
COMPONENT MEASURABLE VALUES
AND SERVICES: A TECHNOLOGY FOR THE
CONCLUSION OF RESOURCE TRANSACTIONS

Natalia Currle-Linde1, Christian Pérez2, Michael Resch1, Massimo Coppola3

(1) High Performance Computing Center Stuttgart (HLRS),
University of Stuttgart, Nobelstrasse 19, 70569 Stuttgart, Germany
linde@hlrs.de, resch@hlrs.de

(2) INRIA/IRISA,
Campus de Beaulieu, 35042 Rennes cedex, France
Christian.Perez@inria.fr

(3) University of Pisa/CNR-ISTI,
Largo Bruno Pontecorvo, 3, 56127 Pisa, Italy

Massimo.Coppola@unipi.it

Abstract The absence of dynamic parameters in the description of software components
does not allow the realization of traditional market relations for the Grid, based
on transparency in the mechanisms of the allocation of Grid resources for cus-
tomers and providers. This paper deals with the introduction into the technology
of resource distribution of an apparatus of dynamic time and success estimation
for the execution of concrete tasks. We discuss extensions to the GCM com-
ponent model to include dynamically measured properties, the services needed
to gather and convey the information, and their implementation using the dis-
tributed directory service from the XtreemOS project. With such a strategy it
will be possible to realize a full set of traditional market relations and provide a
flexible, efficient and transparent resource allocation.

Keywords: Grid, Software Component, Attribute, Services



2

1. Introduction
The Grid Component Model (GCM ) [2] aims at mastering both the com-

plexity of application and resources. However, so far there has been little effort
to try to achieve an efficient and automatic deployment of GCM applications
on Grids. The GCM Architecture Description Language (ADL) is not intended
to be easily edited by end users, as it contains information about the mapping of
components onto resources. Such a mapping requires a high level of expertise
on applications and on resources.

To support an efficient execution of complex scientific or engineering appli-
cations, an adequate organization of resource distribution services is needed.
Existing organizations of available services do not support reliable relations
between individual clients and those who represent their interests, i.e. the Grid
services, because these services are aimed at the simultaneous realization re-
quirements of a multitude of clients and of the owners of the Grid resources.
As there are no high-level instruments available for the automated planning of
the execution of complex applications, it is generally not possible to provide
services of an appropriate quality-level for these applications.

As service and/or resource failures are inherent properties of grids, there
must be a control and a monitoring of the applications and of the resources, so
that the application to be executed can at every moment achieve a high level
of productivity. An example of such organization has been proposed in [1] in
order to design a deployment model for Grids. However, that approach does
not take into account dynamic properties that can be attached to a component.

This paper deals with dynamic component properties, and their use in the
execution of complex applications in Grid organizations to the establishment
of traditional market relations between users (clients) and owners of Grid re-
sources. In particular, we propose the notion of measurable components as
a foundation technology. An example of the needed supporting services for
the notion can be found in the distributed directory service in development as
part of the XtreemOS research project [5]. Section 2 introduces the notion of
measurable components and their properties, while Section 3 describes the ser-
vices managing the property values. Based on this, Section 4 focuses on the
organization of the Grid with respect to a time property. Before the conclusion,
Section 5 describes the interaction between applications and Grids.

2. Component Measurable Properties
There are several situations that need to deal with the description of a com-

ponent. The main example of such a situation is the deployment phase, that se-
lects a particular component implementation as well as the resource on which it
will be deployed. Existing deployment tools only focus on a static description
of a component, which takes into account properties like the architecture of the



Component Measurable Values and Services 3

processor the implementation has been compiled to, the operating system, the
implementation language and framework, etc. Dynamic properties like mem-
ory consumption, wall-time, etc. are seldom taken into account, but they are
often essential to perform a relevant choice of deployment. For example, in a
market relation, the user may impose economical constraints on the resources,
like relating the cost of resources with their reliability and performance.

We believe it is important to propose a general solution, enabling static and
dynamic properties to be attached to a component, and imposing no a priori
restrictions on the set of properties used to direct deployment and adaptivity
of components. Hence, we propose a model that extends standard component
models with the notion of measurable property.

Component Measurable Property. The proposed model deals with com-
ponent definition, extending the classical component definition with the notion
of measurable property. A measurable property can be thought as a standard
attribute but with the specificity that its value, which may be determined at
runtime, needs to be dynamically retrieved and saved. Measurable properties
can be attached both to primitive and to composite components.

Component Measurable Property Services. The model also comprises
the definition of required services to manage measurable properties. There are
three essential services, used to retrieve values (fetched from several compo-
nent instances), to store them (preserve and organize information) and to access
them (locate, apply policies, provide query functionalities).

The storage and access of information can in principle be solved by standard
database technologies, but centralization issues would quickly hinder scalabil-
ity over large Grids. Measuring values relies on the accurate definition of when
these have to be read, and who should measure them. The framework should be
responsible for measuring values like the memory consumption, while a com-
ponent may be responsible of measuring specific properties closely related to
its implementation. Services shall be generic with respect to what values have
to be stored, if we do not want to constrain application performance models
in advance. Under production settings, it is also important and not trivial to
define who is allowed to access previously measured values.

This section focuses on the proposed model which deals with measurable
properties for components. Before defining such properties and describing how
GCM may be extended to support them, it first recalls some GCM features.

2.1 GCM component description
In most component models, components are statically described by the set

of ports they expose, possibly by their implementation, and by the initial value



4

public interface anAttributeController extends AttributeController
{

public String getValue();
public void setValue(long value);

}

GCM ADL:
<definition name="AComponent" >
<content class="AComponent"/>
<attributes signature="AComponentAttributeController">
<attribute name="Value" value="10"/>

</attributes>
</definition>

Figure 1. Example of GCM attribute-controller definition and configuration.

of attributes. In GCM [2], a component definition may extend another com-
ponent definition. It is possible to obtain different implementations of a com-
ponent type by sub-typing its definition. A component can either be defined
dynamically by means of the GCM API, or it can be defined statically thanks
to the GCM ADL [2].

A component definition may also reference controllers, and it may define at-
tributes that are dealt with by a specialized attribute-controller. The attribute-
controller interface (see the example interface in Figure 1) must exhibit a set-
ter/getter behavior with respect to an attribute. Attributes can also be config-
ured in the ADL as shown in Figure 1 for the Value attribute.

Dynamic component description. From our viewpoint, static information
is not enough to accurately describe a component. Dynamic information about
a component is also needed for component selection (either at deployment time
or at connection time), as for example its execution time or the amount of
memory used, and, conversely, this information may depend on the resource
selected for deployment. Hence we need a mechanism to describe values that
need to be dynamically measured.

A component may export the values related to its dynamic behavior through
attributes. This is a straightforward technique, but it suffers from two draw-
backs. First, attributes are a general mechanism that targets component config-
uration: not all of them refer to a dynamic property of a component. Second,
component implementations have to provide the implementation of the inter-
face related to all attribute-controllers, while some measurable properties may
only exist and be relevant while executing the component instance on a spe-
cific resource. It seems difficult to add an unplanned property to an existing
component, thus attributes are an interesting but insufficient mechanism.



Component Measurable Values and Services 5

public interface MeasurablePropertyController {
any getProperty(String property_name)

throws IllegalPropertyException;
List<String> getPropertyList();

}

Figure 2. Interface of a controller to retrieve any component property.

2.2 Measurable property definition
We define a measurable property as a value associated to a component in-

stance that contributes to characterize it. The values of a measurable property
obtained from two instances of the same component may be different as the
value is measured on a component instance. Measurable properties are usu-
ally expected to be dynamically retrieved, and to depend on the computational
resource where the component instance is executed.

Measurable properties that are associated to a component can be provided
either by the component itself or by a framework. In the former case, properties
are said to be internal, while in the latter they are said to be external. External
properties are values which are more easily or conveniently computed outside
the component, such as the memory or the bandwidth consumption.

Therefore, a mechanism is needed to associate a measurable property with
its producer. We envision two different kinds of property producer. The sim-
plest case is when an attribute provides the property. The second case occurs
when the property is retrieved through an interface. These two situations are
detailed below.

Internal properties are directly provided by the component itself. Hence, it
appears straightforward to re-use the attribute mechanism to get them. As such
values are read-only, only a getter method is required in the attribute-controller.

External properties are provided by the framework. Thus, the framework
has to provide the values for several components. As the framework might not
be a component, we may only expect that it will provide an interface. With
respect to the GCM design philosophy, such an interface shall be exported
through a component controller. Figure 2 gives an example of the API of such
a controller. It is important to note that the implementation of such a controller
must be under the responsibility of the framework, not of the component.

When taking into account both internal and external properties, it is obvious
that they can be combined into a coherent interface. With respect to the outside
of the component, a unique mechanism is needed. Hence, a compliant com-
ponent implementation shall provide a controller whose interface is of type
MeasurablePropertyController. Its implementation shall be able to di-
rectly return the values of internal properties and it shall invoke the framework
provided controller for external properties.



6

As shown in Figure 2, the MeasurablePropertyController interface
also has an operation that returns the list of all properties available so as to
cope with the introspection property of GCM. In general, it is not possible to
statically know the list of properties that will be available once a component is
going to be deployed. We decide to support the more general case. If needed,
component definition can be extended to enforce the list of supported proper-
ties, but internal and external properties have to be differentiated so as to check
whether the framework a component is going to be deployed to supports the
requested external properties.

3. Component Measurable Property Services
According to the viewpoint of the CoreGRID Institute on Grid Systems,

Tools and Environments, a generic grid platform is made up by a set of com-
ponents, which typically are GCM components. Together, they provide spe-
cialized services like resource discovery, file transfer, and job launching. The
set of services needs to be extended to manage measurable features of compo-
nent outlined in Section 2.

In the following we describe how these services are structured, a possible
implementation based on the Directory Service for Services and Resources
developed within the XtreemOS project [5], and we analyze how it would be
possible to integrate these services within the GCM framework.

Value Retrieving Service. The Value Retrieving Service (VR) is responsi-
ble to retrieve the property values associated to component instances. Hence, it
should know the list of component instances, which values has to be retrieved
and when they have to be retrieved.

In GCM, a component is created thanks to the newFcInstance operation
of the GenericFactory interface. Such an operation typically relies on an
application deployment component. Hence, either a GenericFactory or a
deployment component has to inform the VR service that a new component
has been created. The first problem is thus solved by defining a dependency
between the VR and the deployment service.

A component dynamically declares its measurable values (as defined in Sec-
tion 2), thus solving the second problem, as the VR service can obtain the list
of measurable properties from all instanced components.

Even simply assuming that a property value (possibly a list of values) is re-
trieved at the end of the component execution, the GCM specification does not
include an operation to destroy a component, i.e. the inverse of the newFcInstance.

In order to provide a portable retrieval mechanism for measured properties,
we advocate an extension of the GCM API with a destroy operation. Such
operation could be added to the GenericFactory. Under these assumptions,



Component Measurable Values and Services 7

Figure 3. High-level software architecture of the Service and Resource Discovery System.

the VR service can be implemented by component interfaces in the measured
components and in the deployment structure.

Storing Service. To be able to usefully exploit the measured properties we
explicitly assume that all component types and component implementations
are uniquely identified, so that the collected data is never ambiguous. Besides,
the Storing Service SS will also need to identify all the computing resources
uniquely (which is a simpler problem solved in term of public and private
IP addresses) in order to distinguish e.g. performance obtained on different
systems by the same component implementation.

The SS manages collected property values, and inherits all the requirements
of the VR. Its design must avoid centralization points, as the SS has to be inher-
ently distributed on the Grid platform, to control a large amount of component
instances belonging to different applications, and it has to concurrently collect
and deliver information for multiple users.

Very similar requirements and properties were devised within the XtreemOS
project1 for the Service/Resource Discovery System (SRDS, [5]).

The SRDS, whose node-level architecture is shown in Figure 3, is designed
to be a pervasive support, to store and retrieve a large amount of information,

1Project no. IST-033576 XtreemOS - “Building And Promoting A Linux-Based Operating System To
Support Virtual Organizations For Next Generation Grids”.



8

satisfying requirements of efficiency, high availability and reliability over Grid
platforms composed of tens of thousands of machines. An instance of the sys-
tem is deployed on each computation node in XtreemOS, its network interfaces
participating in the SRDS overlay networks.

The SRDS is a flexible directory service, supporting different data formats
and query functions. It provides basic storage and retrieval functionality for
key-value pairs with generic values (e.g. small files, attribute lists), as well as
more refined query forms (e.g. range queries, neighborhood queries), that are
supported when a specialized semantics has been defined on the data values.
Simple and complex queries can be performed on key-value pairs whose values
are dynamically updated, e.g. handling real-time measured quantities and
properties for the sake of monitoring or to support decision making.

The SRDS exploits a combination of peer-to-peer, unstructured and Dis-
tributed Hash-Tree overlay networks [6]. Each hosting node belongs to one or
more of them. The multi-stage query execution approach provides a flexible
set of churn-tolerant services, exploited by several modules of the XtreemOS
system, including the Deployment System, and by the applications. Thus the
SRDS can provide scalable support also in the framework of a component sys-
tem.

Access Service. The Access Service (AS) has to provide efficient access
to the measured values, but also mechanisms for access control and restric-
tions, that are needed for a market-aware use. For instance, it will often be the
case that measured properties concerning a component implementation, a set
of resources or users, have to be kept private to a specific Virtual Organization
(VO), or role within the organization.

Within XtreemOS, the Facade module in the SRDS architecture (see Fig. 3)
interfaces to XtreemOS node-local VO services in order to authenticate and
authorize all provides and queries with respect to the VO service policies. In
order to gather measurable values from GCM components, the Facade has
instead to include mechanisms allowing the GCM framework and its com-
ponents to dynamically register with the SRDS. The mechanisms needed are
described in the following Sections 4 and 5, and can be implemented as Facade
plug-ins, with no change to the rest of the SRDS architecture.

4. Time features of application programs and the model
for the organization of the Grid.

So far industrial Grid systems have not yet solved two important problems:
devising a general and efficient methodology for the distribution of tasks for
each concrete application, and efficiently planning the execution of complex
Grid applications.



Component Measurable Values and Services 9

Figure 4. Model for the organization of the Grid

We want to address a major issue with respect to these problems, the general
difficulty to know in advance the execution time for each application task. We
will call this the problem of "inexact time". We do not address however, the
research on parallel performance models and techniques to derive execution
parameters from bottom-up synthesis of analytic models.

We will instead exploit time-related measurable properties such as the known
times required for the execution of programs on a certain set of machines, and
eventually use them to approximate top-down the time depending on other pa-
rameters, like the number of available processors, the volume and quality (e.g.
accuracy) of the data to be processed. The introduction of these resource-
dependent and application-specific parameters into the set of properties char-
acterizing application components, makes it possible to improve the efficiency
of Grid applications.

In a methodology addressing application behavior estimation, it is neces-
sary to determine the time attributes during the development of application
programs for the Grid. A prerequisite is that all application programs are thor-
oughly verified and tested in order to guarantee their quality, and avoid e.g.
resource configuration related bugs. The lack of such a quality control proce-
dure is one reason slowing down Grid adoption in business and industry.

To allow enhancing the planning of application executions, besides intro-
ducing dynamic measurable component properties, a modernization of Grid in-
frastructure is needed, to incorporate the related management services. Figure 4
shows two types of Grid organization. The first one is the one we propose
to achieve a better performance for complex applications. It prioritizes the



10

maximum efficiency of execution for a single complex application. (see Fig-
ure 4(a)). The second one aims at maximum utilization and throughput perfor-
mance of Grid resources. This is currently standard model (see Figure 4(b)).

As soon as management centers with the newly proposed approach have re-
ceived the complete information about the resources required for one complex
application at each stage of computation (including economic parameters), the
execution can be planned with high efficiency. At the same time it will be
possible to make corrections in the plan during the execution of an application
depending on the current state of each Grid resource.

5. Interaction between applications and the Grid.
We address the efficient execution of complex Grid applications not only

by solving the issue of elementary Grid jobs, but also to with an appropriate
Grid organization and with tools for the automated planning of the application
execution exploiting a universal economical scheme of the distribution of re-
sources. We will introduce a method for the organization of the management
of complex applications which is based on the problem solving environment
SEGL [3].

The planning process covers the whole experiment, from the design and de-
velopment of an application, through its execution and up to its final comple-
tion. At the beginning of the design phase, i.e. in the verification phase, there
will be an evaluation of the minimum number of resources required for the
execution, taking into account user-specified times for the application compo-
nents. For this purpose it is necessary to model the execution of the application.
Two goals have to be pursued. First it will be checked whether the execution of
the program is correct. Second it will be necessary to determine the maximum
execution time allowed for each block (as used in SEGL [3]) of the application
and the minimum resource requirements for their execution. In addition the
total number of resources required at each time will be calculated, taking into
account the level of parallelization the application permits. During the design
phase the possible cost limits for the resources required for each block will
also be calculated.

In the following phase, planning is taken over by the Management Cen-
ter. The Deployment Model of the Application Manager makes use of various
types of information services, and creates a pool of domains and of individ-
ual candidate machines which are best suited for the execution of applications.
The selection of candidate machines is carried out on the basis of an analysis
of the potential capacities of the Grid domains as well as an analysis of the
current states of the resources, of their availability, their reliability (probability
of failure and deadline missing) and of their costs. A list of candidate ma-
chines most suited for the execution of each program block of the application,



Component Measurable Values and Services 11

Figure 5. Grid organization within an economical scheme of distribution of resources

as well as a list of the Grid resources for the execution of the application, will
be generated.

The management center, exploiting the annotated pool of resource, con-
cludes contracts on behalf of the users with the owners of the resources. During
this phase the necessary legal and bank accounting information is exchanged
between, and examined by the two parties, before the final list of candidate
machine and domains is generated. After this the sub-server programs which
represent the interests of the managing center of the application are sent to the
selected machines and domains. These sub-server programs are responsible
for the local monitoring of the current state of resources. They act as agents
during the conclusion of current and future resource transactions between the
application and the owners of the resources. They also manage the execution
of application jobs.

During the execution phase different scenarios and policies are possible in
the interaction with resources. In case a program block is executed in SEGL
batch mode the reservation of resources and the conclusion of a contract is
only carried out once for the whole block. This is done taking into account the
performance required for the execution of all jobs of the block within a certain
time. The resources can be reserved on one or on several machines belonging
to different administrative domains.

In the case of the SEGL pipeline mode for a chain of blocks, provided the
execution of a job requires much time, an appropriate variant would be the
successive reservation of resources and the successive conclusion of contracts
each time the next job has been prepared for execution. This variant has been
described in more detail in [4].



12

As in the course of the execution, the working condition of resources re-
quired is constantly monitored, the decision concerning their reorganization in
the event of a failure is taken on the spot. In such a case the old resource trans-
action is canceled and a new set of resources is generated to start a new job.
Payment of resource transactions is affected accordingly, and the conclusion
and payment of transactions are controlled by the banks of both parties, the
resource owners and the clients. The organization of the interaction between
an application and the Grid in the development phase is shown in Figure 5.

6. Conclusion
We have proposed an extension of the GCM with measurable properties,

to be managed by a combination of framework-provided interfaces and dis-
tributed retrieval services. The provided information about dynamic proper-
ties of component instances over different resources is leveraged in a testing
and execution environment aiming at solving the “inexact time” problem. The
approach allows the introduction into the Grid of traditional and transparent
economic mechanisms for the resource allocation, both for the clients and for
the resource owners.

The introduction into the Grid of an apparatus of management centers en-
ables the realization at a high organizational level of an optimal planning and
efficient control for complex Grid applications generated in different areas of
science, industry and business.

References
[1] Massimo Coppola, Marco Danelutto, Sébastien Lacour, Christian Pérez, Thierry Priol,

Nicola Tonellotto, and Corrado Zoccolo. Towards a common deployment model for grid
systems. In Sergei Gorlatch and Marco Danelutto, editors, CoreGRID Workshop on Inte-
grated research in Grid Computing, pages 31–40, Pisa, Italy, November 2005. CoreGRID,
IST.

[2] Programming Model Institute. Basic features of the grid component model (assessed).
Technical report, CoreGRID, March 2007. D.PM.04.

[3] Currle-Linde, N., Küster, U., Resch, M., Risio, B.: Science Experimental Grid Laboratory
(SEGL) Dynamical Parameter Study in Distributed Systems. ParCo 2005, Malaga, Spain,
2005.

[4] N. Currle-Linde, P. Adamidis, M. Resch, F. Bös, J. Pleiss: GriCoL: A Language for Scien-
tific Grids, Proceedings of the 2nd IEEE International Conference on e-Science and Grid
Computing, pp. 62, Amsterdam, December 2006.

[5] M. Baldanzi, M. Coppola, P. Costa, D. Laforenza, G. Pierre, and L. Ricci Design and
Specification of a Prototype Service/Resource Discovery System XtreemOS Technical De-
liverable D3.2.4, Work Package 3.2, November 2007.

[6] Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object Location and
Routing for Large Scale Peer-to-Peer Systems. In IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), 2001.


