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Abstract

Most of the Peer–to–Peer search techniques proposed in the recent years have fo-
cused on the single-key retrieval. However, similarity search in metric spaces rep-
resents an important paradigm for content-based retrieval in many applications.
In this paper we introduce an extension of the well–known Content–Addressable
Network paradigm to support storage and retrieval of more generic metric space
objects. In particular we address the problem of executing the nearest neighbors
queries, and propose three different algorithms of query execution. An extensive
experimental study on real-life data sets explores the performance characteristics of
the proposed algorithms by showing their advantages and disadvantages.
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1 Introduction

Traditionally, search has been applied to structured (attribute-type) data
yielding records that exactly match the query. A more modern type of search,
similarity search, is used in content-based retrieval for queries involving com-
plex data types such as images, videos, time series, text and DNA sequences.
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Similarity search is based on gradual rather than exact relevance using a dis-
tance metric that together with the database forms a mathematical metric
space. The obvious advantage of similarity search is that the results can be
ranked according to their estimated relevance. However, experience with the
current, mostly centralized, similarity search structures reveals linear scala-
bility with respect to the data search size, which is not acceptable for the
expected dimension of the problem.

Peer–to–Peer (P2P) architectures seem to solve the problem of scalability,
and several scalable and distributed search structures have been proposed
even for the most generic case of metric space searching (see Section 2 for
a survey). They mostly concentrate on the similarity range queries where
the execution algorithms satisfying (1) the autonomy of updates and (2) no
central coordination or flooding strategies, are easier to implement. Since no
bottleneck occurs, the structures are scalable and high performance is achieved
through parallel query execution on individual peers (computer nodes).

Since the number of closest objects is typically easier to specify than the
search range, users prefer nearest neighbors queries. For example, given an
image, it is easier to ask for 10 most similar ones according to an image
proximity criterion than to define the similarity threshold (i.e., the range),
quantified as a real number. However, nearest neighbors algorithms are much
more difficult to implement in P2P environments. The main reason is that
traditional (optimum) approaches are based on a priority queue with a ranking
criterion, which sequentially decides the order of accessed data buckets. In fact,
an existence of centralized entities and sequential processing are completely
in contradiction with decentralization and parallelism objectives of any P2P
search network.

Capitalizing on our previous work of similarity range search through MCAN
(Falchi et al., 2005), in this article we propose and experimentally test several
nearest neighbor search algorithms. We first summarize the necessary back-
ground in Section 2, including the related work. Then in Section 3 we define
the main properties of the MCAN. Section 4 describes alternative strategies
for the nearest neighbor search, while the results of experimental testing are
reported in Section 5. The paper concludes in Section 6.

2 Background

The most fundamental research results to our proposal are the Content-Addressable
Network (CAN) (Ratnasamy et al., 2001a) as the storage infrastructure and
the metric space concept as an abstraction of nearness (Chávez et al., 2001).
In the following, we provide the necessary background and survey relevant
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literature.

2.1 Content–Addressable Network (CAN)

The CAN is a distributed hash table that uses a function for mapping “keys”
onto “values” defining positions of keys in the table. In the CAN, the table is
represented by a finite set of peers. Each peer of the network is dynamically
associated with a partition of an N -dimensional Cartesian space. Usually,
the Cartesian space is an N -torus (i.e., the coordinate space wraps), and is
targeted to store (X,V ) pairs, where X is the “key” and V is the “value”
associated with X. Assuming the “key” as a representation of content, basic
operations of the CAN are insertion, lookup and deletion of respective (X, V )
pairs. Formally, if we refer the domain of X as D, we can define the mapping
function G of the CAN as follows:

G : D → RN , (1)

where RN is an hyper–rectangular region of RN .

The principle of the CAN is to divide the hyper-rectangular region RN in
a finite number of distinct rectangular zones, each of them associated with
exactly one peer of the network. The peers are responsible for storing and
searching of objects covered by their zones. Moreover, each peer is aware of
the peers that cover adjacent zones, i.e., its neighbors.

Given a “key”, the lookup function returns coordinates of the zone into which
the key belongs. This is useful for insertion, deletion, and retrieval purposes.
The search starts from an arbitrary peer of the CAN structure and proceeds by
routing a message towards its destination by using a simple greedy forwarding
to the neighbor with coordinates closest to the destination zone. In general,
if we divide the RN uniformly in h zones, each peer maintains 2N neighbors.
Furthermore, the average routing path length is given by (N/4)h(1/N).

To simplify the discussion in the rest of the paper, we consider any element
(key) of D as object, neglecting the fact that there is always a value V asso-
ciated with it.

2.2 Metric Spaces

The mathematical metric space is a pair M = (D, d), where D is the domain
of objects and d is the distance function d : D × D −→ R able to compute
distances between any pair of objects from D. It is typically assumed that
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the smaller the distance, the closer or more similar the objects are. For any
distinct triple of objects X, Y, Z ∈ D, the distance must satisfy the following
properties:

d(X,X) = 0 reflexivity

d(X,Y ) > 0 strict positiveness

d(X,Y ) = d(Y, X) symmetry

d(X,Y ) ≤ d(X, Z) + d(Z, Y ) triangle inequality

Let F ⊆ D be the data-set. There are two basic types of similarity queries.
The range query retrieves all objects which have a distance from the query
object Q ∈ D at most the specified threshold (range or radius) r:

{∀X ∈ F | d(X, Q) ≤ r}.

The nearest neighbor query returns the object that is the nearest (having
the shortest distance) to the query object Q. We can extend this type of query
to return k nearest objects that form a set K ⊆ F such that |K| = k and:

∀X ∈ K, Y ∈ (F −K) : d(Q,X) ≤ d(Q, Y ).

In (Falchi et al., 2005), we proposed and analyzed a distributed similarity
search structure supporting execution of range queries. In this article, we con-
centrate on the more natural but also more difficult form of similarity queries,
that is the nearest neighbors queries.

2.3 Pivot Mapping and Filtering

In this section, we discuss general pivoting strategies proposed in MCAN for
mapping metric space objects into vectors and for filtering undesirable objects
during search operations.

2.3.1 Mapping

In general, the pivot-based algorithms can be viewed as a mapping F from
the original metric space M = (D, d) to an N -dimensional vector space. The
mapping assumes a set {P1, P2, . . . PN} of objects from D, called pivots, and
for each database object X ∈ K, the mapping determines its characteristic
(feature) vector as:

F (X) : D → RN = (d(X, P1), d(X,P2), . . . d(X, PN)) (2)
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We obtain a new metric space as MN(RN , d∞). Using the original objects, the
distance between objects in this new space can be evaluated as:

d∞(F (X), F (Y )) = maxi |d(X, Pi)− d(Y, Pi)| (3)

Since the triangle inequality for d in the original metric space M holds

∀i d(X,Y ) ≥ |d(X, Pi)− d(Y, Pi)| , (4)

we have

d(X, Y ) ≥ max
i
|d(X,Pi)− d(Y, Pi)| = d∞(F (X), F (Y )). (5)

For any pair of objects, the distance in the derived space MN is never larger
than the distance in the original metric space M. In this way, the mapping is
contractive, i.e., d∞ in MN is a lower bound of the original distance d in M.

2.3.2 Filtering

At the search time, we compute for a query object Q the query feature vec-
tor F (Q) = (d(Q,P1), d(Q, P2), . . . d(Q, PN)). Performing a range query with
radius r, we can avoid the evaluation of d(X, Q) for objects X that satisfy

d∞(F (X), F (Q)) > r. (6)

During the evaluation of k nearest neighbors (kNN) with the temporary result
X1, . . . , Xk, we can avoid the evaluation of d(Q,X) if

d∞(F (X), F (Q)) > d(Xk, Q). (7)

In other words, the object X can be discarded if there exists a pivot Pi such
that

| d(Q,Pi)− d(X, Pi) |> d(Xk, Q). (8)

For more details about the use of pivots in metric spaces, see for example
(Bustos et al., 2001).

2.4 Related Work

Many metric-based indexing principles and index structures have been pro-
posed, focusing on the pruning of search space at query time, and several
comprehensive surveys describe individual approaches (Hjaltason and Samet,
2003; Chávez et al., 2001; Zezula et al., 2006). Most of these indexes are static
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or main memory structures and, therefore, not very suitable for large volumes
of data.

The most significant dynamic and disk-oriented structures are the M-Tree
(Ciaccia et al., 1997) and the D-Index (Dohnal et al., 2003). However, even
with these structures, the similarity search becomes too expensive when the
stored data volume grows, because the search costs increase linearly with
respect to the size of the dataset (Dohnal et al., 2003). This fact calls for an
attempt to exploit a distributed processing.

Restricting to multi-dimensional range and kNN queries in vector spaces, sev-
eral recent works have proposed distributed structures for such tasks. Unfortu-
nately, these structures are often designed for specific applications (for example
spatial data) typically using vectors of low dimensionality. The vector space
approach cannot be applied on many important datasets where similarities are
measured by functions such as the Hausdorff distance, Jaccard’s coefficient,
edit distance, etc.

The MAAN structure (Cai et al., 2003) extends the Chord protocol to support
multi-attribute and range queries by means of uniform locality preserving
hashing. This system expects the exact knowledge of the attribute domain
distributions. Moreover, no experiments on real-life datasets are provided in
the paper. The structure is also not applicable to general metric data and has
not defined any other similarity queries accept for the range search.

Prasanna, Yang and Garcia-Molina (Ganesan et al., 2004) show in the SCRAP
structure a way to adapt kd-trees, which support multi-dimensional range
queries, by exploiting the Chord protocol. Unfortunately, this approach be-
comes inefficient for more than two dimensions. In the same paper, the authors
propose the MURK structure that uses the space-filling curves together with
CAN (improved by skip pointers). Although no real-life dataset experiments
are given, this structure is probably efficient for low-dimensional range queries
in terms of routing costs and number of query-relevant nodes. The efficiency
was not verified on high-dimensional data and cannot be applied to data that
is metric by its nature.

The Mercury (Bharambe et al., 2004) provides a protocol for routing multi-
attribute range-based queries. The efficiency of this protocol is measured in
terms of number of hops and total number of messages for routing of three-
dimensional range queries. Again, the motivation and potential application of
this protocol is less general and slightly different from that addressed by this
paper.

The Skip Graphs (Aspnes and Shah, 2003) and the SkipNet structure (Harvey
et al., 2003) (both improved by (Aspnes et al., 2004)) extend the concept of
Distributed Hash Tables by the principles of locality and load balancing. These
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features give the opportunity to support range queries on one dimension. These
approaches do not aim on more complex similarity queries.

The pSearch approach (Tang et al., 2003) uses two traditional information
retrieval algorithms – vector space model and latent semantic indexing – to
build a decentralized P2P information retrieval system based on the CAN
routing protocol. This concept, defining similarity between a document and a
query by means of their common terms, is only suitable for the text retrieval.

Tanin, Nayar and Samet (Tanin et al., 2005a) introduce a P2P generalization
of a quadtree index. The authors propose range and nearest neighbor algo-
rithms over this structure (Tanin et al., 2005b). Application of this structure
is limited to the spatial domain.

Banaei-Kashani and Shahabi (Banaei-Kashani and Shahabi, 2004) formalize
the problem of vector-based similarity search in P2P Data Networks and pro-
pose the SWAM – a family of small-world based access methods. This concept
provides a general solution for the range and nearest neighbors search in the
vector-based datasets.

Four different distributed structures have been proposed for indexing and sim-
ilarity search in the metric data. The first two, the GHT* (Batko et al., 2005)
and the VPT*, are native metric index structures whereas the other two, our
MCAN (Falchi et al., 2005) and the M-Chord (Novák and Zezula, 2006), trans-
form the metric search issue into a different problem and take advantage of
some well-known solutions. Assuming similarity range queries, the pros and
cons of these four structures are deeply analyzed in (Batko et al., 2006) on
several real-life datasets.

3 Principles of MCAN

The basic idea of our approach is to extend the CAN architecture so that
it can manage objects F of a generic metric space M = (D, d). However,
in metric spaces it is not possible to exploit any knowledge of coordinate
information, and only distances between objects can be computed. To cope
with this problem, we use the pivots paradigm for mapping the objects of the
metric space to an N dimensional vector space. In particular, let P1, . . . , PN

be the pivots selected from the metric data-set, we map an object X ∈ D, by
means of the function F () (introduced in the Section 2.2) defined by Eq. 2.

This virtual coordinate space is used to store the object X in the MCAN
structure, specifically in the peer that owns the zone in which the point F (X)
belongs. Note that, the coordinate space of the MCAN is Cartesian but the
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distance between two objects is evaluated by means of the d∞ distance in-
stead of the canonical Euclidean distance. Routing in MCAN works in the
same manner as for the original CAN structure. An MCAN peer maintains
a coordinate routing table that holds the IP address and virtual coordinate
zones of each of its immediate neighbors in the coordinate space.

3.1 Notation

In this section, we provide necessary definitions needed for a clear presentation
of our results. We use the capital letter for indicating metric space objects
X ∈ D, the overline small letter for denoting the corresponding vector in the
coordinate space x ∈ RN (x = F (X)), and xi for representing the values of
its i-th coordinate. As we have already explained, the mapping in MCAN is
contractive, therefore d∞(x, y) ≤ d(X,Y ) always holds.

We denote a peer of MCAN by the bold symbol n. Each peer n maintains
its region information referred as n.R. Moreover, since the region n.R is an
hyper–rectangle it can be uniquely identified by its vertex closest to the origin,
denoted as n.R.v = (n.R.v1,n.R.v2, . . . ,n.R.vN), and by the lengths of the
relative sides, i.e., n.R.l1,n.R.l2, . . . ,n.R.lN . More precisely, the region n.R is
defined as follows

n.R = {∀x ∈ RN | ∀ i, n.vi ≤ xi < n.vi + n.li}

The peer n also maintains the set of the neighbor peers’ information n.M ⊂
{n1, . . . ,nh}.

Given an object Q ∈ D and a range r, we define 〈q, r〉 as the hypercube in
RN with center q = F (Q) and side 2r.

We can now introduce the formal definition of an N -dimensional MCAN struc-
ture, referred as MCANN , which is composed of a set of h (h > 0) network
peers {n1, . . . ,nh} such as:

(1) ∀ i, j | i 6= j ni.R ∩ nj.R = ∅
(2)

⋃h
i=1 ni.R = RN

(3) ni ∈ nj.M ⇔
∃k | (ni.R.vk + ni.R.lk = nj.R.vk) ∨ (nj.R.vk + nj.R.lk = ni.R.vk),
∀w 6= k [ni.R.vw,ni.R.vw + ni.R.lw[ ∩[nj.R.vw,nj.R.vw + nj.R.lw[ 6= ∅

In the definition, Point 1. states that the zones covered by the network peers
do not overlap. Point 2. states that the union of the zones cover the whole
MCANN space RN (there are no holes). Finally, Point 3. declares the condition
for a network peer ni to be a neighbor of nj (as explained in Section 2).
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3.2 Construction

An important feature of the CAN structure is its capability to dynamically
adapt to data-set size changes. As we will see in the experimental evaluation,
we are interested in preserving the scalability of the MCAN, which means that
we want to maintain a stable the response time of query execution. Since the
number of objects a peer can maintain is limited, when a peer exceeds its limit
it splits by sending a subset of its objects to a free peer that takes responsibility
for a part of the original region. Note that, limiting the number of objects each
peer can maintain, we also limit (reduce) the number of distance computations
a peer have to compute during a query evaluation.

It is important to observe that in some cases we might want to use all the peers
available in the network. Previous work like (Ratnasamy et al., 2001a) have
studied this possibility in a generic CAN structure by allowing a peer to split
even if it does not exceed its storage capacity. Obviously, such methodology
can also be applied in our MCAN. On the other hand, in a P2P environment,
we would like to let the peers the possibility to freely join and leave the
network, without affecting its consistency. As explained in (Ratnasamy et al.,
2001a), this is possible with a CAN, which even provides some fault-tolerance
capabilities (Saia et al., 2002).

Since pivots need be determined before the insertion starts, we assume a char-
acteristic subset of the indexed dataset (about 5000 objects) is known at the
beginning. For selecting the pivots, we use the Incremental Selection algo-
rithm described in (Bustos et al., 2001). This algorithm tries to maximize the
average distance d∞ between two arbitrary objects in the derived space (i.e.,
d∞(F (X), F (Y )) ).

3.3 Insertion

An insert operation can be initiated in any peer of the MCAN. It starts by
mapping the inserted object X to the virtual coordinate space using function
F (), and proceeds by checking if x = F (X) lies in the zone maintained by
the peer n, i.e., x ∈ n.R. If this is not the case, the peer forwards the inser-
tion request. From this point, the insertion proceeds with the greedy routing
algorithm used in standard CAN structures: the inserting peer forwards the
insertion operation to the neighbor peer which is closer to the point x by us-
ing the d∞ distance. The objective is to find the peer n for which x ∈ n.R,
minimizing the number of messages. We refer to this special peer as µ(q) (i.e.,
q ∈ µ(q).R). If x lies in the region maintained by the receiving peer, the ob-
ject X is stored there, otherwise a neighbor peer is selected with the same
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technique and the insert operation is forwarded again until the object X is
inserted.

The peer µ(x), which stores the object X must reply to the peer that started
the insert operation. If the peer µ(x) exceeds its capacity it splits. Eventually,
the object X is inserted in µ(x) or in the new allocated peer.

3.4 Split

In MCAN, we apply a balanced split, i.e., the resulting regions contain the
same number of objects. During this process, the splitting peer just requests
a peer from a free peer list to join the network, and one half of the metric
objects is then reallocated there.

If we define n1 as the splitting peer, n1.R as the old region, n1.R
′ as the new

one, and n2 as the new peer, the split regions must satisfy the following three
equations:

n1.R
′ ∪ n2.R = n1.R ; n1.R

′ ∩ n2.R = ∅
Moreover, to respect these constrains, we create the new two regions by di-
viding the original one along one coordinate of the space. Therefore, the new
regions, n1.R

′ and n2.R, must satisfy the following equations:

n1.R
′.vs = n1.R.vs; n2.R.vs = n1.R

′.vs+n1.R
′.ls; n2.R.ls = n1.R.ls−n1.R

′.ls

Note that that we only have to choose s and n1.R
′.ls. In order to decide s,

for each dimension i we find n1.R
′.li that divide the objects into two halves.

Moreover, we choose to split along the dimension that maximizes the length
of the shortest side.

After the splitting process, the peer n1 sends a message to all its neighbors
n1.M informing them about the update of its region. It also sends information
about the new peer to the neighbors that are also neighbors of n2. The new
peer is informed by n1 about its neighbors n2.M (note that n2.M ⊆ n1.M).
At the end, n1 can discard information about the peers that are not more its
neighbors.

4 Searching for Nearest Neighbors

Whenever we want to search for similar objects using the range search, we
must specify the maximal distance of objects that qualify. However, it can be
very difficult to specify the radius without some knowledge about the data and
the used metric space. For example, the range r = 3 of the edit distance metric
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represents less than four edit operations between the two strings, which has
a clear semantic meaning. However, a distance of two color-histogram vectors
of images is a real number, which cannot be so easily quantified. When a too
small query radius is specified, the result set can even be empty and a new
search with a larger radius is needed to get a result. On the other hand, queries
with too large query radii might be computationally expensive, and the result
sets might contain many not significant objects.

An alternative way to search for similar objects is to use the nearest neighbors
queries. Such queries guarantee the retrieval of k most relevant objects, i.e.,
the set of k objects with the shortest distances to the query object Q. Though
the problem of executing k nearest neighbors queries is not new and many
algorithms have been proposed in the literature, see for example (Hjaltason
and Samet, 1999) for many references and additional readings, the distributed
kNN query processing have not been systematically studied.

4.1 kNN Search in MCAN

In MCAN, we have developed three different strategies to perform kNN queries:
Parallel Execution (PE), Sequential Execution (SE), and Mixed Mode Execu-
tion (MME). Each of these techniques has its advantages and disadvantages
which will be discussed later.

All these three strategies start by locating the peer that contains the query ob-
ject Q. We refer to this special peer as µ(q). The location of µ(q) is performed
exactly the same way as for the insertion operation described in Section 3.3.
The kNN proceeds in the peer µ(q) and finds the k objects nearest to Q. Note
that, we assume that there are at least k objects in µ(q). Because of the split-
ting rule this condition is guaranteed for any k less or equal to half of the peer
capacity. However, in case k is greater than the number of objects contained in
µ(q), the algorithms could be easily modified by forwarding the kNN request
to the most promising peer until the temporary result list contains k objects.
Therefore, the first k objects, i.e., the objects with the shortest distances to
Q, are the candidates for the kNN result. However, there may be other objects
in different peers’ regions that are closer to the query than some of those k
candidates. Nevertheless, since the MCAN space is contractive, these objects
are within the distance to the k-th objects found to the query. In order to
verify if there are other peers involved in the query, µ(q) controls if the hy-
percube 〈q, d(Xk, Q)〉 is completely contained in µ(q).R (where Xk is the k-th
element of the candidate result set of the kNN). If this is true, the kNN search
correctly terminates and the k objects retrieved by µ(q) represent the result
of the kNN query.
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When 〈q, d(Xk, Q)〉 is not completely contained in the region µ(q).R, we have
to check if there are other peers that maintain objects near to Q, respecting
the k objects found in the peer µ(q). From this stage, our three proposed
algorithms start working differently. In particular, the algorithms differ in the
way they propagate the kNN query execution among the involved peers. The
generic behavior of these three approaches can be characterized as follows:

PE All the peers overlapping the hypercube 〈q, d(Xk, Q)〉 are involved in the
kNN operation. The overlapping peers that receive the query first forward
the kNN query and only then they start evaluating the query on their local
data.

SE The µ(q) peer only involves the most near neighbor to Q. This peer first
computes locally the kNN query updating its temporary result list and only
after this involves the next peer most near to Q, is needed.

MME The µ(q) peer involves its neighbors that overlap the hypercube 〈q,
d(Xk, Q)〉. Every peer first computes locally the kNN query updating its
temporary results list and only after this involves its neighbors that overlap
the updated hypercube 〈q, d(Xk, Q)〉.

The query propagation of PE requires an application level multicast. In fact,
starting from µ(q), the query is forwarded to all peers which overlap the hy-
percube 〈q, d(Xk, Q)〉. The multicast algorithm proposed in (Ratnasamy et al.,
2001b) with improvement and corrections described in (Jones et al., 2002) are
used in MCAN in order to reduce the number of replicated messages. The
same algorithm is also used by MME. Actually, in MME the query propagates
as in the PE except for the fact that the hypercube can reduce its size during
the query propagation.

It is important to note that the three algorithms differ not only in the temporal
sequence in which the peers are involved but they also differ in the number
of accessed peers. In fact, the algorithms MME and SE can take advantage of
the partial kNN evaluation for optimizing the query by possibly reducing the
number of peers which the kNN query must be forwarded to. This optimization
cannot be exploited in PE and it is optimum for the SE algorithm. On the
other hand, while the parallelization of the kNN operation is maximum for
the PE, for SE there is no parallelization at all. The third approach (MME)
represents a trade off between PE and SE strategies.

The three algorithms also differ in terms of the total number of distance com-
putations. In fact, during the kNN query forwarding, in all the three ap-
proaches, the peers send along with k and the query object Q a list of the
distances of the current candidate result set of nearest neighbors. More pre-
cisely, a peer n which evaluates the kNN updates the ordered list Lk defined
as:

Lk(i) = d(Xi, Q),
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where the object Xi belongs to the merged result set of the kNN query evalu-
ated both by n and by a certain number of peers (it depends on the algorithm)
which have been involved.

Concerning the PE approach, Lk is sent by the peer µ(q) to all its neighbors
involved in the kNN query (if any). This information is then forwarded (un-
modified) to the other peers involved in the kNN query. Lk together with the
pivot objects can be exploited by a peer in order to reduce the number of
distance computations during the kNN evaluation exploiting Eq. 8. It is clear
that in PE approach Lk cannot be updated because the peers first forward
the query to their neighbors and then they proceed with the query evaluation.
On the contrary, in the MME approach the peers can produce and forward
a more accurate version of Lk with the advantage of being able to reduce
both the number of peers involved and the number of distance computations
with respect to PE. In fact, the number of peers involved in the query and
the number of distance computations both depend on the distance d(Xk, Q)
which typically decrease as the kNN computation proceeds. Finally, the query
evaluation before the forwarding in MME reduces the degree of parallelism.

The SE algorithm takes the maximum advantage of information stored in Lk.
The peers are involved one after the other according to their region distance
from Q, and each peer evaluates the query before forwarding it to the next
peer. For this reason, the peer that receives the forward of the kNN must
know the current list of the peers that could be involved in the query. This
list consists of the set of the not yet involved peers whose distances (of their
regions) from Q are less than or equal to d(Xk, Q) and that are neighbors of
previously involved peers. This is necessary since the neighbor of a peer that
is involved in the kNN needs not be a neighbor of the next peer involved in
the SE sequence. Note that at the end of the kNN computations (performed
by each peer) this list is pruned by removing the peers whose distances from
Q become greater than the actual value of d(Xk, Q). When the list is empty,
the operation terminates and the result is sent to the requesting peer.

In general, we can consider two aspects of the kNN operation costs: its paral-
lelism, which is necessary for the scalability, and its total computational cost.
The PE approach tries to maximize parallelism while the SE tries to minimize
the total computational costs. MME is somewhere in the middle.

In Figures 1, 2, and 3, we sketch the algorithms of the approaches PE, MME,
and SE, respectively. As can be seen in the sketches, MCAN does not make
use of a coordinating peer. Any peer sends its result set to the requesting peer
(i.e., the peer which started the kNN operation). The requesting peer merges
the result lists coming from the involved peers. Note that, in the algorithms we
assume the distances between the results and the query are sent together with
the objects id, even if not reported in the algorithms. In Figure 4, we report

13



receive Q, Lk

dk:=Lk(k); # dk is d(Xk, Q)
N :={∀m ∈ n.M | 〈q, dk〉⋂

m 6= ∅};
if Lk = ∅ then

# the peer is µ(q):
(Lk,A) := searchkNN local(Q,Lk);
for each m ∈ N

send Q, Lk to m;
end for each

else
for each m ∈ N

send Lk to m;
end for each
(Lk,A) := searchkNN local(Q,Lk);

end if
send A to the requesting peer

Figure 1. PE algorithm

receive Q, Lk

(Lk,A) := searchkNN local(Q,Lk);
dk:=Lk(k); # dk is d(Xk, Q)
N :={∀m ∈ n.M | 〈q, dk〉⋂

m 6= ∅};
for each m ∈ N

send Q, Lk to m;
end if
send A to the requesting peer

Figure 2. MME algorithm

the searchkNN local used by the previous algorithms. In (Falchi et al., 2005),
we described how the requesting peer realizes when the range query operation
has terminated. Essentially, we maintain the list of the involved peers, which
is forwarded during the query propagation. Each peer sends this information
to the requester together with its result set. For this reason, any involved peer
must answer to the requester even if its result set is empty.

The application level multicast algorithm is not reported in the algorithm
sketches. Summarizing, PE and MME make use of this algorithm trying to
reduce multiple forwarding of the same request to the same peer. What hap-
pens is that the forward to a peer is performed only if a complicated set of
rules is satisfied. Please see (Jones et al., 2002) for more details.
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receive Q, Lk, N
(Lk,A) := searchkNN local(Q,Lk);
N := N + n.M ; # adds the neighbors to the list
p :=GetNearestPeer(N,Q);
# select peers that will not be involved
T :=GetPeersFartherAwayThan(N,Q, dk);
N := N − T − {p};
send Q, Lk, N to p;
send A to the requesting peer

Figure 3. SE algorithm

function (Lk,A) =searchkNN local(Q,Lk)
note: n is the current peer and P1, . . . , Pw the pivots of the MCAN
T k := 0 # is a temporary list of objects and distances
for i from 1 to k

# for results belonging to other peers we just have distances
T k(i) := (null, Lk(i));

end for
for each X ∈ n # where n is the current peer

# all these distances were pre-evaluated
if | d(Q,Pi)− d(X,Pi) |≤ d(Lk(k), Q) then

# d(X, Q) is not pre-evaluated
if d(X,Q) < d(Lk(k), Q) then
T k := T k − {T k(k)}+ {X, d(X, Q)}; # preserving order

end if
end if

end for each
A := ∅;
for i from 1 to k

Lk(i) := T k(i).distance; # for next peers we need only distances
A := A + T k(i).object; # object can be null

end for
end function

Figure 4. Implementation of the function searchkNN local

5 Performance Evaluation

5.1 Datasets and Measurements

For the experiments, the systems consisted of up to about 300 active peers
(depending on the dataset). The peers had storage capacity of 5,000 objects.
The implementations built up overlay structures over a high-speed LAN com-
municating via the TCP and UDP protocols. Note that, we are not talking
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about simulation but about a real prototype.

It is important to observe that in order to evaluate the scalability performance
of MCAN, in this experimental evaluation we maintain the list of available
inactive peers and employ them during the split of an overloading peer. We
are aware of the fact that maintaining the list of the inactive peers is quite
unusual in a real P2P scenario; however, this approach was adopted just to
study the scalability of MCAN with respect to a growing dataset, assuming
that the greater the dataset the more peers are employed. The objective was
to demonstrate that keeping the average number of objects per peer limited as
the dataset grows, the response time of the system remains bounded, i.e., the
structure scales well. These experiments were performed by inserting objects
in the network in a random order, resulting in a growing number of peers due
to the splitting rule described in Section 2.3.

To conduct this experimental evaluation, we selected the following significantly
different real-life datasets:

VEC 45-dimensional vectors of extracted color image features. The similarity
function d for comparing the vectors is a quadratic-form distance (Seidl and
Kriegel, 1997). The distribution of the dataset is quite uniform and such a
high-dimensional dataspace is extremely sparse.

TTL titles and subtitles of Czech books and periodicals collected from several
academic libraries. These strings are of lengths from 3 to 200 characters
and are compared by the edit distance (Levenshtein, 1965) on the level of
individual characters. The distance distribution of this dataset is skewed.

DNA protein symbol sequences of length sixteen. The sequences are com-
pared by a weighted edit distance according to the Needleman-Wunsch al-
gorithm (Needleman and Wunsch, 1970). This distance function has a very
limited domain of possible values – the returned values are integers between
0 and 100.

Observe that none of these datasets can be efficiently indexed and searched by
a standard vector data structure. In the reported experiments, we used three
pivots for building MCAN structure (i.e., MCAN3) and 16 pivots for filtering.
In (Falchi et al., 2005), we tried several different dimensions of the MCAN
space and we found that N = 3 is an optimal solution. For more details about
how the number of pivots affects the performance of the filtering please refer
to (Bustos et al., 2001).

All the presented performance characteristics of query processing have been
taken as an average over 100 queries by randomly choosing query objects not
belonging to the dataset.

It is important to remark that, in a real scenario as the one we are evaluating,
the calculation of the distance function d has typically a high computational

16



cost. Therefore, the main objective of a metric-based data structures is to
reduce the number of distance computations at query time. The number of
distance computations is typically considered an indicator of the structure effi-
ciency. In practice, we assume that the costs of other operations are negligible
compared to the distance evaluation time.

Concerning the distributed environment, we use the following two character-
istics to measure the computational costs of a query:

• total distance computations – the sum of the number of distance computa-
tions on all employed peers,

• parallel distance computations – the maximal number of distance computa-
tions performed in a sequential manner during the parallel query processing.

Another indicator that we monitored is the percentage of peers (with respect to
the total number) that were involved by the query processing and the number
of candidate results.

In order to better interpret the performance figures of the three kNN algo-
rithms presented above, we compare the results of the experiments with an
ideal kNN algorithm, designated RQ, which is equivalent to a single range
query. RQ works as follows: once we have obtained the result set of the kNN
(evaluated using one of the three algorithms), we run a range query with ra-
dius d(Xk, Q). The performance figures of RQ can be considered as the lower
bounds (optimal) for the other kNN algorithms.

5.2 Number of peers involved in query execution

Figure 5 shows the average percentage of involved peers during the evaluation
of kNN for increasing values of k and for the entire dataset. The performance
figures as function of k are only reported for the VEC dataset (1 million objects
and 260 peers), since the results of the other two datasets are very similar.

From these experiments, we can see that SE is not only the best algorithm in
terms of number of involved peers but it is also optimum. In fact, its results
are the same as those we obtained with RQ. PE involves much more peers and
MME is not far from PE. Note also that, the number of peers grows almost
linearly with k. Moreover, we can observe that for bigger k MME tends to be
slightly better than PE. In fact, the more are the peers involved, the more
is the relevance of intermediate results updated during the forwarding of the
operation.

Figures 6, 7, and 8 show the average percentage of involved peers as the dataset
grows. For all algorithms, the percentage of involved peers decreases with the
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Figure 5. Percentage of involved peers
for various k for VEC dataset.
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Figure 6. Percentage of involved peers
for growing VEC dataset (k = 10).
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Figure 7. Percentage of involved peers
for growing DNA dataset (k = 10).
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Figure 8. Percentage of involved peers
for growing TTL dataset (k = 10).

number of objects of the dataset. This can be explained by the fact that in
general as the dataset grows the distance of the k-th object to the query Q
decreases. Furthermore, as the number of peers increases, the average volume
of zones maintained by the peers decreases.

Regarding the differences between the three datasets’ results, we can see that
the DNA dataset is much more difficult to index than the VEC one. The most
important reason is that the DNA metric function has a very limited number
of discrete distance values. The TTL dataset is in the middle but not far from
the DNA dataset. In fact, the TTL and DNA distance functions are not much
different even if the object are, in their meaning, completely different.

5.3 Total number of distance computations

In Figure 9, we report the total number of distance computations during the
kNN operation for the entire dataset and various k. Even though not opti-
mum, SE is very near to the results obtained with RQ. In fact, it was also the
algorithm that involved less peers. The price of this good result is the serializa-
tion of the operation which we will study more in details later on. Regarding
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Figure 9. Total number of distance
computations for various k for VEC
dataset.
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Figure 10. Total number of dis-
tance computations for growing VEC
dataset (K=10).
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Figure 11. Total number of dis-
tance computations for growing DNA
dataset (K=10).
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Figure 12. Total number of dis-
tance computations for growing TTL
dataset (K=10).

MME, we can see that performing kNN computations before forwarding the
query significantly reduces the total number of distance computations.

Figures 10, 11, and 12 show the total number of distance computations as
the dataset size grows. Note that, in all the algorithms the total number of
distance computations grows when we increase the dataset size. However, the
most important property that we should expect from a P2P data structure
such as the MCAN is its scalability of the search operations, which is achieved
through parallelism.

5.4 Parallel cost of kNN

In Figure 13, we report the parallel distance computations for increasing values
of k. As explained above, this performance figure can be considered as the
parallel cost of the operation. From this experiment, it becomes clear what
is the price the SE algorithm has to pay to obtain better results in terms
of percentage of involved peers and total number of distance computations

19



– the cost of the operation grows quickly with k. Furthermore, from Figures
14, 15, and 16 we can see that the parallel cost of SE grows with the dataset
size, which means that the algorithm does not scale well. On the contrary, PE
scales well and it is very near to the optimum RQ. Note that, the parallel cost
of RQ does not grow with the dataset size, because as the number of objects
increases the corresponding range radius d(Xk, Q) becomes smaller. Finally,
MME, which gave better results than PE in terms of the number of involved
peers and total number of distance computations, does not scale as well as the
PE, but it is not very far from it.

Considering the parallel cost as the response time of the network it must be
noticed that, because the results are sent by each involved peer directly to the
requester, there are some preliminarily results before the kNN operation is
completed. Regarding SE and MME, the order in which the peers are visited
guarantees that good results will be available to the requester before the end
of the operation. However, in the PE algorithm the results are supposing to
arrive sooner and almost at the same time because of the parallelism (except
for the µ(q) peer), although the use of preliminarily results by the requester
can make MME and SE more appealing in some scenarios.

5.5 Candidate results

In all the algorithms, as the kNN evaluation proceeds, the peers send the
partial results of their local kNN evaluation to the requesting peer µ(q) (which
is the peer which started the kNN operation). We call these partial results
candidate results.

Since the user needs an ordered list of k results, µ(q) performs also the task
of merging, sorting, and pruning, if necessary, the results beyond the k-th
received from the peers involved in the kNN. In Figure 17, we report the
number of candidate results received for the three algorithms as the dataset
grows. The SE algorithm is near the optimum. In fact, it is very near to RQ
which, by definition, exactly retrieves k results (it can retrieve more results
just in case there are more objects at the same distance of the k-th result). The
PE algorithm is the worst and it does not scale well (except for the DNA and
TTL datasets). On the contrary, MME is between the other two algorithms
and its behavior seems growing sub-linearly.

Notice that, generally, the metric distance evaluation in the metric space is
very expensive and the cost of the operations performed by the requester is
then negligible. In fact, it does not have to evaluate any distance (we assumed
that the distance between the objects and the query are sent together with
the results). With these experiments we just wanted to show that there could
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Figure 13. Parallel distance computa-
tions for various k for VEC dataset.
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Figure 14. Parallel distance com-
putations for growing VEC dataset
(K=10).
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Figure 15. Parallel distance com-
putations for growing DNA dataset
(K=10).
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Figure 16. Parallel distance com-
putations for growing TTL dataset
(K=10).

be problems of scalability in terms of candidate results for the PE algorithm.

6 Conclusions and future work

Many P2P applications need processing complex data for which there is no or-
dering and only pair-wise distances (dissimilarities) can be decided by specific
functions. We have considered the case where the dataset and the function
form the metric space, so our approach offers a high extensibility – many dif-
ferent forms of data and queries can be processed with a single index structure.
We have concentrated on a much needed and probably the most complex form
of queries: the nearest neighbors queries.

We have proposed three strategies for such query execution, using the MCAN
similarity search structure, originally developed for processing range queries.
Extensive performance evaluation on real-life data processed by our experi-
mental system reveals the following pros and cons of individual approaches.
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Figure 17. Average number of candidate results for growing dataset (K=10).

The experiments revealed that the SE approach is not suitable for scenarios
where scalability of the response time is critical. In fact, as Figures 14, 15,
and 16 demonstrate, the parallel distance computations grows quickly (and
linearly) as the size of the dataset increases. Instead, MME and especially
PE, exhibit a parallel distance computation much more bounded. Because of
the fact that P2P architectures are generally used to solve the problem of
scalability we think SE is, in most of the case, impracticable.

In terms of total computational cost (Figures 10, 11, and 12) MME performs
better than PE, even if not so well as the SE. Consuming less resources MME
should leave more space for parallelism between independent operations. To
decide which is the best choice between MME and PE, we can also take into
account the number of candidate results. As experiments of Figures 17 show,
MME scale better than PE.

From these observations, we think that the MME approach is the best choice in
general. It responds well to the demand of the scalability in terms of response
time and consumes less resources than PE.

An interesting direction of investigation is to generalize the kNN algorithms by
parameterizing their behavior. Let α, β ∈ [0, 1] be the parameters for this new
algorithm and β > α. A peer performing the kNN first involves its neighbors
whose regions overlaps 〈q, αd(Xk, Q)〉. After the local execution of the kNN
query the peer involves both the not yet involved neighbor that is closest to
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the query q and those neighbors whose regions overlaps 〈q, βd(Xk, Q)〉. Note
that for SE α, β = 0, for MME α = 0, β = 1, for PE α = 1 and β is useless
because all the neighbors are involved before the local execution of the kNN.

Our future work will concentrate on inter–query parallelism and approximate
range and nearest neighbors algorithms, which would trade some imprecision
in search results with additional improvement of performance.
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