developing PUPPET and the team developing Jambition (see
Chapter 2) in WP4 included in PUPPET (version PuppetD4.3) the features to generate stubs whose
behavior conforms to both extra-functional contracts and a functional specifications.

As reported in Chapter 2, the functional behavior of a service in Jambition is modeled using a
state machine called Service State Machine (SSM).

Enabling the ambitionMode in the INI configuration as specified in Section 4.3.2, PUPPET would
include in the generated stubs the code emulating the functional behavior.

Specifically, the ambitionMode flag enables the inclusion in the source code of the stub of facili-
ties used for the emulation of the functional behavior in Jambition. Listing 4.1 shows the definition
of the Service State Machine (SSM) (line 4), the simulator that browses the SSM in order to emu-
lates the correct functional behavior (line 9), and a private utility method (lines 11-30).

1 /*
2 * The SSM object.
3 */
4 private info.frantzen.testing.ssmsimulator.ssm.ServiceStateMachine aMbItIoNssm;
5

6 /*
7 * The simulator is generated
8 */
9 private info.frantzen.testing.ssmsimulator.SSMSimulator aMbItIoNsim;

10

11 private info.frantzen.testing.ssmsimulator.ssm.Message aMbItIoNfindSSMMessage(
12 info.frantzen.testing.ssmsimulator.ssm.ServiceStateMachine ssm,
13 info.frantzen.testing.ssmsimulator.ssm.MessageKind kind,
14 info.frantzen.testing.ssmsimulator.ssm.Operation op)
15 throws Exception {
16 java.util.HashSet<info.frantzen.testing.ssmsimulator.ssm.Message> messages = ssm
17 .getMessages();
18 for (java.util.Iterator it = messages.iterator(); it.hasNext();) {
19 info.frantzen.testing.ssmsimulator.ssm.Message m = (info.frantzen.testing.ssmsimulator.

ssm.Message) it
20 .next();
21 if (m.getKind() != info.frantzen.testing.ssmsimulator.ssm.MessageKind.UNOBSERVABLE) {
22 if ((m.getKind() == kind) && (m.getOperation().equals(op))) {
23 return m;
24 }
25 }
26 }
27 throw new Exception(
28 "Cannot find the input SSM message belonging to the Operation "
29 + op.getName() + "!");
30 }

Listing 4.1: Attributes and Local operation included in the code

PLASTIC IST-26955 59/104

January 2008 PLASTIC Consortium

For each stub, the body of a default constructor is generated. In addition those line required in
order to instantiate and to initialize both the simulator, and the SSM object are generated. Please
note that once the stub is generated, some parameters required by the simulator have to be
manually set by the user. Referring to Listing 4.2:

• at line 49 set the URL of the WSDL the Web Service that is going to be emulated exports

• at line 53 set the name of the Web Service that is going to be emulated as reported on the
WSDL

• at line 57 set the port of the Web Service that is going to be emulated as reported on the
WSDL

• at line 61 set the URL of the file with the specification of the SSM

• at line 76 set the URL of the treeSolver that the simulator uses in order to generate mean-
ingful functional values

• at line 77 set the port of the treeSolver that the simulator uses in order to generate meaningful
functional values

1 /*
2 * To initialise the Simulator, the following items are needed:
3 */
4

5 /*
6 * The URL of the WSDL file
7 */
8 java.net.URL aMbItIoNWSDLUrl = new java.net.URL("Put here the URL of the Service’s WSDL");
9 /*

10 * The name of the WSDL-Service
11 */
12 String aMbItIoNservice = "Put here the name of the Service as in the WSDL";
13 /*
14 * The name of the WSDL-Port
15 */
16 String aMbItIoNport = "Put here the port of the Service as in the WSDL";
17 /*
18 * The URL of the SSM Schema Instance
19 */
20 java.net.URL aMbItIoNSSMUrl = new java.net.URL("Put here the URL of the SSM Schema Instance

");
21

22 /*
23 * Now we can generate the SSM object. To do so, we use Zsolt’s "Minerva" library
24 */
25 aMbItIoNssm = hu.soft4d.jessi.ssm.SSMHandler.generateSSM(
26 aMbItIoNWSDLUrl, aMbItIoNSSMUrl, aMbItIoNservice, aMbItIoNport);
27 /*
28 * Before we can use the SSM in the simulator, the parsers have to be attached
29 * to the switches
30 */
31 aMbItIoNssm.attachParsersToSwitches();
32 /*
33 * Next we generate the socket to the treeSolver.
34 */
35 String aMbItIoNsolverHost = "Put here the URL of the Solver";
36 int aMbItIoNsolverPort = "Put here the Port the Solver";
37 java.net.Socket aMbItIoNsolverSocket = new java.net.Socket(
38 aMbItIoNsolverHost, aMbItIoNsolverPort);
39 /*
40 * The treeSolver sends a welcome message, we remove it from the stream
41 */
42 new java.io.BufferedReader(new java.io.InputStreamReader(
43 aMbItIoNsolverSocket.getInputStream())).readLine();
44 /*

PLASTIC IST-26955 60/104

January 2008 PLASTIC Consortium

45 * The simulator can use an external tool to display sequence diagrams
46 * of the messages exchanged. // I skip this here since this takes extra
47 * ressources/
48 */
49

50 /*
51 * The simulator needs a logger to log to
52 */
53 java.util.logging.Logger aMbItIoNlogger = java.util.logging.Logger
54 .getLogger("");
55

56 /* The simulator is generated */
57

58 aMbItIoNsim = new info.frantzen.testing.ssmsimulator.SSMSimulator(
59 aMbItIoNssm, aMbItIoNsolverSocket, aMbItIoNlogger);
60

61 /*
62 * If Double variables are used we assume this models money
63 * (experimental). In any case, do this:
64 */
65 info.frantzen.testing.ssmsimulator.types.ST_PseudoPosDouble.postPointLength = 2;
66 /*
67 * Now the Simulator is ready.
68 * --
69 */

Listing 4.2: Code Included Into the Default Class Constructor

For each operation exported by the Web Service, PUPPET include in the correspondent method
body the code emulating the functional behavior. Listing 4.3 shows the code line instantiating the
local variables used in order to interact with the simulator. Note that both the name and the type
of the operation match with the parameters generated at line 279.

1 public void orderShipment(int ref, services.Address adr) throws java.rmi.RemoteException {
2 long aMbItIoNinvocationTime = 0;
3 try {
4 aMbItIoNinvocationTime = System.currentTimeMillis();
5 /*
6 * Code Generated for Integration with Ambition
7 */
8 info.frantzen.testing.ssmsimulator.ssm.Operation aMbItIoNoperation = new info.frantzen.

testing.ssmsimulator.ssm.Operation("orderShipment", info.frantzen.testing.
ssmsimulator.ssm.OperationKind.ONEWAY);

9 info.frantzen.testing.ssmsimulator.ssm.Message aMbItIoNmessage = aMbItIoNfindSSMMessage(
aMbItIoNssm, info.frantzen.testing.ssmsimulator.ssm.MessageKind.INPUT,
aMbItIoNoperation);

10 info.frantzen.testing.ssmsimulator.ssm.Valuation aMbItIoNvaluation = new info.frantzen.
testing.ssmsimulator.ssm.Valuation();

11 java.util.ArrayList<info.frantzen.testing.ssmsimulator.ssm.InteractionVariable>
aMbItIoNmessageType = aMbItIoNmessage.getType();

12 java.util.Iterator aMbItIoNit = aMbItIoNmessageType.iterator();
13 info.frantzen.testing.ssmsimulator.ssm.InteractionVariable aMbItIoNvar;

Listing 4.3: Local Variables Configuration

Listings 4.4 shows an example of the set of lines generated for each parameter that any opera-
tion exports.

1 /*
2 * Generated Parameter 0
3 */
4 aMbItIoNvar = (info.frantzen.testing.ssmsimulator.ssm.InteractionVariable) aMbItIoNit.

next();
5 info.frantzen.testing.ssmsimulator.types.TypeInstance refInstance = new info.frantzen.

testing.ssmsimulator.types.ST_PosIntInstance(ref);
6 aMbItIoNvaluation.addSingleValuation(aMbItIoNvar.getName(), refInstance);
7

8 /*
9 * Generated Parameter 1

PLASTIC IST-26955 61/104

January 2008 PLASTIC Consortium

10 */
11 aMbItIoNvar = (info.frantzen.testing.ssmsimulator.ssm.InteractionVariable) aMbItIoNit.

next();
12 Object[] aMbItIoNparameterValues = new Object[2];
13 aMbItIoNparameterValues[0] = new info.frantzen.testing.ssmsimulator.types.

ST_StringInstance(adr.getFirstName());
14 aMbItIoNparameterValues[1] = new info.frantzen.testing.ssmsimulator.types.

ST_StringInstance(adr.getLastName());
15 info.frantzen.testing.ssmsimulator.types.TypeInstance adrInstance = new info.frantzen.

testing.ssmsimulator.types.ComplexTypeInstance(aMbItIoNparameterValues);
16 aMbItIoNvaluation.addSingleValuation(aMbItIoNvar.getName(),adrInstance);

Listing 4.4: The Generation of the Operation’s Parameters

In the end, the last piece of code that Listing 4.5 shows concerns the interrogation to the func-
tional simulator. Note that here the simulator can potentially spot a failure, namely when this
message is not specified in the SSM. Here the generated stub is thus able to do also functional
testing.

1 /*
2 * The valuation is ready, we can construct an instantiated message
3 */
4 info.frantzen.testing.ssmsimulator.ssm.InstantiatedMessage aMbItIoNim = new info.

frantzen.testing.ssmsimulator.ssm.InstantiatedMessage(aMbItIoNmessage,
aMbItIoNvaluation);

5

6 /*
7 * This instantiated message can now be given to the simulator. Note
8 * that here the simulator can potentially spot a failure, namely
9 * when this message is not specified in the SSM! In that sense,

10 * here we do testing.
11 */
12 aMbItIoNsim.processInstantiatedMessage(aMbItIoNim);
13 } catch (Exception genericException) {
14 throw new java.rmi.RemoteException(genericException.getMessage());
15 }

Listing 4.5: The Generation of the Operation’s Parameters

In case the operation has to return a meaningful value, an additional set of code lines is added to
the body of the operation. Specifically, when the simulator knows the input, it is possible to query
it for a correct response. First we ask the simulator for all currently activated output transitions
(line 158 at Listing 4.6). Out of all possible output switches, we randomly choose one and check
if it has a solution. If yes, we take it. If not, we choose randomly the next one (lines 165-180 at
Listing 4.6)).

1 /*
2 * Ok, the simulator knows the input. Now we need a functionally
3 * correct response to this call. We first ask the simulator for all
4 * currently activated output transitions.
5 */
6 java.util.ArrayList aMbItIoNoutputs = new java.util.ArrayList(aMbItIoNsim.

getCurrentOutputSwitches());
7

8 /*
9 * Out of all possible output switches, we randomly choose one and

10 * check if it has a solution. If yes, we take it. If not, we choose
11 * randomly the next one.
12 */
13 boolean aMbItIoNnoSolutionFound = true;
14 info.frantzen.testing.ssmsimulator.ssm.InstantiatedMessage aMbItIoNnextOutput = null;
15 java.util.Random aMbItIoNrandom = new java.util.Random();
16 while (!aMbItIoNoutputs.isEmpty() && aMbItIoNnoSolutionFound) {
17 info.frantzen.testing.ssmsimulator.ssm.Switch aMbItIoNcandidate = (info.frantzen.

testing.ssmsimulator.ssm.Switch) aMbItIoNoutputs.get(aMbItIoNrandom.nextInt(
aMbItIoNoutputs.size()));

18

19 /*

PLASTIC IST-26955 62/104

January 2008 PLASTIC Consortium

20 * try to find a solution, if yes, fine, if not, remove the
21 * candidate
22 */
23 aMbItIoNnextOutput = aMbItIoNsim.findSolution(aMbItIoNcandidate);
24 if (aMbItIoNnextOutput == null)
25 aMbItIoNoutputs.remove(aMbItIoNcandidate);
26 else
27 aMbItIoNnoSolutionFound = false;
28 }
29 if (aMbItIoNnextOutput == null)
30 throw new Exception("Failure in SSM! No output for synchronous input specified!");
31 /*
32 * Ok, we have now a feasible and functionally correct output:
33 * nextOutput Before we send this output to the Service out there,
34 * we tell so to the simulator:
35 */
36 aMbItIoNsim.processInstantiatedMessageNoBackup(aMbItIoNnextOutput);
37

38 /*
39 * What is left to do, is to map this instantiated message back to a
40 * real returnValue.
41 */
42 info.frantzen.testing.ssmsimulator.ssm.Message aMbItIoNreturnMessage =

aMbItIoNnextOutput.getMessage();
43 String aMbItIoNreturnVarName = ((info.frantzen.testing.ssmsimulator.ssm.

InteractionVariable) aMbItIoNreturnMessage.getType().iterator().next()).getName();
44 info.frantzen.testing.ssmsimulator.ssm.Valuation aMbItIoNreturnValuation =

aMbItIoNnextOutput.getValuation();
45 info.frantzen.testing.ssmsimulator.types.TypeInstance aMbItIoNreturnInstance =

aMbItIoNreturnValuation.getSingleInstance(aMbItIoNreturnVarName);
46 String[] aMbItIoNarrayRepresentation = aMbItIoNreturnInstance.toString().split(",");
47 aMbItIoNreturnValue = new services.Quote((Double.valueOf(aMbItIoNarrayRepresentation[0])

.doubleValue()),aMbItIoNarrayRepresentation[1],(Integer.valueOf(
aMbItIoNarrayRepresentation[2]).intValue()),(Integer.valueOf(
aMbItIoNarrayRepresentation[3]).intValue()));

48 /*
49 * Now send the returnValue back to the calling service. That’s it.
50 */

Listing 4.6: The Generation of the Meaningful Return Value

Once a feasible and functionally correct output is found, before sending it to the calling Service,
the simulator has to store the output we choose (line 188 at Listing 4.6). Thus, what is left to do,
is to map the output message back to a real return value (line 194-199 at Listing 4.6).

For the sake of completeness, in the appendix is reported the Java source code emulating
a Warehouse Web Service (see the example in Chapter 2). The whole code of the stub was
automatically generated by Puppet with the ambitionMode enabled.

4.4.5 Example

In this section, an example scenario on how to describe a WS-Agreement specification for the
eHealth application domain is presented. The scenario is inspired to the eHealth scenarios pro-
posed by the PLASTIC industrial partners. We remind that the WS Agreement file could also be
automatically generated by means of the SlangMon editor provided by the PLASTIC Platform (see
[10] for details).

4.4.5.1 Scenario Description

The scenario is structured as depicted in Figure 4.8. Five web services are involved in this exam-
ple:

WSPlastic : Is the Web Service that interfaces the current eHealth system with the new PLASTIC

PLASTIC IST-26955 63/104

January 2008 PLASTIC Consortium

Figure 4.8: Scenario 3 Deployment Diagram

environment. In this scenario description we only refer to one of the possible operations and
feature that it exports. Specifically the operation notifyAlarm is aimed at both collect and
process the alarm messages coming from the eHealth part of the application that runs on
PLASTIC. It is invoked when an alarm is raised. It takes as input the name of the Residential
Gateway where the alarm comes from, the kind of the alarm and the date when it was raised.

In the scenario, WSPlastic represents the new service that have to be tested. Puppet here
is used to automatically build the portion of the system that interacts with the service under
test (i.e. WSPlastic)

WSSeguitelService : This Web Service represents the current eHealth application. It exports
the following operations: notifyAlarm, getResidentialGatewayIP, getContactDeciveIP. noti-
fyAlarm, takes as input the name of the Residential Gateway where the alarm comes from,
the kind of the alarm and the date when it was raised. Both the other two exported opera-
tions take as input the logic name of a Residential Gateway. Thus getResidentialGatewayIP
returns the IP address associated with the input label while getContactDeciveIP the list of IP
addresses that should be contacted in case of alarm.

WSDoctor : It is the service deployed on the device that the doctor uses to interface with the
eHealth system. The hosting device could be either a usual wired device as a PC or a mobile
and wireless device such as a smart phone. The Web Service exports the receiveAlarm
operation. Such operation takes as input both the IP address of the Residential Gateway
where the alarm was raised and the kind of the alarm.

WSSupervisor : It is a service deployed on the device that a supervisor uses to interface with the
eHealth system. The supervisor of a patient is the person that could assist the patient for
non critical situation. In those cases that are classified as non critical, some kind of alarm
could be forwarded to the supervisor instead of the doctor.

As for the doctor, also here the hosting device could be either a usual wired device as a
PC or a mobile and wireless device such as a smart phone. The Web Service exports the
receiveAlarm operation. Such operation takes as input both the IP address of the Residential
Gateway where the alarm was raised and the kind of the alarm.

PLASTIC IST-26955 64/104

January 2008 PLASTIC Consortium

WSMedicalDevice : Each Residential Gateway controls several hardware medical devices. Each
medical device is identified on the Residential Gateway by means of a unique identification
code.

This Web Service interfaces the medical devices hosted by the Residential Gateway on the
PLASTIC Network. It exports two operations. getMedicalDevices returns a collection of the
controlled medical devices. To control an eHealth parameter monitored by a medical device,
the web service has to be invoked on the getMeasure operation providing the id code of the
medical device as input.

WSCalendar : Each Residential Gateway holds the lists of the periodic appointments that a su-
pervisor plans with the patient. This Web Service interfaces the PLASTIC Network to this
feature exporting the methods : getAppointmentByMonth, and getAppointment. The former
gives information on the appointments already scheduled in a given month of a year. The
latter is used to create a new one.

In this scenario, the Web Services described above are supposed to be deployed on different
and distributed platforms. Specifically, WSPlastic is deployed on a PlasticServer, while the WSSe-
guitelService is supposed to run on the eHealthServer. Nevertheless, in principle the two server
could be also the same.

4.4.5.2 Actors Interactions in the Scenario

This section provides a brief description on how the Web Services described in Section 4.4.5.1
interact. Figure 4.9 reports a UML Sequence Diagram describing these interactions.

When a alarm is notified to WSPlastic, as first step it forwards the event to WSSequitelService in-
voking the notifyAlarm method. The PLASTIC Web Service also invokes getResidentialGatewayIP
obtaining the IP address of the Residential Gateway where the alarm was raised. Thus, it gets the
list of the IP addresses that must be contacted invoking getContactDeciveIP on WSSequitelService.
The obtained list depends on the kind of the received alarm.

Due to the kind of contact list the WSPlastic starts to invoke the appropriate Web Service. The
Web Services to invoke are supposed to be deployed and reachable by means of the address
list. This phase will continue until any confirmation of the handled alarm is obtained either by the
doctor or the supervisor.

In the following, the case where the alarm kind is an emergency (i.e. “EMERGENCY”) is de-
scribed. WSPlastic extracts an IP address from the address list. Then, it invokes receiveAlarm
on WSDoctor using the IP address as endpoint. If the target Web Service decides to accept the
alarm handling WSPlastic ends considering the problem solved. On the other hand, if WSDoctor
does not accept to handle the notification or due to a QoS agreement violation (see Section 4.5.1),
WSPlastic proceeds by extracting the next endpoint of the target Web Service.

When the doctor agrees on handle the alarm, he/she contacts WSMedicalDevices deployed
on the referred Residential Gateway. Then, WSDoctor collects the list of the medical devices
controlled by the Residential Gateway. The monitoring of the patient parameters is performed
invoking the getMeasure method on those devices that are considered important for the clinical
status.

In the following, the case where the alarm kind is not critical (i.e. “NOT CONFIRMATION”).
WSPlastic extracts an IP address from the address list. Then, it invokes receiveAlarm on WSSu-
pervisor using the IP address as endpoint. If the target Web Service decides to accept the alarm
handling WSPlastic ends considering the problem solved. On the other hand, if WSSupervisor
does not accept to handle the notification or due to a QoS agreement violation (see Section 4.5.1),
WSPlastic proceeds extracting the next endpoint of the target Web Service.

PLASTIC IST-26955 65/104

January 2008 PLASTIC Consortium

Figure 4.9: Scenario 3 Sequence Diagram

PLASTIC IST-26955 66/104

January 2008 PLASTIC Consortium

When the supervisor agrees on handle the alarm, he/she contacts WSCalendar deployed on the
referred Residential Gateway. In the end, the WSSupervisor queries the Residential Gateway to
schedule an appointment with the patient.

4.4.5.3 QoS Properties Definition

As described in Section 4.4.5.1, the Web Services considered in this scenario could be deployed
on different machines. In particular, both WSDoctor and WSSupervisor could be deployed on a
usual wired device as a PC or a mobile and wireless device such as a smart phone.

Latency
(msec) Reliability Conditions

WSSeguitelService:getContactDeciveIP 2000 alarmKind=“Emergency”
WSSeguitelService:getContactDeciveIP 1000 alarmKind=“No Confirmation”

WSDoctor:receiveAlarm 6000 WinSize 30000
Max Fails in Win 5 deployedOn=“MobileNode”

WSDoctor:receiveAlarm 2000 WinSize 30000
Max Fails in Win 1 deployedOn=“WiredServer”

WSSupervisor:receiveAlarm 10000 WinSize 30000
Max Fails in Win 5 deployedOn=“MobileNode”

WSSupervisor:receiveAlarm 6000 WinSize 30000
Max Fails in Win 1 deployedOn=“WiredServer”

WSMedicalDevice:getMeasure 3000 idMedicalDevice=“device 1”
WSMedicalDevice:getMeasure 10000 idMedicalDevice=“device 2”

Table 4.2: QoS Properties

Is it clear that the QoS properties of the service could depend on where the service in actually
deployed. For example, if a the Web Service is deployed on a wireless node it is not always given
that it is possible to reach it. On the other hand, if a Web Service is deployed on a standard PC it
operates at higher performances than one deployed on a smart phone.

Moreover, a method can behave differently depending on the parameters it receives. For ex-
ample, the processing time of getMeasure on WSMedicalDevice directly depends on the kind of
measurement that is performed and the medical device that is used.

The QoS levels admitted in the scenario here considered are formalized in an agreement. Ta-
ble 4.23 reports a short version of the extra functional properties that are supposed to be respected
in the scenario. Time are given in milliseconds. In the appendix below, the listings reporting the
complete version of the XML document expressing the agreement are reported.

4.5 Appendix

In the following we report the specification in WS-Agreement expressing the conditions and the
constraints reported in Tab. 4.2. For the sake of completeness, the WSDL specifications of the
services described in this chapter can be found in the appendix of the PUPPET User Manual
available at http://plastic.isti.cnr.it/wiki/doku.php/tools. Also, Please refer to
the same document for any information concerning the Java source code emulating a Warehouse
Web Service.

4.5.1 WS Agreement

1 <?xml version="1.0" encoding="UTF-8"?>
2 <wsag:AgreementOffer xsi:schemaLocation="http://www.ggf.org/namespaces/ws-agreement"

3The values in this table has to be considered just as an example.

PLASTIC IST-26955 67/104

http://plastic.isti.cnr.it/wiki/doku.php/tools

January 2008 PLASTIC Consortium

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xmlns:xs="http://www.w3.org/2001/XMLSchema"
5 xmlns:wsag="http://schemas.ggf.org/graap/2005/09/ws-agreement"
6 xmlns:puppetScope="http://setest0.isti.cnr.it/puppetScope"
7 xmlns:puppetSLO="http://setest0.isti.cnr.it/puppetSLO"
8 xmlns:puppetQC="http://setest0.isti.cnr.it/puppetQC"
9 xmlns:ns="http://setest0.isti.cnr.it/puppet">

10 <wsag:Name>Telefonica_Example_Scenario_3</wsag:Name>
11

12 <wsag:Context />
13

14 <wsag:Terms>
15 <wsag:All>
16 <wsag:GuaranteeTerm wsag:Name="ContactDeciveIP-Term1"
17 wsag:Obligated="ServiceProvider">
18 <wsag:ServiceScope wsag:ServiceName="WSSeguitelService">
19 <puppetScope:PuppetScope>
20 <puppetScope:Method>
21 <!-- <NameMethod>getContactDeciveIP</NameMethod> -->
22 <NameMethod>getConnectedDeviceIP</NameMethod>
23 </puppetScope:Method>
24 </puppetScope:PuppetScope>
25 </wsag:ServiceScope>
26

27 <wsag:QualifyingCondition>
28 <puppetQC:PuppetQC>
29 <puppetQC:StringBinaryExpression>
30 <puppetQC:StringType>
31 <Variable>alarmGender</Variable>
32 </puppetQC:StringType>
33

34 <op>equal</op>
35

36 <puppetQC:StringType>
37 <Value>Emergency</Value>
38 </puppetQC:StringType>
39 </puppetQC:StringBinaryExpression>
40 </puppetQC:PuppetQC>
41 </wsag:QualifyingCondition>
42

43 <wsag:ServiceLevelObjective>
44 <puppetSLO:PuppetSLO>
45 <puppetSLO:Latency>
46 <value>2000</value>
47

48 <puppetSLO:Distribution>
49 <Gaussian>10</Gaussian>
50 </puppetSLO:Distribution>
51 </puppetSLO:Latency>
52 </puppetSLO:PuppetSLO>
53 </wsag:ServiceLevelObjective>
54

55 <wsag:BusinessValueList>
56 <wsag:Penalty>
57 <wsag:AssessmentInterval>
58 <wsag:Count />
59 </wsag:AssessmentInterval>
60

61 <wsag:ValueExpression> 2 </wsag:ValueExpression>
62 </wsag:Penalty>
63 </wsag:BusinessValueList>
64 </wsag:GuaranteeTerm>
65 <wsag:GuaranteeTerm wsag:Name="ContactDeciveIP-Term2"
66 wsag:Obligated="ServiceProvider">
67 <wsag:ServiceScope wsag:ServiceName="WSSeguitelService">
68 <puppetScope:PuppetScope>
69 <puppetScope:Method>
70 <!-- <NameMethod>getContactDeciveIP</NameMethod> -->
71 <NameMethod>getConnectedDeviceIP</NameMethod>
72 </puppetScope:Method>
73 </puppetScope:PuppetScope>

PLASTIC IST-26955 68/104

January 2008 PLASTIC Consortium

74 </wsag:ServiceScope>
75

76 <wsag:QualifyingCondition>
77 <puppetQC:PuppetQC>
78 <puppetQC:StringBinaryExpression>
79 <puppetQC:StringType>
80 <Variable>alarmGender</Variable>
81 </puppetQC:StringType>
82

83 <op>equal</op>
84

85 <puppetQC:StringType>
86 <Value>No Confirmation</Value>
87 </puppetQC:StringType>
88 </puppetQC:StringBinaryExpression>
89 </puppetQC:PuppetQC>
90 </wsag:QualifyingCondition>
91

92 <wsag:ServiceLevelObjective>
93 <puppetSLO:PuppetSLO>
94 <puppetSLO:Latency>
95 <value>1000</value>
96

97 <puppetSLO:Distribution>
98 <Gaussian>10</Gaussian>
99 </puppetSLO:Distribution>

100 </puppetSLO:Latency>
101 </puppetSLO:PuppetSLO>
102 </wsag:ServiceLevelObjective>
103

104 <wsag:BusinessValueList>
105 <wsag:Penalty>
106 <wsag:AssessmentInterval>
107 <wsag:Count />
108 </wsag:AssessmentInterval>
109

110 <wsag:ValueExpression> 2 </wsag:ValueExpression>
111 </wsag:Penalty>
112 </wsag:BusinessValueList>
113 </wsag:GuaranteeTerm>
114 <wsag:ExactlyOne>
115 <wsag:GuaranteeTerm wsag:Name="AlarmDoctor-Term1"
116 wsag:Obligated="ServiceProvider">
117 <wsag:ServiceScope wsag:ServiceName="WSDoctor">
118 <puppetScope:PuppetScope>
119 <puppetScope:Method>
120 <NameMethod>receiveAlarm</NameMethod>
121 </puppetScope:Method>
122 </puppetScope:PuppetScope>
123 </wsag:ServiceScope>
124

125 <wsag:QualifyingCondition>
126 <puppetQC:PuppetQC>
127 <puppetQC:StringBinaryExpression>
128 <puppetQC:StringType>
129 <Variable>deployedOn</Variable>
130 </puppetQC:StringType>
131

132 <op>equal</op>
133

134 <puppetQC:StringType>
135 <Value>MobileNode</Value>
136 </puppetQC:StringType>
137 </puppetQC:StringBinaryExpression>
138 </puppetQC:PuppetQC>
139 </wsag:QualifyingCondition>
140

141 <wsag:ServiceLevelObjective>
142 <puppetSLO:PuppetSLO>
143 <puppetSLO:Latency>
144 <value>6000</value>

PLASTIC IST-26955 69/104

January 2008 PLASTIC Consortium

145 <puppetSLO:Distribution>
146 <Gaussian>10</Gaussian>
147 </puppetSLO:Distribution>
148 </puppetSLO:Latency>
149 <puppetSLO:Reliability>
150 <Reliabilitywindow>30000</Reliabilitywindow>
151 <ReliabilityPerc>5</ReliabilityPerc>
152 <puppetSLO:Distribution>
153 <Gaussian>100</Gaussian>
154 </puppetSLO:Distribution>
155 </puppetSLO:Reliability>
156 </puppetSLO:PuppetSLO>
157 </wsag:ServiceLevelObjective>
158

159 <wsag:BusinessValueList>
160 <wsag:Penalty>
161 <wsag:AssessmentInterval>
162 <wsag:Count />
163 </wsag:AssessmentInterval>
164

165 <wsag:ValueExpression> 2 </wsag:ValueExpression>
166 </wsag:Penalty>
167 </wsag:BusinessValueList>
168 </wsag:GuaranteeTerm>
169 <wsag:GuaranteeTerm wsag:Name="AlarmDoctor-Term2"
170 wsag:Obligated="ServiceProvider">
171 <wsag:ServiceScope wsag:ServiceName="WSDoctor">
172 <puppetScope:PuppetScope>
173 <puppetScope:Method>
174 <NameMethod>receiveAlarm</NameMethod>
175 </puppetScope:Method>
176 </puppetScope:PuppetScope>
177 </wsag:ServiceScope>
178

179 <wsag:QualifyingCondition>
180 <puppetQC:PuppetQC>
181 <puppetQC:StringBinaryExpression>
182 <puppetQC:StringType>
183 <Variable>deployedOn</Variable>
184 </puppetQC:StringType>
185

186 <op>equal</op>
187

188 <puppetQC:StringType>
189 <Value>WiredServer</Value>
190 </puppetQC:StringType>
191 </puppetQC:StringBinaryExpression>
192 </puppetQC:PuppetQC>
193 </wsag:QualifyingCondition>
194

195 <wsag:ServiceLevelObjective>
196 <puppetSLO:PuppetSLO>
197 <puppetSLO:Latency>
198 <value>2000</value>
199 <puppetSLO:Distribution>
200 <Gaussian>10</Gaussian>
201 </puppetSLO:Distribution>
202 </puppetSLO:Latency>
203 <puppetSLO:Reliability>
204 <Reliabilitywindow>30000</Reliabilitywindow>
205

206 <ReliabilityPerc>1</ReliabilityPerc>
207

208 <puppetSLO:Distribution>
209 <Gaussian>100</Gaussian>
210 </puppetSLO:Distribution>
211 </puppetSLO:Reliability>
212 </puppetSLO:PuppetSLO>
213 </wsag:ServiceLevelObjective>
214

215 <wsag:BusinessValueList>

PLASTIC IST-26955 70/104

January 2008 PLASTIC Consortium

216 <wsag:Penalty>
217 <wsag:AssessmentInterval>
218 <wsag:Count />
219 </wsag:AssessmentInterval>
220

221 <wsag:ValueExpression> 2 </wsag:ValueExpression>
222 </wsag:Penalty>
223 </wsag:BusinessValueList>
224 </wsag:GuaranteeTerm>
225 </wsag:ExactlyOne>
226 <wsag:ExactlyOne>
227 <wsag:GuaranteeTerm wsag:Name="AlarmSupervisor-Term1"
228 wsag:Obligated="ServiceProvider">
229 <wsag:ServiceScope wsag:ServiceName="WSSupervisor">
230 <puppetScope:PuppetScope>
231 <puppetScope:Method>
232 <NameMethod>receiveAlarm</NameMethod>
233 </puppetScope:Method>
234 </puppetScope:PuppetScope>
235 </wsag:ServiceScope>
236

237 <wsag:QualifyingCondition>
238 <puppetQC:PuppetQC>
239 <puppetQC:StringBinaryExpression>
240 <puppetQC:StringType>
241 <Variable>deployedOn</Variable>
242 </puppetQC:StringType>
243

244 <op>equal</op>
245

246 <puppetQC:StringType>
247 <Value>MobileNode</Value>
248 </puppetQC:StringType>
249 </puppetQC:StringBinaryExpression>
250 </puppetQC:PuppetQC>
251 </wsag:QualifyingCondition>
252

253 <wsag:ServiceLevelObjective>
254 <puppetSLO:PuppetSLO>
255 <puppetSLO:Latency>
256 <value>10000</value>
257

258 <puppetSLO:Distribution>
259 <Gaussian>10</Gaussian>
260 </puppetSLO:Distribution>
261 </puppetSLO:Latency>
262 <puppetSLO:Reliability>
263 <Reliabilitywindow>30000</Reliabilitywindow>
264

265 <ReliabilityPerc>5</ReliabilityPerc>
266

267 <puppetSLO:Distribution>
268 <Gaussian>100</Gaussian>
269 </puppetSLO:Distribution>
270 </puppetSLO:Reliability>
271 </puppetSLO:PuppetSLO>
272 </wsag:ServiceLevelObjective>
273

274 <wsag:BusinessValueList>
275 <wsag:Penalty>
276 <wsag:AssessmentInterval>
277 <wsag:Count />
278 </wsag:AssessmentInterval>
279

280 <wsag:ValueExpression> 2 </wsag:ValueExpression>
281 </wsag:Penalty>
282 </wsag:BusinessValueList>
283 </wsag:GuaranteeTerm>
284 <wsag:GuaranteeTerm wsag:Name="AlarmSupervisor-Term2"
285 wsag:Obligated="ServiceProvider">
286 <wsag:ServiceScope wsag:ServiceName="WSSupervisor">

PLASTIC IST-26955 71/104

January 2008 PLASTIC Consortium

287 <puppetScope:PuppetScope>
288 <puppetScope:Method>
289 <NameMethod>receiveAlarm</NameMethod>
290 </puppetScope:Method>
291 </puppetScope:PuppetScope>
292 </wsag:ServiceScope>
293

294 <wsag:QualifyingCondition>
295 <puppetQC:PuppetQC>
296 <puppetQC:StringBinaryExpression>
297 <puppetQC:StringType>
298 <Variable>deployedOn</Variable>
299 </puppetQC:StringType>
300

301 <op>equal</op>
302

303 <puppetQC:StringType>
304 <Value>WiredServer</Value>
305 </puppetQC:StringType>
306 </puppetQC:StringBinaryExpression>
307 </puppetQC:PuppetQC>
308 </wsag:QualifyingCondition>
309

310 <wsag:ServiceLevelObjective>
311 <puppetSLO:PuppetSLO>
312 <puppetSLO:Latency>
313 <value>6000</value>
314

315 <puppetSLO:Distribution>
316 <Gaussian>10</Gaussian>
317 </puppetSLO:Distribution>
318 </puppetSLO:Latency>
319 <puppetSLO:Reliability>
320 <Reliabilitywindow>30000</Reliabilitywindow>
321

322 <ReliabilityPerc>1</ReliabilityPerc>
323

324 <puppetSLO:Distribution>
325 <Gaussian>100</Gaussian>
326 </puppetSLO:Distribution>
327 </puppetSLO:Reliability>
328 </puppetSLO:PuppetSLO>
329 </wsag:ServiceLevelObjective>
330

331 <wsag:BusinessValueList>
332 <wsag:Penalty>
333 <wsag:AssessmentInterval>
334 <wsag:Count />
335 </wsag:AssessmentInterval>
336

337 <wsag:ValueExpression> 2 </wsag:ValueExpression>
338 </wsag:Penalty>
339 </wsag:BusinessValueList>
340 </wsag:GuaranteeTerm>
341 </wsag:ExactlyOne>
342 <wsag:GuaranteeTerm wsag:Name="MedicalDevice-Term1"
343 wsag:Obligated="ServiceProvider">
344 <wsag:ServiceScope wsag:ServiceName="WSMedicalDevice">
345 <puppetScope:PuppetScope>
346 <puppetScope:Method>
347 <NameMethod>getMeasure</NameMethod>
348 </puppetScope:Method>
349 </puppetScope:PuppetScope>
350 </wsag:ServiceScope>
351

352 <wsag:QualifyingCondition>
353 <puppetQC:PuppetQC>
354 <puppetQC:StringBinaryExpression>
355 <puppetQC:StringType>
356 <Variable>idMedicalDevice</Variable>
357 </puppetQC:StringType>

PLASTIC IST-26955 72/104

January 2008 PLASTIC Consortium

358

359 <op>equal</op>
360

361 <puppetQC:StringType>
362 <Value>device_1</Value>
363 </puppetQC:StringType>
364 </puppetQC:StringBinaryExpression>
365 </puppetQC:PuppetQC>
366 </wsag:QualifyingCondition>
367

368 <wsag:ServiceLevelObjective>
369 <puppetSLO:PuppetSLO>
370 <puppetSLO:Latency>
371 <value>3000</value>
372

373 <puppetSLO:Distribution>
374 <Gaussian>10</Gaussian>
375 </puppetSLO:Distribution>
376 </puppetSLO:Latency>
377 </puppetSLO:PuppetSLO>
378 </wsag:ServiceLevelObjective>
379

380 <wsag:BusinessValueList>
381 <wsag:Penalty>
382 <wsag:AssessmentInterval>
383 <wsag:Count />
384 </wsag:AssessmentInterval>
385

386 <wsag:ValueExpression> 2 </wsag:ValueExpression>
387 </wsag:Penalty>
388 </wsag:BusinessValueList>
389 </wsag:GuaranteeTerm>
390 <wsag:GuaranteeTerm wsag:Name="MedicalDevice-Term2"
391 wsag:Obligated="ServiceProvider">
392 <wsag:ServiceScope wsag:ServiceName="WSMedicalDevice">
393 <puppetScope:PuppetScope>
394 <puppetScope:Method>
395 <NameMethod>getMeasure</NameMethod>
396 </puppetScope:Method>
397 </puppetScope:PuppetScope>
398 </wsag:ServiceScope>
399

400 <wsag:QualifyingCondition>
401 <puppetQC:PuppetQC>
402 <puppetQC:StringBinaryExpression>
403 <puppetQC:StringType>
404 <Variable>idMedicalDevice</Variable>
405 </puppetQC:StringType>
406

407 <op>equal</op>
408

409 <puppetQC:StringType>
410 <Value>device_2</Value>
411 </puppetQC:StringType>
412 </puppetQC:StringBinaryExpression>
413 </puppetQC:PuppetQC>
414 </wsag:QualifyingCondition>
415

416 <wsag:ServiceLevelObjective>
417 <puppetSLO:PuppetSLO>
418 <puppetSLO:Latency>
419 <value>10000</value>
420

421 <puppetSLO:Distribution>
422 <Gaussian>10</Gaussian>
423 </puppetSLO:Distribution>
424 </puppetSLO:Latency>
425 </puppetSLO:PuppetSLO>
426 </wsag:ServiceLevelObjective>
427

428 <wsag:BusinessValueList>

PLASTIC IST-26955 73/104

January 2008 PLASTIC Consortium

429 <wsag:Penalty>
430 <wsag:AssessmentInterval>
431 <wsag:Count />
432 </wsag:AssessmentInterval>
433

434 <wsag:ValueExpression> 2 </wsag:ValueExpression>
435 </wsag:Penalty>
436 </wsag:BusinessValueList>
437 </wsag:GuaranteeTerm>
438

439 </wsag:All>
440 </wsag:Terms>
441 </wsag:AgreementOffer>

PLASTIC IST-26955 74/104

January 2008 PLASTIC Consortium

5 Weevil
5.1 Weevil Overview

Weevil simplifies running repeatable experiments on distributed systems by modelling the sys-
tem under evaluation (SUE), the test environment (testbed), and the experiment workload. Two
executables control an experiment:

1. weevilgen uses a simulator to automatically generate workloads given a simple example
implementation of the system clients (actors).

2. weevil, given a configuration file representing the experiment model, will :

(a) create start and stop scripts for each component
(b) deploy the experiment binaries across the testbed
(c) start experiment components and actors
(d) collect component logs
(e) clean the testbed

5.2 Technical info

Provider USI

Introduction Software to simplify the execution and collection of results of experiments on dis-
tributed testbeds.

Development status The complete software is available for download, current Version is 1.2.4

Intended audience Developers who intend to test a distributed system on a real environment

License OSS, both GPL 2.0 and 3.0 apply.

Language M4, C++, Shell Script, Make

Sw operating language Shell, SSH, (Java)

Environment (set-up) The following components need to be installed in order to compile and run
Weevil:

• SSim discrete-event library1

Platform N/A

Download Weevil is available from the WP4 tools repository web site at URL:

http://plastic.isti.cnr.it/download/tools

Documents see WP4 tools repository web site and deliverables D4.1 and D4.2

Tasks N/A

Bugs N/A

Patches N/A

Contact toffettg@lu.unisi.ch
1available from http://www.inf.unisi.ch/faculty/carzaniga/ssim/index.html

PLASTIC IST-26955 75/104

http://plastic.isti.cnr.it/download/tools

January 2008 PLASTIC Consortium

5.3 Deployment

5.3.1 Install

Weevil is distributed as source code, as such the typical “configure” and “make” procedure has to
be executed for installation.

The simplest way to compile the package is:

1. ‘cd’ to the directory containing the package’s source code, cd to the ‘build’ directory and type
‘../configure’ to configure the package for your system.

The execution of weevil needs the SSim discrete-event library. So you need to have the
library installed somewhere, make sure to pass the right path to the –with-ssim= option in
the ‘configure’ command. Here is an example:

../configure –with-ssim=/usr/lib/ssim-1.5.0

2. Type ‘make’ to compile the package.

3. Type ‘make install’ to install.

By default, ‘make install’ will install the package’s files in ‘/usr/local/bin’, ‘/usr/local/man’, etc.
You can specify an installation prefix other than ‘/usr/local’ by giving ‘configure’ the option ‘–
prefix=PATH’. Additional configuration information is contained in the “readme” file distributed with
the source code.

5.3.2 Configure

Weevil directly supports experiment deployment and execution. The overall process is depicted in
Figure 5.1. Actions are represented by rectangles and are labeled by circled numbers. Input and
output data for those actions are represented by ovals. Dark ovals represent input models provided
by the engineer. White ovals represent control scripts and data files generated by Weevil. The
cross-hatched ovals represent data generated by the SUE during an experiment. Solid arrows
represent normal input/output data flow, whereas dotted arrows represent the execution of scripts.

The following steps need to be taken to setup and conduct an experiment.

5.3.2.1 Weevil Configuration (Experiment Registration)

Create a name for the experiment (refered to as <experiment name> below), like ”experiment”
in the siena example; add the name into ”weevil.conf ” file after ”weevil EXPERIMENTS:=”. You
could have more than one experiment registered in ”weevil.conf ” separated with space. To start
a new line, \ is needed to end the current line. Weevil only conducts experiments that have been
registered in ”weevil.conf ”.

For example, in file “weevil.conf ” of the “plastic-cbr” example we defined one experiment:

weevil_EXPERIMENTS := MyExperiment

For each experiment, Weevil must be provided with a workload file (refer to Section 5.3.2.2) and
an experiment configuration file named “<experiment name>.m4” including all the experiment
configurations as illustrated in Section 5.3.2.3.

PLASTIC IST-26955 76/104

January 2008 PLASTIC Consortium

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

2 1 3

script
master

4 7

test data
per−machine

5

6

host
mapping

makefile gen.
partitioning
workload

start/stop
scripts

script gen.

unified actor

actor
workloads scripts

cleanup

deployment cleanup

execution

data collection

experiment configuration file

SUEworkload mapping testbed

log files

makefile

Figure 5.1: Weevil Experimentation Process

5.3.2.2 Workload File

You can generate the workload file with weevilgen. Of course, you can always use workloads
from other workload generators or just use a real trace as the workload. But please note that the
workload should be made up of workload lines with the following format:

event(<time stamp>, <workload process ID>, ‘<event content>’)

5.3.2.3 Experiment Configurations

These configurations are represented by the dark ovals along the top of Figure 5.1. They are pro-
grammed in GNU m4 by parameterizing Weevil-defined declaration macros (Please refer to the
“Weevil’s Experiment Environment Declaration Macros”2) to instantiate elements of two concep-
tual models (SUE and testbed) and necessary mappings (Please refer to the “Weevil’s Experiment
Environment Conceptual Models”3). In other words, these declaration macros will define a set of
macros serving as properties of an experiment. (Please refer to the “Weevil’s Experiment Envi-
ronment Declaration Macros” and the “Some Other Weevil-Defined Property Macros”4) for these
property macros.) The order of the declarations does not matter. A macro can be used before it
is defined as long as it is defined somewhere in the experiment configuration file. Weevil supports
the engineer during this activity by performing extensive checks on the syntax and consistency of

2see doc/weevilexec/defs.html in the software package
3see doc/weevilexec/model.html in the software package
4see doc/weevilexec/macros.html in the software package

PLASTIC IST-26955 77/104

January 2008 PLASTIC Consortium

the configurations and by providing detailed error messages about any problems it encounters.
Please refer to the user manual for a complete description of the available experiment configura-
tion macros.

5.4 Tutorial

As a tutorial, in this section we use the “Siena” example distributed with the software package,
which is also the introductory example in the Weevil manual. Please refer to the manual and the
example files for complete reference. A more complex example (“plastic-cbr”) is included in the
package distribution: the aim there is to test the content-based routing component of the PLASTIC
middleware upon which PLASTIC-enabled services will be running. Additionally, Weevil is being
used to test the context engine component of the PLASTIC middleware both as a standalone
application accessed through SOAP-enabled actors, and as an integrated system in the context
of the PLASTIC eBusiness scenario.

The aim of the example in this section is to introduce the concepts and models needed to specify
an experiment run. In the test, 3 instances of a Siena server (a distributed publish-subscribe
system) are started and three small Java applications (Actors) are used to impersonate clients
subscribing predicates and publishing notifications.

5.4.1 Workload

Two automatically generated workload files are included:

• MyWorkload.wkld

• wkld sequential.wkld

The file MyWorkload.wkld consists of a list of events to be executed by the actor components, a
brief extract from it is shown in Figure 5.2.

event(100,C1,‘SUB(0, ‘"i tedious < 91"’)’,,)
event(102,C3,‘SUB(0, ‘"i tedious > 55"’)’,,)
event(103,C2,‘PUB(0, ‘"i hedge 95 & i tedious 63"’)’,,)

Figure 5.2: An example of workload

Each event is composed of a relative execution time w.r.t. the experiment start, an identifier of
the actor that will enact the event, and an application specific command that has to be interpreted
by the actor. For instance, in our example of Figure 5.2, the first line states that at time T=100,
actor C1 is to subscribe with predicate “tedious <91”.

Both workload files can be used as is for experiment runs, and provide an example of how to
specify a generic workload. They have been automatially generated from MyWorkload.m4 and
wkld sequential.m4 using the command “weevilgen”. You might want to postpone the study of
workload generation and skip to Section 5.4.2 to concentrate first on actual experiment runs.

5.4.1.1 Simulation-Based Workload Generation

Weevil’s simulation-based workload generation process supported by the package weevilgen is
illustrated in Figure 5.3.

In detail, the following steps need to be taken.

PLASTIC IST-26955 78/104

January 2008 PLASTIC Consortium

a3.c

actor
behavior

actor
configuration

a2.c

discrete−event
simulation library

weevil workload−
generation library

workload scenario

time actionactor

a12 10 sub...
23 pub...

...
b5

scenario
definition

simulation
program

unified
workload

a.cc

simulation execution

simulation setup

Figure 5.3: Simulation-Based Workload Generation

Weevilgen Configuration (Workload Registration) Create a name for the workload (refered
to as <workload name> below), like “MyWorkload” in the Siena example; add the name into
“weevil.conf ” file after “weevilgen WORKLOADS:=”. You could have more than one workload
registered in “weevil.conf ” separated with space, as indicated in the apachesquid example. To
start a new line, \ is needed to end the current line. Weevilgen only generates workloads that
have been registered in “weevil.conf ”.

Then, to generate each workload, Weevil must be provided with programmed actor behavior
models and an actor configuration file named “<workload name>.m4” including all the actor con-
figurations.

Actor Behavior Model Programming One or more types of actor behaviors could be pro-
grammed in C++ with the support of Weevil’s workload-generation library and SSim simulation
library, and may therefore execute arbitrary functions and maintain arbitrary state. SSim is a
discrete-event simulation library that supports message communication between simulated pro-
cesses, so actor behavior programs may specify interactions with other actors. Weevil’s workload-
generation library extends the SSim’s library by providing a workload-output method and conve-
nient methods for dealing with processes by ids. Please refer to the Weevil’s workload-generation
library and the SSim’s simulation library in the reference manual when programming your actor
behavior model.

Actor Configurations After programming the actor behavior models, you can populate a sce-
nario consisting of many actor instances specified in the actor configuration file named “<workload
name>.m4”. The actor behavior models and the actor configurations make up a workload sce-
nario definition.

Figure 5.4 shows the portion of the Weevil conceptual model concerning the definition of work-
load scenarios. You need to parameterize a set of GNU m4 declaration macros in the actor
configuration file. The order of the declarations does not matter. A macro can be used before it
is defined as long as it is defined somewhere in the actor configuration file. Weevil supports the
engineer during this activity by performing extensive checks on the syntax and consistency of the

PLASTIC IST-26955 79/104

January 2008 PLASTIC Consortium

ExternalLibrary

+ ID : String
+ cflags : String
+ libs : String
+ path : String

WorkloadProcessType

+ ID : String
+ srcFiles : String[]

WorkloadProcess

+ ID : String
+ props : Property[]

WorkloadScenario

+ stoptime : int
+ ID : String

Figure 5.4: Workload Scenario Conceptual Model

configurations and by providing detailed error messages about any problems it encounters.

Workload generation When a workload has been registered in the weevil.conf file, actor be-
haviours have been implemented, and actor configurations have been provided, the command
weevilgen can be used to transform the actors configuration file into a complete workload.

For instance, in the “Siena” example directory type: “weevilgen gen-MyWorkload”.

5.4.2 Experiment

The configuration file for the the actual experiment run is “experiment.m4”. It specifies the differ-
ent features of an experiment such as: the testbed, the workload, the number and software for
components and actors. Once more, we warmly recommend you read the Weevil manual (or the
related conference papers) to get confident with the concepts and terminology.

The experiment starts 3 instances of a Siena server and uses three actors to impersonate the
workload and provide stimuli to the servers.

Before running the experiment you should configure it to your particular setup. In particular, you
should change the WVL SYS Host definitions to match hosts you can access via ssh.

Also we recommend you setup the testbed so that you can use your public key to ssh to remote
hosts. Run ssh-add to open your keystore before launching the experiment run

To run the experiment:

1. ”cd” to the experiment directory

2. type ”weevil setup-experiment”

3. If the experiment is set up correctly type ”weevil run-experiment”

While the experiment is running you can follow the experiment evolution in a different console
with the command:

tail -f experiment.runlog

The typical output of the Siena experiment is reported below.

deploying experiment files...
The deploy copy time is X seconds
starting S0...
starting S1...

PLASTIC IST-26955 80/104

January 2008 PLASTIC Consortium

starting S2...
monitoring hosts...
communicating with each host on the testbed to

estimate the test start time...
The deploy time is 10 seconds
The test will start at 11/30/2007 16:4:59
The deploy and execution time is 23 seconds
killing processes...
stopping system components...
copying logs back...

Server logs and error output will be copied to the local directory, actors output is in
weevil-parallel/actorstartoutput/*/ActorID.out

PLASTIC IST-26955 81/104

January 2008 PLASTIC Consortium

6 DynamoAOP
6.1 DynamoAOP overview

Dynamo-AOP is a framework for monitoring functional properties of external services which a
BPEL [2] process interacts with, to realize a composite service. It is based on the conceptual
model proposed in [4], but, with respect to the original design, its architecture is based on the dy-
namic aspectization of the BPEL engine executing the monitored service compositions, achieved
by using AspectJ [13] as an AOP [14] language.

6.2 Technical info

Provider USI

Introduction Framework for monitoring functional properties of external services with which a
BPEL process interacts

Development status Prototype completed

Intended audience Service aggregators/providers that describe service compositions in BPEL

License GPLv3 (open source)

Language Java, AspectJ

Environment (set-up) The following components need to be installed in order to run Dynamo-
AOP:

• the Apache Tomcat servlet container (assumed to be installed in the directory $TOMCAT-DIR
and running on port 7080), available at http://tomcat.apache.org/

• the JBoss application server (assumed to be installed in the directory $JBOSS-DIR and
running on port 8080), available at http://www.jboss.org/

• the ActiveBPEL BPEL engine, available at http://www.active-endpoints.com

• (optional) a mail server, to support the notify recovery strategy.

The current version of Dynamo-AOP has been tested using Apache Tomcat ver. 5.5.23,
JBoss Application Server ver 4.2, ActiveBPEL ver 2.1.
The following libraries are also required:

• ANTLRv2, available at http://www.antlr2.org/

• Apache Axis, available at http://ws.apache.org/axis/

• Apache XMLBeans, available at http://xmlbeans.apache.org/

• Apache Xerces 2, available at http://xerces.apache.org/xerces2-j/index.
html

• Castor, available at http://www.castor.org

• Jakarta Commons Discovery, available at http://commons.apache.org/discovery/

• Jakarta Commons Logging, available at http://commons.apache.org/logging/

• CommonJ Timer and Work Manager for Application Servers, available at http://
dev2dev.bea.com/wlplatform/commonj/twm.html

PLASTIC IST-26955 82/104

http://tomcat.apache.org/
http://www.jboss.org/
http://www.active-endpoints.com
http://www.antlr2.org/
http://ws.apache.org/axis/
http://xmlbeans.apache.org/
http://xerces.apache.org/xerces2-j/index.html
http://xerces.apache.org/xerces2-j/index.html
http://www.castor.org
http://commons.apache.org/discovery/
http://commons.apache.org/logging/
http://dev2dev.bea.com/wlplatform/commonj/twm.html
http://dev2dev.bea.com/wlplatform/commonj/twm.html

January 2008 PLASTIC Consortium

• Javamail, available at http://java.sun.com/products/javamail/
• JAXP, available at https://jaxb.dev.java.net/
• Jaxen, available at http://jaxen.org/
• JAX-RPC, available at https://jax-rpc.dev.java.net/
• JBoss EJB3, available at http://labs.jboss.com/jbossejb3/
• JBoss Web Services, available at http://labs.jboss.com/jbossws/
• Saxon XSLT processor, available at http://saxon.sourceforge.net/
• StAX, available at http://stax.codehaus.org/
• Sun Java Streaming XML Parser (JSR 173), available at http://java.sun.com/
webservices/docs/1.5/sjsxp/ReleaseNotes.html

• WSDL for Java API, available at http://sourceforge.net/projects/wsdl4j
• XML Pull Parser (XPP), available at http://www.extreme.indiana.edu/xgws/
xsoap/xpp/

• XSUL, available at http://www.extreme.indiana.edu/xgws/xsul/

Platform Java 5

Download both sources and binaries are available at http://plastic.isti.cnr.it/download/
tools

Documents see WP4 tools repository web site and deliverables D4.1 and D4.2

Tasks N/A

Bugs N/A

Patches N/A

Contact domenico.bianculli@lu.unisi.ch

6.3 Deployment

6.3.1 Install

To actually install the Dynamo-AOP monitoring framework you have to:

• copy from the Dynamo-AOP distribution
ConfigurationManager.jar, HistoricalVariable.jar, MonitorLogger.jar
in the directory $JBOSS-DIR/server/default/deploy.

• copy from the Dynamo-AOP distribution ae rtbpel.jar, in the directory
$TOMCAT-DIR/shared/libs, overwriting the original ActiveBPEL file.

• copy from the Dynamo-AOP distribution invoker.jar in the directory
$TOMCAT-DIR/common/libs.

• install a copy of antlr-2.7.6.jar, antlrdebug_1.0.0.jar, jaxb-api.jar,
jaxb-impl.jar, jaxb-xjc.jar, jaxb1-impl.jar, mail.jar, jsr173_api.jar,
saxon8-dom.jar, saxon8-jdom.jar, saxon8-sql.jar, saxon8-xom.jar,
saxon8-xpath.jar, saxon8.jar, xbean_path.jar, xbean.jar, xmlpublic.jar,
aspectjrt.jar, xpp3-1.1.3.4.M.jar, xsul-2.0.9_2.jar, stax-1.1.1.jar in the
directory $TOMCAT-DIR/common/libs.

PLASTIC IST-26955 83/104

http://java.sun.com/products/javamail/
https://jaxb.dev.java.net/
http://jaxen.org/
https://jax-rpc.dev.java.net/
http://labs.jboss.com/jbossejb3/
http://labs.jboss.com/jbossws/
http://saxon.sourceforge.net/
http://stax.codehaus.org/
http://java.sun.com/webservices/docs/1.5/sjsxp/ReleaseNotes.html
http://java.sun.com/webservices/docs/1.5/sjsxp/ReleaseNotes.html
http://sourceforge.net/projects/wsdl4j
http://www.extreme.indiana.edu/xgws/xsoap/xpp/
http://www.extreme.indiana.edu/xgws/xsoap/xpp/
http://www.extreme.indiana.edu/xgws/xsul/
http://plastic.isti.cnr.it/download/tools
http://plastic.isti.cnr.it/download/tools
domenico.bianculli@lu.unisi.ch

January 2008 PLASTIC Consortium

• install a copy of axis.jar, commons-logging.jar, commons-discovery-0.2.jar,
jaxrpc.jar, saaj.jar, wsdl4j-1.5.1.jar, castor-0.9.6-xml.jar,
commonj-twm.jar, jaxen-1.1-beta-8.jar, ssaj-api.jar, xercesImpl.jar,
saxon8-dom.jar in the directory $TOMCAT-DIR/shared/libs.

6.3.2 Configure/Usage

1. launch the JBoss application server using the command $JBOSS-DIR/bin/run.sh and
wait for the completion of the starting phase; check that JBoss is running by typing in
your browser http://localhost:8080: you should see the start page of the applica-
tion server.

2. launch the Apache Tomcat servlet container using the command $TOMCAT-DIR/bin/catalina.sh
run and wait until the message “ActiveBPEL In-Memory Configuration Started” is displayed
on the console. Check that Tomcat is running by typing in your browser http://localhost:
7080. To check that ActiveBPEL is running, visit http://localhost:7080/BpelAdmin:
you should see the ActiveBPEL administration tool. On it, click on Configuration and uncheck
the box labelled “Validate Input/Output messages against schema”.

3. deploy your BPEL process, as illustrated in ActiveBPEL user guide.

4. configure monitoring for the deployed process. This step assumes an interaction with the
ConfigurationManager, which — in the first prototype of Dynamo-AOP — is done by directly
accessing the API of the component, as shown in the “Dynamo Supervision Manager” appli-
cation, also distributed within the framework (see next section).

6.4 Tutorial

In this section we will first review WSCoL, the language used to specify monitoring properties;
then, we will describe the demo application bundled with Dynamo-AOP.

6.4.1 WS-CoL

WSCoL (Web Service Constraint Language) is the language used inside Dynamo-AOP to define
monitoring properties; it is based on JML [15], with some conceptual and syntactical differences
due to the adaption to the world of web services. Its main features are:

• Allowing to define and predicate on variables containing the data originating both within and
outside the monitored BPEL process, and to retrieve data previously stored in a storage
component.

• Using predefined variable functions for data manipulation.

• Using typical boolean, relational and arithmetic operators.

• Predicating on sets of variables through the use of the universal and existential quantifiers,
and aggregate operators.

WSCoL allows to attach monitoring properties to the activities of a BPEL process that interact
with external services. Properties can be pre- and post-conditions. Indeed, one can attach a pre-
condition to an invoke activity, and a post-condition to an invoke, a receive and a pick activity.
All monitoring properties have three parameters:

PLASTIC IST-26955 84/104

http://localhost:8080
http://localhost:7080
http://localhost:7080
http://localhost:7080/BpelAdmin

January 2008 PLASTIC Consortium

• priority : it represents the “importance” of the rule and can be an integer ranging from 1 to 5.
Each process can then define a threshold value that makes monitoring properties active or
not, allowing for dynamically changing the amount of activities performed for monitoring the
process.

• validity : it defines time constraints on when a monitoring properties should be considered.

• trusted providers: it’s a list of service providers for which monitoring is not necessary.

In its simplest definition, a monitoring property states relationships that must hold between vari-
ables. WSCoL supports three kinds of variables:

• internal : an internal variable corresponds to a datum that originates within the process being
monitored. Usually, WSCoL internal variables define a form of data extraction from complex
BPEL variables, by using XPATH [21] expressions. For example, to extract the value of a
sub-element easting from the sub-element start of the element parameters of a com-
plex BPEL variable named getRouteIn, one can use the notation
$(getRouteIn/parameters/start/easting), i.e. by concatenating the variable name
prefixed by a dollar sign, with the XPATH expression matching the value of interest.

• external : An external variable indicates a monitoring datum that originates outside of the
process in execution, such as a contextual datum. WSCoL assumes that the data source of
an external variable can be queried through a web service interface and provides a function
to invoke it: (return<X> (W, O, Ins, Out)) where

– X indicates the XSD type returned by the data source web service; it can be Int,
String, Bool.

– W represents the location of the WSDL of the data source web service.

– O represents the name of the web method of the data source web service.

– Ins represents the input message that one has to send when calling the data source
web service.

– Out represents an XPATH expression indicating the data extraction to apply to the out-
put message returned from the data source web method, to get the desired value.

• historical : Historical variables consist of monitoring data that are related to previous activa-
tions of the Dynamo-AOP framework, related either to other processes or previous steps in
the same process. Historical variables are defining using the store construct, as follows:
store $east_historical=($getRouteIn/parameters/start/easting);.
Previously stored historical variables can be retrieved using the retrieve function
(retrieve(pID,uID,iID,kID,type,alias,n))
where pID identifies the process family, uID is the user-id of the user who run the processes,
iID identifies the instance within the process family, kID identifies an invoke activity in the
process, type specifies if the historical variables was stored in a pre- or post-condition;
alias is the name of the variable used in the store operation, n is the maximum number
of results that should be returned by the query.

Moreover, variables may be aliased. This feature is provided both for allowing for less verbose
expressions and for referring multiple times to a variable, whose value has been collected only
once. Aliases are defined using the let keyword as shown below:
let $east=($getRouteIn/parameters/start/easting);.

Variables can be manipulated using data-type specific functions, invoked on the variable using
the dot notation. Numeric functions include abs(), ceiling(), floor() and round(). The

PLASTIC IST-26955 85/104

January 2008 PLASTIC Consortium

available string functions are: compare(string), replace(pattern, replace),
substring(start, len), length(), contains(string), startsWith(string),
endsWith(string). For example, to get the length of the string value referred by the alias east,
one can write $east.length().

WSCoL allows to use universal and existential quantifiers to express constraints over sets of
value. The syntax is: (quantifier $alias name in range def; constraint def)
where quantifier can be forall or exists. A universal quantifier indicates a parametric
constraint that must be true for each and every value (at least one, in the case of the existential
quantifier) the parameter can assume in a given range. alias name and range def defines
respectively a variable alias and a finite range for the values it can assume; constraint def
defines the parametric constraint that must hold.

Aggregate operators allows to define assertions on set of values. The syntax is
(operator $alias name in range def; assertion def)
where operator is one among max, min, avg, sum, product; range def is a variable that re-
turns a set of values, and alias name is an alias that can be used as a parameter in assertion def.

When a violation of a property is detected, some sort of recovery action should be performed.
In our framework we have not investigated any specific recovery strategy but, by simplifying the
work presented in [11], we just provides three simple primitives: ignore, which ignores the vio-
lation and allows the process to continue, halt, which stops the execution of the process, and
notify(msg, addr), which sends an email with the text msg to the recipient addr. These
strategies can be structured using an if-elseif-else statement and/or boolean operators.
For example, if a value is found to have a value below a certain threshold, we might want to differ-
entiate the recovery strategy on the basis of the difference with respect to the threshold, as shown
below:

if ($hRes < 80;)
{ halt() and notify("Low resolution, dba@localhost)}

elseif ($hres > 80; && $hRes < 120;)
{ignore () and notify("Medium resolution, dba@localhost)}

else {ignore()}

The complete grammar of WSCoL is listed in the apppendix of this section.
Let’s now see some examples of WSCoL properties.

Location: /process/sequence/invoke[@name=’InvokeMap’]
Supervision priority: 2
Monitoring rule:

let $hRes=returnInt(
’http://127.0.0.1:8080/ImageVerifierServiceBean?wsdl’,
’getHRes’,
$MapResponse/result,
/Response/result);
$hRes<= 150;

Recovering rule: {ignore()}

In this example, a property is associated to the invoke activity named InvokeMap. The getHRes
web method of an external data collector service ImageVerifierServiceBean is called by
passing it — as a parameter — the result element of the internal variable MapResponse. Once
the service sends back its return message, the desired value is obtain through data extraction
(/Response/result). This value is assigned to the hRes variable (actually, an alias), by means
of the let statement. The actual property then checks if this variable is less than or equal to 150.

PLASTIC IST-26955 86/104

January 2008 PLASTIC Consortium

The recovery rule of this property is to ignore the fault and continue with the execution of the
process. Moreover, a priority of 2 is associated with this property. The meaning is that every time
the process is executed with a global priority of 2 or less the property is verified. On the other
hand, if the global process priority is higher than or equal to 3 then the property is ignored.
Another sample property is

Location: /process/sequence/invoke[@name=’InvokeGPS’]
Supervision priority: 4
Monitoring rule:

($CoordResponse/result/easting).length==7) &&
($CoordResponse/result/easting).endsWith(’E’);

Recovering rule: {halt()}

The above property states that the easting element (supposed to be of type string) of the
result element of the CoordResponse internal variable, must be seven characters long and
that it must end with the character ’E’. The recovery rule just makes the process execution termi-
nate. Moreover, a priority of 4 is associated to this property.

6.4.2 Demo

In the software distribution, you will find a complete web application that can be used to see how
the monitoring framework works.

The application contains a BPEL process, PizzaDeliveryCompany, which you should deploy
in the BPEL engine; at the end of the deployment you should see the process listed in the Deployed
Processes section of the ActiveBPEL control panel, as shown in Figure 6.1. Before using the

Figure 6.1: Process PizzaDeliveryCompany deployed successfully.

demo application, you should deploy some web services in the application server, by copying
all the *.jar file from the demo directory to $JBOSS-DIR/server/default/deploy. In the
same directory, you should also copy dynamo.war, which contains the “Dynamo Supervision
Manager”, a web application developed to to control the behavior of the monitoring framework; it
can be reached at http://localhost:8080/dynamo.

PLASTIC IST-26955 87/104

http://localhost:8080/dynamo

January 2008 PLASTIC Consortium

Figure 6.2: The result of inserting two monitoring rules.

Figure 6.3: Output console of the monitored process

The main page of this application contains two links: one to set the properties of the monitored
processes and the other to access the Dynamo-AOP demo, also available directly at http://
localhost:8080/dynamo/DemoManager.jsp. This page contains the various steps through
which you can interact with the BPEL process. The execution of step #1 will attach some monitor-
ing rules to the process, as shown in Figure 6.2. The execution of the monitor process can then
be monitored on the output console of Tomcat, as shown in Figure 6.3. The structure and the pri-
ority of the rules attached to a monitored process can be modified using the “Dynamo Supervision
Manager”, as shown in Figure 6.4.

6.5 Appendix

6.5.1 WS-CoL grammar

〈analyzer〉 ::⇒ 〈rules〉 | 〈recovery〉
〈recovery〉 ::⇒ 〈complete-strategy〉 | strategy

PLASTIC IST-26955 88/104

http://localhost:8080/dynamo/DemoManager.jsp
http://localhost:8080/dynamo/DemoManager.jsp

January 2008 PLASTIC Consortium

Figure 6.4: Monitoring rules modified with the “Dynamo Supervision Manager”

〈complete-strategy〉 ::⇒ 〈ifStrategy〉 〈elseIfStrategy〉* 〈elseStrategy〉?
〈ifStrategy〉 ::⇒ if 〈condition〉 〈strategy〉
〈elseIfStrategy〉 ::⇒ elseif 〈condition〉 〈strategy〉
〈elseStrategy〉 ::⇒ else 〈strategy〉
〈condition〉 ::⇒ (〈rules〉)
〈strategy〉 ::⇒ { 〈steps〉 }
〈steps〉 ::⇒ 〈rec-step〉 (or 〈rec-step〉)*

〈rec-step〉 ::⇒ 〈actions〉
〈actions〉 ::⇒ action (and 〈action〉)*

〈action〉 ::⇒ 〈identifier〉 (〈list〉?)
〈rules〉 ::⇒ 〈sub-rule〉 ((==> | <== | <==>) 〈sub-rule〉)* ;
〈sub-rule〉 ::⇒ 〈and-expression〉 (|| 〈and-expression〉)*

〈and-expression〉 ::⇒ 〈equals-expression〉 (&& 〈equals-expression〉)*

〈equals-expression〉 ::⇒ 〈relational-expression〉 ((== | !=) 〈relational-expression〉)?

〈relational-expression〉 ::⇒ 〈operator-expression〉 ((> | >= | < | <=) 〈operator-expression〉)?

〈operator-expression〉 ::⇒ 〈basic-expression〉 ((+ | - | * | / | %) 〈basic-expression〉)*

〈basic-expression〉 ::⇒ 〈dot-expression〉 | 〈variable〉 | 〈exists〉 | 〈forall〉 | 〈let〉 | 〈store〉 | 〈avg〉 |
〈min〉 | 〈max〉 | 〈sum〉 | 〈product〉 | true | false | 〈NUMBER〉 | 〈string-value〉
〈forall〉 ::⇒ (forall $ 〈identifier〉 in 〈variable〉 ; 〈sub-rule〉)
〈exists〉 ::⇒ (exists $ 〈identifier〉 in 〈variable〉 ; 〈sub-rule〉)
〈dot-expression〉 ::⇒ 〈variable〉 . 〈identifier〉 (〈list〉?)
〈let〉 ::⇒ let $ 〈identifier〉 = 〈sub-rule〉
〈store〉 ::⇒ store $ 〈identifier〉 = 〈sub-rule〉
〈avg〉 ::⇒ (avg $ 〈identifier〉 in 〈variable〉 ; 〈sub-rule〉)
〈sum〉 ::⇒ (sum $ 〈identifier〉 in 〈variable〉 ; 〈sub-rule〉)
〈min〉 ::⇒ (min $ 〈identifier〉 in 〈variable〉 ; 〈sub-rule〉)
〈max〉 ::⇒ (max $ 〈identifier〉 in 〈variable〉 ; 〈sub-rule〉)
〈product〉 ::⇒ (product $ 〈identifier〉 in 〈variable〉 ; 〈sub-rule〉)
〈variable〉 ::⇒ ((〈ivar〉 | 〈evar〉 | 〈hvar〉)) | (〈ivar〉 | 〈evar〉 | 〈hvar〉)
〈ivar〉 ::⇒ $ 〈identifier〉 〈xpath-expression〉?
〈evar〉 ::⇒ 〈returnType〉 (〈string-value〉 , 〈string-value〉 , 〈string-value〉 , 〈xpath-expression〉)

PLASTIC IST-26955 89/104

January 2008 PLASTIC Consortium

〈returnType〉 ::⇒ returnInt | returnBool | returnString
〈hvar〉 ::⇒ retrieve (〈string-value〉 (, 〈string-value〉)? (, 〈NUMBER〉) , 〈xpath-expression〉 ,
〈NUMBER〉 , $ 〈identifier〉 (, 〈NUMBER〉))
〈alias〉 ::⇒ $ 〈identifier〉
〈list〉 ::⇒ 〈sub-rule〉 (, 〈sub-rule〉)*

〈string-value〉 ::⇒ 〈sub-string-value〉 (+ 〈sub-string-value〉)*

〈sub-string-value〉 ::⇒ 〈identifier〉 | 〈literal〉 | 〈variable〉
〈xpath-expression〉 ::⇒ 〈union-expression〉
〈location-path〉 ::⇒ 〈absolute-location-path〉 | 〈relative-location-path〉
〈absolute-location-path〉 ::⇒ (/ | //) (〈i-relative-location-path〉 | ε)
〈relative-location-path〉 ::⇒ 〈i-relative-location-path〉
〈i-relative-location-path〉 ::⇒ 〈step〉 ((/ | //) 〈step〉)*

〈step〉 ::⇒ ((〈axis〉 | ε) ((((〈identifier〉 :)? (〈identifier〉 | *))) | 〈special-step〉) 〈predicates〉*) | 〈abbr-
step〉 〈predicates〉*
〈special-step〉 ::⇒ processing-instruction (〈identifier〉?) | (comment | text | node) ()
〈axis〉 ::⇒ 〈identifier〉 :: |@
〈predicate〉 ::⇒ { 〈predicate-expr〉 }
〈predicate-expr〉 ::⇒ 〈expr〉
〈expr〉 ::⇒ 〈or-expr〉
〈primary-expr〉 ::⇒ 〈variable-reference〉 | (〈expr〉) | 〈literal〉 | 〈number〉 | 〈function-call〉
〈literal〉 ::⇒ 〈LITERAL〉
〈number〉 ::⇒ 〈NUMBER〉
〈variable-reference〉 ::⇒ $〈identifier〉
〈function-call〉 ::⇒ 〈identifier〉 (〈arg-list〉?)
〈arg-list〉 ::⇒ 〈argument〉 (, 〈argument〉)*

〈argument〉 ::⇒ 〈expr〉
〈union-expr〉 ::⇒ 〈path-expr〉 (| 〈path-expr〉)*

〈path-expression〉 ::⇒ 〈location-path〉 | 〈filter-expr〉 〈absolute-location-path〉?
〈filter-expr〉 ::⇒ 〈primary-expr〉 〈predicate〉?
〈or-expr〉 ::⇒ 〈and-expr〉 (or 〈and-expr〉)*

〈and-expr〉 ::⇒ 〈equality-expr〉 (and 〈equality-expr〉)*

〈equality-expr〉 ::⇒ 〈relational-expr〉 ((= | !=) 〈relational-expr〉)?

〈relational-expr〉 ::⇒ 〈additive-expr〉 ((< | <= | > | >=) 〈additive-expr〉)?

〈additive-expr〉 ::⇒ 〈mult-expr〉 ((+ | -) 〈mult-expr〉)?

〈mult-expr〉 ::⇒ 〈unary-expr〉 ((* | /) 〈unary-expr〉)?

〈unary-expr〉 ::⇒ 〈union-expr〉 | - 〈unary-expr〉

6.5.2 Architecture

Figure 6.5 depicts the Dynamo-AOP monitoring framework, by illustrating the dependencies ex-
isting between the various components and the technologies used in the implementation. The
Configuration Manager is a storage component for all the properties that have to be monitored.
The ActiveBPEL engine is a modified version of ActiveBPEL [1] in which we embed monitoring.
This is achieved by following an aspect oriented programming approach [14]. The engine is a Java
program in which we weave the cross-cutting monitoring features via AspectJ [13]. ActiveBPEL
works by creating an internal tree representation of the process being executed. In this tree, each
node represents a single BPEL activity in the process definition, and is an appropriate extension
of the AEActivityDefinition class. Each node contains the information necessary to per-
form the particular activity it is associated with. At run time, the tree is visited and the definition
classes are used by the engine to instantiate appropriate AEActivityImpl classes, all of which
implement a common interface. Amongst other things, this interface provides an execute method
where the activity’s primary action is performed. For example, a scope activity will set up its inter-
nal variables, while an invoke activity will perform the appropriate external invocation. To perform

PLASTIC IST-26955 90/104

January 2008 PLASTIC Consortium

ActiveBPEL
Engine

Monitoring
Manager

(AspectJ Advice)

Configuration
Manager

(persistent EJB)

Data Analyzer
(Java)

Data Collector
(Jax-WS)

Invoker
(Java)

Storage
(persistent EJB)

Figure 6.5: Dynamo-AOP components architecture

monitoring, we intercept the process after the execute method is called for the various BPEL ac-
tivities. These are the points where the Monitoring Manager (implemented as an AspectJ advice)
is activated. Its main responsibility is data collection, both from within the process and from the
outside world, through the Data Collector. The collected data, together with the monitored prop-
erty, are sent to the Data Analyzer, which first retrieves external data and/or historical variables
by calling the Invoker and the Storage, respectively, and then analyzes the property, passing the
result of the evaluation back to the Monitoring Manager. At this point, before returning control to
the process, the Monitoring Manager executes the recovery code if a monitoring rule has been
violated.

PLASTIC IST-26955 91/104

January 2008 PLASTIC Consortium

7 SLAngMon
7.1 SLAngMon Overview

SLAngMon is an Eclipse plugin to generate Java monitors for Service Level Agreements defined
using the SLAng language. We refer to Deliverable 2.1 for a detailed description of SLAng.

SLAngMon implements the automata-based technique presented in D4.1 to monitor agree-
ments by introducing AXIS handlers to intercept messages exchanged and to check their con-
formance with respect to the established SLAs.

SLAngMon is integrated into the SLA editor described in D2.2 and D2.3; we refer to these
documents for a detailed description of how to create and manage a Service Level Agreement in
SLAng.

7.2 Technical info

Provider University College London.

Introduction SLAngMon is a tool for the automatic generation of monitors from Service Level
Agreements.

Development status The Eclipse plug-in is available for download as part of the SLAng

Intended audience Developers who intend to implement monitors for Service Level Agreements.

License Mozilla Public Licence v.1.1 (MPL).

Language Java, EMOF/OCL, ant.

Environment (set-up) The following components are needed to compile SLAngMon:

• Eclipse 3.2 or greater.

• UCL MDA tools, available from http://uclmda.sourceforgege.net

Platform Eclipse. Operating System(s): all

Download The tool is available as part of the SLAng editor plug-in, available from: http://
www-c.inria.fr/plastic/workpackage/wp2

Documents See D2.1 and D2.2 for a description of SLAng and its editor (Eclipse plug-in). Further
documentation is available in D4.1 and D4.2 and from the website.

Tasks A binary distribution to avoid the compilation process and dependency problems is cur-
rently under development; please contact f.raimondi@cs.ucl.ac.uk for further infor-
mation.

Bugs N/A

Patches N/A

Contact f.raimondi@cs.ucl.ac.uk

PLASTIC IST-26955 92/104

http://uclmda.sourceforgege.net
http://www-c.inria.fr/plastic/workpackage/wp2
http://www-c.inria.fr/plastic/workpackage/wp2
f.raimondi@cs.ucl.ac.uk
f.raimondi@cs.ucl.ac.uk

January 2008 PLASTIC Consortium

7.3 Deployment

7.3.1 Install

These are the steps required to install SLAngMon:

1. Open Eclipse.

2. Add the following CVS repositories:

Host: uclmda.cvs.sourceforge.net
CVS path: /cvsroot/uclmda
User: anonymous (no password)

In HEAD, checkout the following: UCL, GTL, EMOFOCL2, EMOFOCLPlugin

3. Compile UCL:

• Rename project.properties.example in project.properties and edit

• Execute build.xml

4. Compile GTL:

• You need to obtain gnu.regexp-1.1.4.tar.gz, unzip, and place it in the lib/ directory (the
archive can be obtained by looking for it in Google).

• Execute build.xml

5. Compile EMOFOCL2

• Rename project.properties.example in project.properties and edit

• Execute build.xml

6. Compile EMOFOCLPlugin

• Rename project.properties.example in project.properties and edit

• Execute build.xml

7. Create a new general project with name SLAng

• Unzip SLAng.zip and import everything into new project SLAng

• Edit project.properties

• Run ant target ”clean”

• Run ant target ”all”

8. Create a new general project with name SLAngTA

• Unzip SLAngTA.zip and import everything into new project SLAngTA

• Edit project.properties

• Run ”all”

The plugin is at this point compiled and ready to be used.

PLASTIC IST-26955 93/104

January 2008 PLASTIC Consortium

7.4 Tutorial

SLAngMon output includes

• Java classes implementing the automata corresponding to checkers for SLAs.

• Java classes extending AXIS Basic Handlers, which should be invoked by appropriately
modifying the chain of invocations.

For the purposes of this document, it is assumed that the reader is familiar with the following
technologies:

• Apache, Tomcat, and AXIS.

• Eclipse and Eclipse plugins (with Ant builds)

• Meta-modelling, EMOF and OCL: please see Deliverables 6.2 and 2.1 for further details.

Usage. After compiling the software as described in the previous section, right-click on SLAngTA,
Run As → Run. . . Run as Eclipse application. A new Eclipse instance should start. In this new
instance, create a new General project. Then, create a new file, for instance test.slangtaxmi
(notice: it is important to use .slangtaxmi extensions to activate the plugin). As an example,
complete an InputThroughput clause, right click, and choose a destination directory. An example
of the plugin at this point is depicted in Figure 7.1. This will generate a directory structure. The
actual checker (the automaton) is generated in server/tautils. The handler for AXIS is generated
in server/slamonitor

The generated java files can be compiled using the appropriate classpath for AXIS libraries.
Copy the files and their container directories in $AXIS_HOME/classes

To install the handler, modify the file $AXIS_HOME/server-config.wsdd, for instance:

<handler name="slamonitor" type="java:slamonitor.SLAMonitor">
<parameter name="filename" value="SLAMonitor.log"/>
<parameter name="wsdlURL" value="/axis/SLAMonitorService-impl.wsdl"/>
<parameter name="scope" value="Session"/>
<parameter name="serviceName" value="SLAMonitorService"/>
<parameter name="namespace"

value="http://tempuri.org/wsdl/2001/12/SOAPMonitorService-impl.wsdl"/>
<parameter name="portName" value="Demo"/>

</handler>

Finally, add the handler to you service (in server-config.wsdd):

<service name="MyService" provider="java:RPC">
<requestFlow>

<handler type="slamonitor"/>
</requestFlow>
<responseFlow>

<handler type="slamonitor"/>
</responseFlow>

[...]
</service>

The handler is now fully operational. Violations of the SLA clause are reported in the file
SLAMonitor.log.

PLASTIC IST-26955 94/104

January 2008 PLASTIC Consortium

Figure 7.1: Plugin screenshot for SLAngMon: generation of checkers.

PLASTIC IST-26955 95/104

January 2008 PLASTIC Consortium

Figure 7.2: Service description diagram for the eHealth scenario

Figure 7.3: Use case service description diagram for the eHealth scenario

7.4.1 Demo

In this section we present a short demo on how to generate and use the monitors for an SLA
between a patient and the eHealth service provider in the eHealth scenario. We refer to Deliverable
2.1 for a detailed description of the scenario.

For the purposes of this demo, we only briefly review the scenario in Figure 7.2 and 7.3.
A number of actors are involved in the scenario:

• A patient

• A number of “carers”, such as a Doctor, a Relative, the Ambulance.

• A e-Health service provider, responsible for the communication between patients and carers.

Figure 7.4 depicts part of an SLA between the e-Health Provider and the Patient. The XMI code
corresponding to this SLA in SLAng is presented in Section 7.5.3. In particular, in this example a
latency clause is expanded for the operation trigAlarm invoked by the Patient and provided by
the e-Health Provider: it is required that the maximum response time for this kind of requests is 10

PLASTIC IST-26955 96/104

January 2008 PLASTIC Consortium

Figure 7.4: Latency clause for e-Health Provider and Patient

minutes: in this time window the e-Health provider has to evaluate how serious is the alarm (false
alarm, medium, high).

By right-clicking on the clause in the SLAng editor, a menu as the one depicted in Figure 7.1 ap-
pears, and from here it is possible to generate Java files for monitoring this requirement. Excerpts
of the Java code for the handler are reported in Figure 7.5.

This code can be compiled without modification by including the relevant AXIS libraries, e.g.:

javac -cp $AXISCLASSPATH SLAMonitor.java

where $AXISCLASSPATH is an environment variable containing the appropriate references to
AXIS libraries. The generated .class file is then placed in the directory structure of the AXIS
server, as described in the Tutorial above. When Tomcat is restarted, the appropriate service is
monitored for its latency and violations are reported to a text file in the directory structure of AXIS,
named SLAMonitor.log when default values are used. The lines of this file have the form:

Calling latency checker at time 1196198201762
No transition found, resetting at T = 1196198201765

These two lines mean that the latency checker was invoked with the values reported (in millisec-
ond). “No transition found” means that no violation occurred (indeed the response was only 3
milliseconds in the case of this sample service). A violation line would report

VIOLATION DETECTED at T = 1196198201765

As mentioned at the beginning of this section, the behaviour in case of violations can be modified
easily, both in the automatic generator inside the editor, or even after the generation of the Java
code. We refer to Section 7.5.1 for an overview of the code structure.

PLASTIC IST-26955 97/104

January 2008 PLASTIC Consortium

/∗ Excerpts from the a u t o m a t i c a l l y generated AXIS handler ∗ /

p u b l i c c lass SLAMonitor extends BasicHandler {

/∗ p r i v a t e v a r i a b l e s declared here [. . .] ∗ /

p u b l i c vo id invoke (MessageContext msgContext) throws Ax isFau l t
{

t r y {

/∗ Set−up the environment [. . .] ∗ /

/∗ Read the messages : ∗ /
Message reqmsg = msgContext . getRequestMessage () ;
Message respmsg = msgContext . getResponseMessage () ;

/∗ A f t e r a number o f checks , c a l l the appropr ia te t imed
automaton and make a t r a n s i t i o n :

∗ /
ra . makeTrans (d a t e m i l l i s e c , ” request ” , w r i t e r) ;

/∗ Here handle v i o l a t i o n s etc ∗ /

} catch (Except ion e) {
throw Ax isFau l t . makeFault (e) ;

}
}

}

Figure 7.5: Excerpts from the automatically generated Java code for the Axis handler

PLASTIC IST-26955 98/104

January 2008 PLASTIC Consortium

7.5 Appendix

7.5.1 Structure of the source code

This is a brief overview of the structure of the project:

• SLAng is defined in the file src/uk/ac/ucl/cs/slangta/specification/slang.emof.
By modifying this file it is possible to define / modify SLAng clauses to define custom SLAs

• The SLA editor with the SLAngMon plugin is defined in src/uk/ac/ucl/cs/slangta/editor/S-
LAngTAEditor.java.

• The actual pluging to generate the checkers is defined by the files in src/uk/ac/ucl/cs/slang-
ta/editor/action and src/uk/ac/ucl/cs/slangta/editor/tautils (this is the automata-related code)

By modifying any of the previous entities, SLAngMon can be easily customized to suit many
applications scenarios.

7.5.2 FAQ

• How do I create an SLA in SLAng using the editor? Please see D2.1 and D2.2 for the
description of the SLAng language and its associated editor.

7.5.3 An SLA in SLAng (XMI representation)

1 <?xml version="1.0" encoding="UTF-8"?>
2 <XMI xmlns:SLAng="file:////Users/franco/college/mysoft/e321ws/SLAng-plastic/gen/uk/ac/ucl/cs/

slangta/specification/slangta.emofxmi" xmi.version="1.2">
3 <!--This document is in XMI format according to the OMG XML Metadata Interchange (XMI)

Specification v.1.2, OMG Document formal/02-01-01 (http://www.omg.org/)-->
4 <XMI.header>
5 <XMI.metamodel href="file:////Users/franco/college/mysoft/e321ws/SLAng-plastic/gen/uk/ac/ucl/cs/

slangta/specification/slangta.emofxmi"/>
6 </XMI.header>
7 <XMI.content>
8 <SLAng:Duration unit="min" value="10.0" xmi.id="mofid:21774"/>
9 <SLAng:Duration unit="min" value="30.0" xmi.id="mofid:21808"/>

10 <SLAng:Duration unit="hr" value="4.0" xmi.id="mofid:21839"/>
11 <SLAng:PartyDefinition description="Patient" identifier="Patient" sLA="mofid:21779" xmi.id="

mofid:21775"/>
12 <SLAng:PartyDefinition description="EHP" identifier="EHP" sLA="mofid:21779" xmi.id="mofid:21777"/

>
13 <SLAng:SLA description="SLA for trigAlarm" xmi.id="mofid:21779">
14 <SLAng:SLA.auxiliaryClauses>
15 <SLAng:AuxiliaryClause xmi.idref="mofid:21796"/>
16 <SLAng:AuxiliaryClause xmi.idref="mofid:21803"/>
17 </SLAng:SLA.auxiliaryClauses>
18 <SLAng:SLA.services>
19 <SLAng:ServiceDefinition xmi.idref="mofid:21784"/>
20 </SLAng:SLA.services>
21 <SLAng:SLA.parties>
22 <SLAng:PartyDefinition xmi.idref="mofid:21777"/>
23 <SLAng:PartyDefinition xmi.idref="mofid:21775"/>
24 </SLAng:SLA.parties>
25 </SLAng:SLA>
26 <SLAng:ElectronicServiceClientDefinition owner="mofid:21775" xmi.id="mofid:21781"/>
27 <SLAng:ElectronicServiceDefinition client="mofid:21775" description="eHealthService" provider="

mofid:21777" sLA="mofid:21779" xmi.id="mofid:21784">
28 <SLAng:ElectronicServiceDefinition.interfaces>
29 <SLAng:ElectronicServiceInterfaceDefinition xmi.idref="mofid:21787"/>
30 </SLAng:ElectronicServiceDefinition.interfaces>
31 </SLAng:ElectronicServiceDefinition>
32 <SLAng:ElectronicServiceInterfaceDefinition xmi.id="mofid:21787">

PLASTIC IST-26955 99/104

January 2008 PLASTIC Consortium

33 <SLAng:ElectronicServiceInterfaceDefinition.operations>
34 <SLAng:OperationDefinition xmi.idref="mofid:21792"/>
35 <SLAng:OperationDefinition xmi.idref="mofid:21790"/>
36 <SLAng:OperationDefinition xmi.idref="mofid:21794"/>
37 </SLAng:ElectronicServiceInterfaceDefinition.operations>
38 </SLAng:ElectronicServiceInterfaceDefinition>
39 <SLAng:OperationDefinition description="trigAlarm" interface="mofid:21787" xmi.id="mofid:21790"/>
40 <SLAng:OperationDefinition description="Mild Medical Service (Remote)" identifier="MMS" interface

="mofid:21787" xmi.id="mofid:21792"/>
41 <SLAng:OperationDefinition description="Serious Medical Service (on-site)" identifier="SMS"

interface="mofid:21787" xmi.id="mofid:21794"/>
42 <SLAng:FixedLatencyFailureModeDefinition maxDuration="mofid:21774" operations="mofid:21790" sLA="

mofid:21779" xmi.id="mofid:21796"/>
43 <SLAng:FixedLatencyFailureModeDefinition maxDuration="mofid:21808" operations="mofid:21794" sLA="

mofid:21779" xmi.id="mofid:21803"/>
44 <SLAng:FixedLatencyFailureModeDefinition maxDuration="mofid:21839" operations="mofid:21792" xmi.

id="mofid:21834"/>
45 <SLAng:Administration xmi.id="mofid:21801"/>
46 </XMI.content>
47 </XMI>

PLASTIC IST-26955 100/104

January 2008 PLASTIC Consortium

8 Conclusions and ongoing improvements
The previous chapters presented the technical details of the tools released within the WP4 Vali-

dation Framework. Currently the tools are being experienced within the project (in particular in the
context of Work Package 5: Integration and Evaluation), and undergo continuous improvements.
In this chapter we draw conclusions, and lay down some further considerations and results of
ongoing work at the moment of writing.

The objective we pursue in WP4 is the development of a validation strategy for PLASTIC ser-
vices, including both off-line and on-line approaches, covering both functional and extra-functional
(QoS) properties. This results in a validation matrix methodology. Therefore, the validation frame-
work is not committed to the instantiation of one fixed testing environment, but rather is conceived
in the more general sense of an open flexible validation process, which spans over the develop-
ment, deployment, and provision of PLASTIC services. This has been extensively described in
Deliverable D4.1, which provided a detailed view on the proposed PLASTIC validation framework,
with state-of-the-art overview and justification for the adopted techniques. The leading objective
of the second year of activity has been to implement the envisaged framework into a working
validation platform. During the last twelve months, WP4 has thus focused on the implementation
and assessment of the specified PLASTIC validation framework. The set of tools deployed in this
deliverable includes:

• WEEVIL A synthetic-workload generator coupled with an environment for managing the de-
ployment and execution of experiments

• JAMBITION+MINERVA A model-based testing tool that automatically derives and executes
invocation sequences on a service, checking whether the responses conform to a given
specification, expressed as a Service State Machine (SSM). The embedded Minerva library
permits to model SSMs via an UML modelling tool

• PUPPET A tool for the automatic generation of test-beds to empirically evaluate the QoS
features of a Web Service under development.

• SLANGMON An Eclipse Plugin for the creation of SLAs using SLAng and the generation of
AXIS handlers that monitor at run time the fulfillment of specified SLAs

• DYNAMO-AOP A framework for monitoring functional properties of external services which
a BPEL process interacts with, to realize a composite service

Concerning some relevant results and ongoing work, as said in Chapter 4, the current version of
PUPPET integrates the emulation of the functional specifications as part of the generated testbed.
Therefore the automatically obtained stubs can expose not only the specified extra-functional pa-
rameters but also meaningful functional behavior. The earlier version of PUPPET (see D4.2) de-
rived stubs exposing a SLA conforming behaviour, but did not consider functional aspects (i.e.,
the stubs provided good QoS values but the responses were not built to be semantically mean-
ingful). However, we have since realized that in the general case extra-functional aspects are
tightly coupled with functional characteristics. For instance ordering a particular good will require
more or less time depending on characteristics of the specific good given that different ware-
houses have to be contacted. Indeed, stubs that only realize the desired QoS properties ignoring
the functional specification, or vice versa consider the environment functionality only, ignoring the
extra-functional properties, can be insufficient to raise failures potentially caused by a combina-
tion of causes. To the best of our knowledge, no such framework supporting in integrated way
the functional and extra-functional validation of composite services exists. To gain confidence in

PLASTIC IST-26955 101/104

January 2008 PLASTIC Consortium

the implementation environment, we will need to carry out some experiments to verify if the ob-
tained stubs really behave as their protocols dictate. This is certainly within the scope of WP5
experimentation.

WS-Guard is one of the tools that has been cut from the PLASTIC project after the first year
review. Following the recommendation to avoid spreading effort towards too many directions, this
tool was dropped. The main motivation behind this decision concerned the fact that the case stud-
ies proposed by the industrial partners did not show the necessity of having a registry augmented
with testing capabilities. The WS-Guard registry developed until this decision remains available as
a proof-of-concept implementation ready for download from the PLASTIC web site. The current
version of the WS-Guard registry has been tested with some small examples; nevertheless it is
a proof-of-concept version and at the moment its configuration requires some effort. In particu-
lar references to other services, such as Jambition, are currently hard-coded within the registry
source code. In the near future, our objective is to continue with the development solving the
issues that have not been completely addressed so far. Besides the technical issues mentioned
above we mainly refer here to the generation of stubs for services to be discovered by the service
under audition. This is a relevant and difficult problem in particular when the involved services
refer to stateful resources. Finally another interesting future development concerns the study of
the applicability of the audition testing phase also to other publish/discover protocols.

Concerning the Dynamo-AOP framework, the main limitation of the current version is that it
monitors only functional properties of stateless services; on the basis of this consideration, we
envision two different directions of improvement. The first one will concern the kind of properties
that can be monitored: the specification language should be extended to allow for expressing also
extra-functional properties of services; an initial attempt to define such a specification language is
described in [3]. Moreover, this extension should also be integrated with the existing approaches
on monitoring QoS properties, developed within WP4. The second extension will focus on extend-
ing both the monitoring framework and the specification language to support monitoring conver-
sational web services, a specific class of stateful services. This extension will be based on the
work described in [9]. Other improvements will deal with the usability of the monitoring framework:
mainly, we plan to develop a graphical user interface, blended within the ActiveBPEL control panel,
to configure the parameters and the monitored properties of a process.

Overall, we believe that the proposed matrix validation methodology provides an important ad-
vancement to the state-of-art. Indeed, while some partial approaches are elsewhere proposed, to
our knowledge no such a comprehensive validation methodology for SOA existed. To fill the matrix
cells, we have then released several tools to suitably address the exigencies of PLASTIC. At the
time of writing the tools have been relased to PLASTIC partners, and they are being experimented
in the adopted scenarios, in various configurations. This is already a first confirmation of the good
flexibility and deployability of the proposed matrix framework. We are receiving comments, re-
quests of change and error reports of which we will make treasure in further improving the tools
and releasing the final version of the framework by the end of the project.

PLASTIC IST-26955 102/104

January 2008 PLASTIC Consortium

Bibliography
[1] Active Endpoints. Activebpel engine architecture. http://www.activebpel.org/docs/

architecture.html, 2007.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Execution Lan-
guage for Web Services, Version 1.1, May 2003.

[3] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini. Validation of web service
compositions. IET Software, 1(6):219–232, December 2007.

[4] L. Baresi and S. Guinea. Towards dynamic monitoring of WS-BPEL processes. In ICSOC
2005: Proceedings of the 3rd International Conference on Service Oriented Computing, vol-
ume 3826 of Lecture Notes in Computer Science, pages 269–282. Springer, 2005.

[5] A. Bertolino, G. D. Angelis, and A. Polini. A QoS Test-bed Generator for Web Services. In
Proc. of the 7th International Conference on Web Engineering 2007 (ICWE 2007), volume
LNCS series, Como, Italy, 2007. Springer Verlag.

[6] A. Bertolino, G. D. Angelis, and A. Polini. Automatic Generation of Test-beds for Pre-
Deployment QoS Evaluation of Web Services. In Proc. of the 6th International Workshop
on Software and Performance (WOSP 2007), Buenos Aires, Argentina, 2007. ACM.

[7] A. Bertolino, D. Bianculli, A. Carzaniga, G. De Angelis, I. Forgacs, L. Frantzen, Z. Gere,
C. Ghezzi, A. Polini, F. Raimondi, A. Sabetta, and A. Wolf. Test Framework Specification and
Architecture. Technical Report Deliverable D4.1, PLASTIC Consortium, March 2007. IST
STREP Project.

[8] A. Bertolino, L. Frantzen, A. Polini, and J. Tretmans. Audition of Web Services for Testing
Conformance to Open Specified Protocols. In R. Reussner, J. Stafford, and C. Szyperski,
editors, Architecting Systems with Trustworthy Components, LNCS 3938, 2004.

[9] D. Bianculli and C. Ghezzi. Monitoring conversational web services. In Proceedings of the
2nd International Workshop on Service-Oriented Software Engineering (IW-SOSWE’07), co-
located with ESEC/FSE 2007, pages 15–21, New York, NY, USA, September 2007. ACM
Press.

[10] W. Emmerich, F. Raimondi, J. Skene, V. Cortellessa, P. Inverardi, M. Tivoli, D. D. Ruscio,
M.Autili, R. Mirandola, V. Grassi, A. Sabetta, J. Gonzales, P. Mazzoleni, and S. Tai. SLA
language and analysis techniques for adaptable and resource-aware components. Technical
Report Deliverable D2.1, PLASTIC Consortium, March 2007. IST STREP Project.

[11] S. Guinea. Dynamo: a Framework for the Supervision of Web Service Compositions. PhD
thesis, Politecnico di Milano, 2007.

[12] P. Inverardi, V. Cortellessa, A. Di Marco, M. Autili, et al. Formal description of the PLASTIC
conceptual model and of its relationship with the PLASTIC platform toolset. Technical Report
Deliverable D1.2, PLASTIC Consortium, March 2008. IST STREP Project.

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview
of AspectJ. In ECOOP 2001 - Object-Oriented Programming, 15th European Conference,
Proceedings, volume 2072 of Lecture Notes in Computer Science, pages 327–353. Springer,
2001.

PLASTIC IST-26955 103/104

http://www.activebpel.org/docs/architecture.html
http://www.activebpel.org/docs/architecture.html

January 2008 PLASTIC Consortium

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier, and J. Irwin.
Aspect-oriented programming. In ECOOP’97 - Object-Oriented Programming, 11th European
Conference, Proceedings, volume 1241 of Lecture Notes in Computer Science, pages 220–
242. Springer, 1997.

[15] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed design. In H. Kilov,
B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of Businesses and Systems,
pages 175–188. Kluwer Academic Publishers, Boston, 1999.

[16] F. Liotopoulos, S. Tai, J. Sairamesh, H. Eikerling, J. Gonzalez, J. Barra, M. Jazayeri, J. Wuttke,
P. Inverardi, V. Cortellessa, A. Di Marco, and M. Autili. Scenarios, Requirements and initial
Conceptual Model. Technical Report Deliverable D1.1, PLASTIC Consortium, June 2006.
IST STREP Project.

[17] H. Ludwig. WS-Agreement Concepts and Use - Agreement-Based Service-Oriented Archi-
tectures. Technical Report RC23949, IBM, May 2006.

[18] No Magic Inc. MagicDraw. http://www.magicdraw.com.

[19] Object Management Group. UML 2.0 Superstructure Specification, ptc/03-08-02 edition.
Adopted Specification.

[20] J. Skene and W. Emmerich. Engineering runtime requirements: monitoring systems using
MDA technologies. In Trustworthy Global Computing, International Symposium, TGC 2005,
Revised Selected Papers, volume 3705 of LNCS, pages 319–333. springer, 2005.

[21] W3C. XML path language (XPATH). on-line at: http://www.w3.org/TR/xpath, 1999.

PLASTIC IST-26955 104/104

http://www.magicdraw.com
http://www.w3.org/TR/xpath

	List of Figures
	List of Tables
	Introduction
	PLASTIC validation stages
	Testing challenges and opportunities
	Development-time testing
	Admission testing
	Live-usage verification
	PLASTIC validation framework novelty
	Tool download

	Jambition
	Jambition Overview
	Technical info
	Deployment
	Install
	Configure

	Tutorial
	Web Service Description Language
	Service State Machines
	The Warehouse Example

	Appendix
	The Dumont Grammar in BNF

	Minerva
	Minerva Overview
	Technical info
	Deployment
	Install
	Configure/Usage

	Tutorial
	Creating the project
	Modeling the types and data structures
	Creating the service description
	Creating the Service State Machine
	Location variables
	Exporting the SSM

	Puppet
	Puppet Overview
	Technical info
	Deployment
	Install
	Configure
	Usage

	Tutorial
	Terms in the Agreement and Generation Process
	The Syntax for the Terms in the WS-Agreement Contracts
	Writing an Agreement
	Functional Behavior with Jambition
	Example

	Appendix
	WS Agreement

	Weevil
	Weevil Overview
	Technical info
	Deployment
	Install
	Configure

	Tutorial
	Workload
	Experiment

	DynamoAOP
	DynamoAOP overview
	Technical info
	Deployment
	Install
	Configure/Usage

	Tutorial
	WS-CoL
	Demo

	Appendix
	WS-CoL grammar
	Architecture

	SLAngMon
	SLAngMon Overview
	Technical info
	Deployment
	Install

	Tutorial
	Demo

	Appendix
	Structure of the source code
	FAQ
	An SLA in SLAng (XMI representation)

	Conclusions and ongoing improvements
	Bibliography

