
Boosting multi-label hierarchical text categorization

Andrea Esuli Æ Tiziano Fagni Æ Fabrizio Sebastiani

Received: 19 January 2008 / Accepted: 22 January 2008
� Springer Science+Business Media, LLC 2008

Abstract Hierarchical Text Categorization (HTC) is the task of generating (usually by

means of supervised learning algorithms) text classifiers that operate on hierarchically

structured classification schemes. Notwithstanding the fact that most large-sized classifica-

tion schemes for text have a hierarchical structure, so far the attention of text classification

researchers has mostly focused on algorithms for ‘‘flat’’ classification, i.e. algorithms that

operate on non-hierarchical classification schemes. These algorithms, once applied to a

hierarchical classification problem, are not capable of taking advantage of the information

inherent in the class hierarchy, and may thus be suboptimal, in terms of efficiency and/or

effectiveness. In this paper we propose TREEBOOST.MH, a multi-label HTC algorithm con-

sisting of a hierarchical variant of ADABOOST.MH, a very well-known member of the family of

‘‘boosting’’ learning algorithms. TREEBOOST.MH embodies several intuitions that had arisen

before within HTC: e.g. the intuitions that both feature selection and the selection of negative

training examples should be performed ‘‘locally’’, i.e. by paying attention to the topology of

the classification scheme. It also embodies the novel intuition that the weight distribution that

boosting algorithms update at every boosting round should likewise be updated ‘‘locally’’. All

these intuitions are embodied within TREEBOOST.MH in an elegant and simple way, i.e. by

defining TREEBOOST.MH as a recursive algorithm that uses ADABOOST.MH as its base

step, and that recurs over the tree structure. We present the results of experimenting

TREEBOOST.MH on three HTC benchmarks, and discuss analytically its computational cost.

Keywords Hierarchical text classification � Boosting

1 Introduction

Hierarchical text categorization (HTC) is the task of generating (usually by means of

supervised learning algorithms) text classifiers that operate on classification schemes

A. Esuli � T. Fagni � F. Sebastiani (&)
Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche,
Via Giuseppe Moruzzi, 1, 56124 Pisa, Italy
e-mail: fabrizio.sebastiani@isti.cnr.it

123

Inf Retrieval
DOI 10.1007/s10791-008-9047-y

endowed with a hierarchical structure. Notwithstanding the fact that most large-sized

classification schemes for text (e.g. the ACM Classification Scheme1 the MESH thesaurus2

the NASA thesaurus3) indeed have a hierarchical structure, so far the attention of text

classification (TC) researchers has mostly focused on algorithms for ‘‘flat’’ classification,

i.e. algorithms that operate on non-hierarchical classification schemes.4 These algorithms,

once applied to a hierarchical classification problem, are not capable of taking advantage of

the information inherent in the class hierarchy, and may thus be suboptimal, in terms of

efficiency and/or effectiveness. On the contrary, many researchers have argued that by

leveraging on the hierarchical structure of the classification scheme, heuristics of various

kinds can be brought to bear that make the classifier more efficient and/or more effective.

An important intuition is that, by viewing classification as the identification of the paths

that, starting from the root, funnel the document down to the subtrees where it belongs (in

‘‘Pachinko machine’’ style), entire other subtrees can be pruned from consideration. That

is, when the classifier corresponding to an internal node outputs a negative response, the

classifiers corresponding to its descendant nodes need not be invoked any more, thus

reducing the computational cost of classifier invocation exponentially (Chakrabarti et al.

1998; Koller and Sahami 1997).

A second important intuition is that, by training a binary classifier for an internal node

category on a well-selected subset of training examples of local interest only, the resulting

classifier may be made more attuned to recognizing the subtle distinctions between doc-

uments belonging to that node and those belonging to neighbouring nodes (Ng et al. 1997;

Wiener et al. 1995). While this technique promises to bring about more effective classi-

fiers, it is also going to improve efficiency, since a smaller set of examples is used in

training, thereby making classifier learning speedier.

Many of these intuitions have been used in close association with a specific learning

algorithm; the most popular choices in this respect have been naı̈ve Bayesian methods

(Chakrabarti et al. 1998; Gaussier et al. 2002; Koller and Sahami 1997; McCallum et al.

1998; Toutanova et al. 2001; Vinokourov and Girolami 2002), neural networks (Ruiz and

Srinivasan 2002; Weigend et al. 1999; Wiener et al. 1995), support vector machines (Cai

and Hofmann 2004; Dumais and Chen 2000; Liu et al. 2005; Yang et al. 2003), and

example-based classifiers (Yang et al. 2003).

Within this literature, the absence of ‘‘boosting’’ methods is conspicuous: to the best of

our knowledge, we do not know of any HTC method belonging to the boosting family.

This is somehow surprising, (i) because of the high applicative interest of HTC, (ii)

because boosting algorithms are well-known for their interesting theoretical properties and

for their high accuracy, and (iii) because, given their relatively high computational cost,

they would definitely benefit by the added efficiency that consideration of the hierarchical

structure can bring about.

In this paper we try to fill this gap by proposing TREEBOOST.MH, a multi-label HTC

algorithm that consists of a hierarchical variant of ADABOOST.MH, the most important

member of the family of boosting algorithms; here, multi-label (ML) means that a docu-

ment can belong to zero, one, or several categories at the same time. TREEBOOST.MH

1 http://info.acm.org/class/1998/ccs98.html
2 http://www.nlm.nih.gov/mesh/meshhome.html
3 http://www.sti.nasa.gov/nasa-thesaurus.html
4 This is the result of the fact that the very first publicly available TC benchmarks (e.g. the REUTERS-21578
benchmark—see Sect. 5.1) had no hierarchical structure; the TC literature ended up in overfitting, at least to
some degree, the available benchmarks.

Inf Retrieval

123

embodies several intuitions that had arisen before within HTC: e.g. the intuitions that both

feature selection and the selection of negative training examples should be performed

‘‘locally’’, i.e. by paying attention to the topology of the classification scheme. TREE-

BOOST.MH also incorporates the novel intuition that the weight distribution that boosting

algorithms update at every boosting round should likewise be updated ‘‘locally’’. All these

intuitions are embodied within TREEBOOST.MH in an elegant and simple way, i.e. by

defining TREEBOOST.MH as a recursive algorithm that uses ADABOOST.MH as its base step,

and that recurs over the tree structure.

The paper is structured as follows. In Sect. 2 we give a concise description of boosting

and the ADABOOST.MH algorithm. Section 3 describes TREEBOOST.MH, our hierarchical

version of ADABOOST.MH. Section 4 goes the analytical way, comparing the computational

costs of ADABOOST.MH and TREEBOOST.MH, and showing that the latter obtains expo-

nential savings over the former both at classifier-learning time and at classification time. In

Sect. 5 we present experiments comparing ADABOOST.MH and TREEBOOST.MH on three

well-known HTC benchmarks, including a hierarchical version of the REUTERS-21578

benchmark defined in Toutanova et al. (2001). Section 6 discusses related work, pointing

out the differences between existing approaches and ours. Section 7 concludes.

2 An introduction to boosting and AdaBoost.MH

ADABOOST.MH (Schapire and Singer 2000) (see Fig. 1) is a boosting algorithm, i.e. an

algorithm that generates a highly accurate classifier Û (also called final hypothesis) by

combining a set of moderately accurate classifiers Û1; . . .; ÛS (also called weak hypothe-
ses).5 The input to the algorithm is a training set Tr ¼ fhd1;C1i; . . .; hdg;Cgig; where

Ci � C is the set of categories to each of which di belongs. For each cj [C, by Tr+(cj) we

denote the set of the positive training examples of cj. Furthermore, for each cj [C we

define the set Tr-(cj) of its negative training examples simply as the set difference between

Tr and Tr+(cj).

ADABOOST.MH works by iteratively calling a weak learner to generate a sequence

Û1; . . .; ÛS of weak hypotheses; at the end of the iteration the final hypothesis Û is obtained

as a sum Û ¼
PS

s¼1 Ûs of these weak hypotheses. A weak hypothesis is a function Ûs :
D� C ! R such that signðÛsðdi; cjÞÞ can be interpreted as the prediction of Ûs on whether

di belongs to cj (i.e. Ûsðdi; cjÞ[0 means that di is believed to belong to cj while

Ûsðdi; cjÞ\ 0 means it is believed not to belong to cj), and the absolute value of Ûsðdi; cjÞ
(indicated by jÛsðdi; cjÞj) can be interpreted as the strength of this belief.

At each iteration s ADABOOST.MH tests the effectiveness of the newly generated weak

hypothesis Ûs on the training set and uses the results to update a distribution Ds of weights

on the training pairs hdi; cji: The updated weight Ds+1(di, cj) is meant to capture how

effective Û1; . . .; Ûs have been in correctly predicting whether the training document di

belongs to category cj or not. By passing (together with the training set Tr) this distribution

to the weak learner, ADABOOST.MH asks this latter to generate a new weak hypothesis Ûsþ1

that concentrates on the pairs with the highest weight, i.e. those that had proven harder to

classify for the previous weak hypotheses.

The initial distribution D1 is uniform. At each iteration s all the weights Ds(di, cj) are

updated to Ds+1(di, cj) according to the rule

5 Consistently with most mathematical literature we use the caret symbol (̂) to indicate estimation. In fact, a
classifier Û can be understood as an estimation, or approximation, of an unknown ‘‘target function’’ U.

Inf Retrieval

123

Dsþ1ðdi; cjÞ ¼
Dsðdi; cjÞ expð�Uðdi; cjÞ � Ûsðdi; cjÞÞ

Zs
ð1Þ

where the target function Uðdi; cjÞ is defined to be 1 if di [cj and -1 otherwise, and

Zs ¼
Xg

i¼1

Xm

j¼1

Dsðdi; cjÞ expð�Uðdi; cjÞ � Ûsðdi; cjÞÞ ð2Þ

is a normalization factor chosen so that Ds+1 is in fact a distribution, i.e. so thatPg
i¼1

Pm
j¼1 Dsþ1ðdi; cjÞ ¼ 1: Equation 1 is such that the weight assigned to a pair hdi; cji

misclassified by Ûs is increased, as for such a pair U(di, cj) and Ûsðdi; cjÞ have different

signs and the factor Uðdi; cjÞ � Ûsðdi; cjÞ is thus negative; likewise, the weight assigned to a

pair correctly classified by Ûs is decreased. Weights are increased or decreased to a larger

extent if the absolute value of Ûsðdi; cjÞ is higher, to reflect the fact that classification

decisions taken with high confidence must have a higher impact in the process.

2.1 Choosing the weak hypotheses

In ADABOOST.MH each document di is represented as a vector di ¼ hw1i; . . .;wrii of r
binary weights, where wki = 1 (resp. wki = 0) is normally interpreted to mean that term tk
occurs (resp. does not occur) in di; accordingly, T = {t1,…,tr} is the set of terms that occur

in at least one document in Tr. Of course, ADABOOST.MH does not make any assumption on

Fig. 1 The ADABOOST.MH algorithm

Inf Retrieval

123

what constitutes a term; single words, stems of words, phrases, or character n-grams are all

plausible choices.

In ADABOOST.MH the weak hypotheses generated by the weak learner at iteration s are

decision stumps of the form

Ûsðdi; cjÞ ¼
a0j if wki ¼ 0

a1j if wki ¼ 1

�

ð3Þ

where tk (called the pivot term of Ûs) belongs to T, and a0j and a1j are real-valued constants.

The choices for tk, a0j and a1j are in general different for each iteration s, and are made

according to an error-minimization policy described in the rest of this section.

Schapire and Singer (1999) have proven that the Hamming loss of the final hypothesis

Û; defined as the percentage of pairs hdi; cji for which signðUðdi; cjÞÞ 6¼ signðÛðdi; cjÞÞ; is

at most Ps=1
S Zs. The Hamming loss of a hypothesis is a measure of its classification

(in)effectiveness; therefore, a reasonable (although suboptimal) way to maximize the

effectiveness of the final hypothesis Û is to ‘‘greedily’’ choose each weak hypothesis Ûs

(and thus its parameters tk, a0j and a1j) in such a way as to minimize the normalization

factor Zs.

Schapire and Singer (2000) define three different variants of ADABOOST.MH, corre-

sponding to three different methods for making these choices:

1. ADABOOST.MH with real-valued predictions (here nicknamed AdaBoost.MH
R);

2. ADABOOST.MH with real-valued predictions and abstaining (AdaBoost.MH
RA);

3. ADABOOST.MH with discrete-valued predictions (AdaBoost.MH
D).

In this paper we concentrate on AdaBoost.MH
R; since it is the one that, in the

experiments of Schapire and Singer (2000), has been experimented most thoroughly and

has given the best results; however, everything we say in this paper about AdaBoost.MH
R

straightforwardly applies to AdaBoost.MH
RA and AdaBoost.MH

D:
At iteration s, AdaBoost.MH

R (from now on simply called ADABOOST.MH) chooses a

weak hypothesis of the form described in Eq. 3 by the following algorithm.

Algorithm 1 (The ADABOOST.MH weak learner)

1. For each term tk [{t1,…,tr} select, among all weak hypotheses Û that have tk as the

‘‘pivot term’’, the one (indicated by ÛbestðkÞ) for which Zs is minimum.

2. Among all the hypotheses Ûbestð1Þ; . . .; ÛbestðrÞ selected for the r different terms in Step

1, select the one (indicated by Ûs) for which Zs is minimum.

Step 1 is clearly the key step, since there are a non-enumerable set of weak hypotheses

with tk as the pivot. Schapire and Singer (1999) have proven that, given term tk and

category cj,

ÛbestðkÞðdi; cjÞ ¼
1
2

ln
W0jk
þ1

W0jk
�1

if wki ¼ 0

1
2

ln
W1jk
þ1

W1jk
�1

if wki ¼ 1

8
><

>:
ð4Þ

where

Wxjk
b ¼

Xg

i¼1

Dsðdi; cjÞ � ½½wki ¼ x�� � ½½Uðdi; cjÞ ¼ b�� ð5Þ

Inf Retrieval

123

for b [{1, -1}, x [{0, 1}, j [{1,…,m} and k [{1,…,r}, and where [[p]] indicates the

characteristic function of predicate p (i.e. the function that returns 1 if p is true and 0

otherwise). For term tk and for these values of axj we obtain

Zs ¼ 2
Xm

j¼1

X1

x¼0

ðWxjk
þ1Wxjk

�1Þ
1
2 ð6Þ

Choosing 1
2

ln
Wxjk
þ1

Wxjk
�1

as the value for axj has the effect that Ûsðdi; cjÞ outputs a positive real

value in the two following cases:

1. wki = 1 (i.e. tk occurs in di) and the majority of the training documents in which tk
occurs belong to cj;

2. wki = 0 (i.e. tk does not occur in di) and the majority of the training documents in

which tk does not occur belong to cj.

In all the other cases Ûs outputs a negative real value. Here, ‘‘majority’’ has to be

understood in a weighted sense, i.e. by bringing to bear the weight Ds(di, cj) associated to

the training pair hdi; cji: The larger this majority is, the higher the absolute value of

Ûsðdi; cjÞ is; this means that this absolute value represents a measure of the confidence that

Ûs has in its own prediction (Schapire and Singer 1999).

In practice, the value axj ¼ 1
2

ln
Wxjk
þ1
þ�

Wxjk
�1
þ� is chosen in place of axj ¼ 1

2
ln

Wxjk
þ1

Wxjk
�1

; since this latter

may produce outputs with a very large or infinite absolute value when the denominator is

very small or zero.6

The output of the final hypothesis is the value

Ûðdi; cjÞ ¼
XS

s¼1

Ûsðdi; cjÞ ð7Þ

obtained by summing the outputs of the weak hypotheses.

2.2 Implementing AdaBoost.MH

Following Sebastiani et al. (2000), in our implementation of ADABOOST.MH we have

further optimized the final hypothesis Ûðdi; cjÞ ¼
PS

s¼1 Ûsðdi; cjÞ by ‘‘combining’’ the

weak hypotheses Û1; . . .; ÛS according to their pivot term tk. In fact, note that if

fÛ1; . . .; ÛSg contains a subset fÛðkÞ1 ; . . .; ÛðkÞqðkÞg of weak hypotheses that all hinge on the

same term tk and are of the form

ÛðkÞr ðdi; cjÞ ¼
ar

0j if wki ¼ 0

ar
1j if wki ¼ 1

�

ð8Þ

for r = 1,…,q(k), the collective contribution of ÛðkÞ1 ; . . .; ÛðkÞqðkÞ to the final hypothesis is the

same as that of a ‘‘combined hypothesis’’

6 In Schapire and Singer (2000) the value for e is chosen by 3-fold cross validation on the training set, but
this procedure is reported to give only marginal improvements with respect to the default choice of � ¼ 1

gm ;
which we adopt in this work.

Inf Retrieval

123

ÛðkÞðdi; cjÞ ¼

PqðkÞ

r¼1

ar
0j if wki ¼ 0

PqðkÞ

r¼1

ar
1j if wki ¼ 1

8
>>><

>>>:

ð9Þ

In the implementation we have thus replaced
PS

s¼1 Ûsðdi; cjÞ with
PD

k¼1 ÛðkÞðdi; cjÞ; where

D is the number of different terms that act as pivot for the weak hypotheses in

fÛ1; . . .; ÛSg:
This modification brings about a considerable efficiency gain in the application of the

final hypothesis to a test example. For instance, the final hypothesis we obtained on

REUTERS-21578 with ADABOOST.MH when S = 1,000 consists of 1,000 weak hypotheses,

but the number of different pivot terms is only 766. The reduction in the size of the final

hypothesis which derives from this modification is usually larger when high reduction

factors have been applied in a feature selection phase, since in this case the number of

different terms that can be chosen as the pivot is smaller. A large reduction is also

obtained when the total number of iterations S is high, since in this case the terms chosen

as pivot in the last iterations tend to be ones that have been chosen already in previous

iterations.

In this work we further implement two important optimizations for reducing classifi-

cation time.

The first optimization consists in building the vectorial representations di of the test

documents after the final hypothesis Û ¼
PD

k¼1 ÛðkÞ has been built, so that only the jDj
features that act as pivot for some weak hypothesis in Û are actually included in the

vectorial representations di of the test documents; the other terms can be discarded, since

they play no role in the classification. Since it is usually the case that jDj� r; this brings

about a substantial reduction in the space occupied by the di’s. For instance, the size of the

vectors that we have obtained by this method on RCV1-V2 with ADABOOST.MH for

S = 1,000 is 950, while the length r of the original vectors (see Sect. 5.3) was equal to

55,051.

The second optimization consists in sorting the final hypothesis Û (here viewed for

convenience as a sequence Ûð1Þ; . . .; ÛðDÞ of weak hypotheses) so that the terms that act as

pivot appear in the same order as they appear in the vectorial representations of the

documents. As a consequence, we can indeed view the final hypothesis as consisting of

the 2m vectors a0j ¼ ha1
0j; . . .; aD

0ji and a1j ¼ ha1
1j; . . .; aD

1ji (for j = 1,…,m) that contain the

constants output by the compressed hypotheses of Eq. 9. Classification thus amounts to

computing

Ûðdi; cjÞ ¼
XD

k¼1

wkia
k
1j þ

XD

k¼1

ð1� wkiÞak
0j

Since one of wki and (1 - wki) is always 0, this amounts to a sum of D real numbers. This

is extremely cheap, also due to the fact that D is typically small. Note for example that

performing classification with any linear classifier (such as those generated by support

vector machines) requires a dot product of length r, which is much more expensive than a

sum of D� r reals. This makes our system even more classification-time efficient than

other leading-edge technologies.

Inf Retrieval

123

3 A hierarchical version of AdaBoost.MH for multi-label TC

In this section we describe a version of ADABOOST.MH, called TREEBOOST.MH, that is

explicitly designed to work on tree-structured sets of categories, and is capable of lever-

aging on the information inherent in this structure.

3.1 Notation, definitions, and the semantics of hierarchies

Before discussing the intuitions on which TREEBOOST.MH is based, let us first fix some

notation and definitions. Let C be a tree-structured set of categories, and let r be its root

category. For each category cj [C, we will use the following abbreviations:

Symbol Meaning

" ðcjÞ The parent category of cj

ðcjÞ The set of children categories of cj

* ðcjÞ The set of ancestor categories of cj

+ ðcjÞ The set of descendant categories of cj

$ ðcjÞ The set of sibling categories of cj

When discussing an HTC application it is always important to specify what the

semantics of the hierarchy is, i.e., to specify the semantic constraints that a supposedly

perfect classifier would enforce; which constraints are in place has important consequences

on which algorithms we might want to apply to this task, and, more importantly, on how

we should evaluate these algorithms.

For instance, one should specify whether a document can belong to zero, one, or several

categories in C (which is indeed the case of this paper) or whether it always belongs to one

and only one category in C.

No less importantly, one should specify whether it is the case that

1. a document d that is a positive example of a category cj is also a positive example of

all its ancestor categories * ðcjÞ: We assume this to be the case. We say that, for the

categories in * ðcjÞ; d is a bubbled-up positive example (in the sense that it has

bubbled up to cj from somewhere down below).

2. a document d can in principle be a positive example of an internal node category cj and

at the same time not be a positive example of any of its descendant categories + ðcjÞ:
We assume this to be the case. We say that d is an own positive example of cj.

Assumption 2 is indeed useful for tackling datasets, such as RCV1-V2 (see Sect. 5.1) in

which documents with these characteristics do occur, while at the same time not preventing

us to deal with datasets with the opposite characteristics. A consequence of these two

assumptions is that

TrþðcjÞ �
[

c2+ðcjÞ
TrþðcÞ ð10Þ

i.e., the set Tr+(cj) of the positive training examples of a nonleaf category cj is a (possibly

proper) superset of the union of the sets of positive training examples of all its descendant

(leaf) categories.

Inf Retrieval

123

3.2 The rationale

TREEBOOST.MH (which is fully illustrated in Fig. 2) embodies several intuitions that had

arisen before within HTC.

The first, fairly obvious intuition (which lies at the basis of practically all HTC algo-

rithms proposed in the literature) is that, in a hierarchical context, the classification of a

document di is to be seen as a descent through the hierarchy, from the root to the (internal

or leaf node) categories where di is deemed to belong. In ML classification this means that

each nonroot category cj has an associated binary classifier Ûj which acts as a ‘‘filter’’ that

prevents unsuitable documents to percolate to lower levels. All test documents that a

classifier Ûj deems to belong to cj are passed as input to all the binary classifiers corre-

sponding to the categories in # ðcjÞ; while the documents that Ûj deems not to belong to cj

are ‘‘blocked’’ and analysed no further. Note that it may well be the case that a document di

is deemed to belong to cj by Ûj and is then rejected by all the binary classifiers corre-

sponding to the categories in # ðcjÞ; this is indeed consistent with assumption (b) above. In

the end, each document may thus reach zero, one, or several (leaf or internal node)

categories, and is thus classified under them.

The second intuition is that the training of Ûj should be performed ‘‘locally’’, i.e. by

paying attention to the topology of the classification scheme. To see this note that, during

classification, if the classifier for " ðcjÞ has performed reasonably well, Ûj will only (or

mostly) be presented with documents that belong to the subtree rooted in " ðcjÞ; i.e. with

documents that belong to cj and/or to some of the categories in $ ðcjÞ: As a result, the

training of Ûj should be performed by using, as negative training examples, the positive

training examples of " ðcjÞ; with the obvious exception of the documents that are also

positive training examples of cj. In particular, training documents that only belong to

categories other than those in + ð" ðcjÞÞ need not be used. The rationale of this choice is

Fig. 2 The TREEBOOST.MH algorithm

Inf Retrieval

123

that the negative training examples thus selected are ‘‘quasi-positive’’ examples of cj

(Schapire et al. 1998), i.e. are the negative examples that are closest to the boundary

between the positive and the negative region of cj (a notion akin to that of ‘‘support

vectors’’ in SVMs), and are thus the most informative negative examples that can be used

in training. This is beneficial also from the standpoint of (both training and classification

time) efficiency, since fewer training examples and fewer features are involved. In a

similar form, this intuition (which we discuss at large in Fagni and Sebastiani 2007) had

first been presented in Ng et al. (1997) and Wiener et al. (1995).

The third intuition is similar, i.e. that feature selection should also be performed

‘‘locally’’, by paying attention to the topology of the classification scheme. As above, if the

classifier for " ðcjÞ has performed reasonably well, Ûj will only (or mostly) be presented

with documents that belong to the subtree rooted in " ðcjÞ: As a consequence, for the

classifiers corresponding to cj and its siblings, it is cost-effective to employ features that are

useful in discriminating (only) among themselves and " ðcjÞ; features that discriminate

among categories lying outside the subtree rooted in " ðcjÞ are too general, and features

that discriminate among the subcategories of cj, or among the subcategories of one of its

siblings, are too specific. This intuition, albeit in the slightly different context of single-

label classification, was first presented in Koller and Sahami (1997).

TREEBOOST.MH also embodies the novel intuition that the weight distribution that

boosting algorithms update at every boosting round should likewise be updated ‘‘locally’’.

In fact, the two previously discussed intuitions indicate that hierarchical ML classification

is best understood as consisting of several independent (flat) ML classification problems,

one for each internal node of the hierarchy: for each such node cj we must generate a

number of binary classifiers, one for each cq 2# ðcjÞ: In a boosting context, this means that

several independent distributions, each one ‘‘local’’ to an internal node and its children,

should be generated and updated by the process. In this way, the ‘‘difficulty’’ of a category

cq will only matter relative to the difficulty of its sibling categories. As discussed in

Sect. 4, this intuition is of key importance in allowing TREEBOOST.MH to obtain expo-

nential savings in the cost of training over ADABOOST.MH.

3.3 The algorithm

TREEBOOST.MH incorporates these four intuitions by factoring the hierarchical ML clas-

sification problem into several ‘‘flat’’ ML classification problems, one for every internal

node in the tree. TREEBOOST.MH learns in a recursive fashion, by identifying internal nodes

cj and calling ADABOOST.MH to generate a ML (flat) classifier for the set of categories

ðcjÞ: Alternatively (and more conveniently), this process may be viewed as generating,

for each nonroot category cj [C, a binary classifier Û for cj, by means of which hierar-

chical classification can be performed as described in Sect. 3.2.

Learning in TREEBOOST.MH proceeds by first identifying whether a leaf category has

been reached (line 6 of Fig. 2), in which case nothing is done, since the classifiers are

generated only at internal nodes.

If an internal node cj has been reached, a ML feature selection process may (optionally)

be run (line 10) to generate a reduced feature set on which the ML classifier for # ðcjÞ will

operate. This may be dubbed a ‘‘glocal’’ feature selection policy, since it takes an inter-

mediate stand between the well-known ‘‘global’’ policy (in which the same set of features

is selected for all the categories in C) and ‘‘local’’ policy (in which a different set of

features is chosen for each different category in # ðcjÞ). The glocal policy selects a different

Inf Retrieval

123

set of features for each (maximal) set of sibling categories in C, thus implementing a view

of feature selection as described in Sect. 3.2.7 Any of the standard feature scoring functions

(e.g. information gain, chi-square, odds ratio) can be used, as well as any of the standard

feature score globalization methods (e.g. max, weighted average, Forman’s (2004) round

robin). Note that all these functions require a precise notion of what the positive and

negative training examples of a category are; here, consistently with the ‘‘locality’’ prin-

ciple discussed in Sect. 3.2, the negative training examples of a category c are taken to be

the set Trþð" ðcÞÞ � TrþðcÞ:
After the reduced feature set has been identified, TREEBOOST.MH calls upon ADA-

BOOST.MH (line 11) to solve a ML (flat) classification problem for the categories in # ðcjÞ;
again, in order to implement the ‘‘quasi-positive’’ policy discussed in Sect. 3.2, the neg-

ative training examples of a category c are taken to be the set Trþð" ðcÞÞ � TrþðcÞ: Note

that restricting the ADABOOST.MH call to the categories in # ðcjÞ implements the view,

discussed in Sect. 3.2, of several independent, ‘‘local’’ distributions being generated and

updated during the boosting process.

Finally, after the ML classifier for # ðcjÞ has been generated, for each category cq 2# ðcjÞ
a recursive call to TREEBOOST.MH is issued (lines 12–18) that processes the subtree rooted in

cq in the same way. The final result is a hierarchical ML classifier in the form of a tree of

binary classifiers, one for each nonroot node, each consisting of a committee of S decision

stumps.

Note that the generated classifiers would allow us to implement another, alternative

view of what the hierarchical ML classifier consists of: instead of a tree of committees, we

might have a committee of trees, with each tree Ts having a single decision stump (the one

generated at iteration s) at each nonroot node. In this paper we concentrate on the former

view, leaving the latter for future investigation.

4 The computational cost of TreeBoost.MH

We now analyse the computational costs of ADABOOST.MH and TREEBOOST.MH, and show

that the latter is computationally cheaper than the former, allowing exponential savings at

both training and testing time with respect to the former.

Let us first discuss the cost of classifier training. The key steps of ADABOOST.MH are (i)

computing, for each tk [T, the Zs factor resulting from ÛbestðkÞ; and (ii) computing the

minimum, over all tk, of such Zs factors. By inspecting Eqs. 5 and 6 we can clearly see that,

for each tk, Step (i) requires O(gm) operations for each tk, where g is the number of training

documents and m is the number of categories; since there are r such terms, the entire step

requires O(gmr) operations.

The cost of classifier training in TREEBOOST.MH heavily depends on the topology of the

tree and on the distribution of positive training examples across the nodes of the tree; in

particular, it depends from factors such as the ariety (i.e. branching factor) of each indi-

vidual internal node, the depth hj of each individual node cj, and the number Tr+(cj) of

positive training examples in each such node. We will thus limit our analysis to the best

case and the worst case, since they are more easily identifiable; the cost of the other cases

will be intermediate between these two. The worst possible case is that of a ‘‘flat’’,

7 Note that a local policy would also implement this view, but is not made possible by ADABOOST.MH, since
this latter uses the same set of features for all the categories involved in the ML classification problem. This
means that we need to use the same set of features for all categories in # ðcjÞ:

Inf Retrieval

123

degenerate tree of height 1, i.e. a tree in which all leaf categories are children of the root

category and there are no internal nodes aside from the root itself. In this case, TREE-

BOOST.MH calls ADABOOST.MH exactly once, and on the entire category set, which means

that the two algorithms coincide, and have thus the same cost. The best possible case is

more interesting, and coincides with the ‘‘fully grown’’ case of a perfectly balanced tree of

constant ariety a (in this case the height of the tree is h = logam) in which leaf categories

have all the same frequency and each document belongs to exactly one leaf category. At

each level l = 1,…,h of such a tree (the root is conventionally assigned level 0) TREE-

BOOST.MH calls ADABOOST.MH exactly al-1 times. Since, as from the analysis above,

ADABOOST.MH is O(gmr) in the general case, this means that in this case each call to

ADABOOST.MH requires Oð g
al�1 arÞ operations, given that (i) the training examples involved

are not g but only g
al�1 (since we have made the hypothesis that leaf categories are evenly

populated and each training example belongs to exactly one leaf category) and (ii) only a
(instead of m) categories are involved. This means that the number of operations required

by TREEBOOST.MH is

O
Xh

l¼1

al�1 � g

al�1
ar

 !

¼ O
Xh

l¼1

gar

 !

¼ OðgarhÞ

This means that, for each of the g training examples and for each of the r terms, TREE-

BOOST.MH performs O(ah) operations and ADABOOST.MH performs O(m) operations.

Given that m = ah, this means that, at training time, TREEBOOST.MH is cheaper than

ADABOOST.MH by an exponential factor.

Let us then discuss the cost of testing (i.e. applying) the generated classifiers. Again, in

the ‘‘flat’’ worst case discussed above the two algorithms are trivially the same. Let us then

only analyse the ‘‘fully grown’’ best case, in the understanding that the cost of the other

cases will be intermediate between these two. In ADABOOST.MH, each test document must

be given as input to O(S) weak hypotheses, each of which performs 1 test and m additions,

one per category; the cost is thus O(Sm).8 In TREEBOOST.MH, each test document is input to

O(h) classifiers (corresponding to one or more—complete or incomplete—paths down-

wards from the root), each of them consisting of O(S) weak hypotheses each of which

performs 1 test and a additions, one per category; the cost is thus O(Sah). Recalling that

m = ah, we can see that TREEBOOST.MH is cheaper than ADABOOST.MH by an exponential

factor at testing time too.

5 Experimental results

5.1 Datasets

The first benchmark we have used in our experiments is the ‘‘REUTERS-21578, Distribution

1.0’’ corpus, one of the most widely used benchmarks in TC research.9 In origin, the

REUTERS-21578 category set is not hierarchically structured, and is thus not suitable ‘‘as is’’

8 Our analysis is here in terms of the S original weak hypotheses rather than in terms of the D combined
weak hypotheses; this is because different internal nodes have different values of D; which would needlessly
complicate the notation and the discussion; the conclusions are not affected anyway.
9 REUTERS-21578 is freely available for experimentation purposes from http://www.daviddlewis.com/
resources/testcollections/*reuters21578/.

Inf Retrieval

123

for HTC experiments; we have thus used a hierarchical version of it generated in Touta-

nova et al. (2001) by the application of hierarchical agglomerative clustering on the 90

REUTERS-21578 categories that have at least one positive training example and one positive

test example. The original REUTERS-21578 categories are thus ‘‘leaf’’ categories in the

resulting hierarchy, and are clustered into four ‘‘macro-categories’’ whose parent category

is the root of the tree. Conforming to the experiments of Toutanova et al. (2001), we have

used (according to the ModApte split) the 7,770 training examples and 3,299 test examples

that are labelled by at least one of the selected categories; the average number of categories

per document is 1.23, ranging from a minimum of 1 to a maximum of 15. The average

number of positive examples per category is 106.50, ranging from a minimum of 1 to a

maximum of 2,877 (Table 1).

The second benchmark we have used is REUTERS CORPUS VOLUME 1 version 2 (RCV1-

V2),10 a more recent text categorization benchmark made available by Reuters and con-

sisting of 804,414 news stories produced by Reuters from 20 Aug 1996 to 19 Aug 1997; all

news stories are in English, and have 109 distinct terms per document on average (Rose

et al. 2002). In our experiments we have used the ‘‘LYRL2004’’ split defined in Lewis

et al. (2004), in which the (chronologically) first 23,149 documents are used for training

and the other 781,265 are used for testing. The documents are classified according to three

different, orthogonal classification schemes: ‘‘topics, ‘‘industries‘‘ and ‘‘regions’’; consis-

tently with Lewis et al. (2004) and all the literature that has followed, we focus on the

‘‘topics’’ classification scheme. Out of the 103 ‘‘topics’’ categories, in our experiments we

have restricted our attention to the 101 categories (21 internal node and 80 leaf node

categories) with at least one positive training example. Of the three benchmarks we use in

this work, RCV1-V2 is the only one containing (both training and test) examples that are

‘‘own’’ documents of internal node categories.; each of the 21 internal node categories has

at least one own document. The RCV1-V2 hierarchy is four levels deep (including the root,

to which we conventionally assign level 0); there are four internal nodes at level 1, and the

leaves are all at the levels 2 and 3. The 80 leaf categories instead have 347.2 positive

training examples on average.

The third benchmark we have used is the ICCCFT from the 2007 ‘‘International

Challenge on Classifying Clinical Free Text Using Natural Language Processing’’,11

Table 1 REUTERS-21578 macro-categories and their member categories (from Toutanova et al. 2001))

Macrocategory Member categories

Commodities Barley, carcass, castor-oil, cocoa, coconut, coconut-oil, coffee, copra-cake, corn cotton,
cotton-oil, grain, groundnut, groundnut-oil, hog, l-cattle, lin-oil, livestock, lumber,
meal-feed, oat, oilseed, orange, palm-oil, palmkernel, pet-chem, potato, rape-oil,
rapeseed, rice, rubber, rye, ship, sorghum, soy-meal, soy-oil, soybean, sugar,
sun-meal, sun-oil, sunseed, tea, veg-oil, wheat

Financial acq, bop, cpi, cpu, dfl, dlr, dmk, earn, gnp, housing, income, instal-debt, interest, ipi, jobs,
lei, money-fx, money-supply, nkr, nzdlr, rand, reserves, retail, trade, wpi, yen

Metals Alum, copper, gold, iron-steel, lead, nickel, palladium, platinum, silver, strategic-metal,
tin, zinc

Energy Crude, fuel, gas, heat, jet, naphtha, nat-gas, propane

10 http://trec.nist.gov/data/reuters/reuters.html.
11 http://computationalmedicine.org/challenge/index.php

Inf Retrieval

123

organized by the Computational Medicine Center of the Cincinnati Children’s Hospital

Medical Center and the University of Cincinnati Medical Center. The documents are short

discharge reports classified according to the ICD-9-CM classification scheme,12 the official

system of assigning codes to diagnoses and procedures associated with hospital utilization

in the United States. The experiments we present here use only the training set of the

Challenge, since the labels of the test documents are not available to participants; unlike

with the previous two benchmarks we thus compute effectiveness by leave-one-out cross-

validation. There are only 978 documents in the training set, with an average length of 13.3

words. We restrict our experiments to the 79 categories that have at least one positive

training document; of these 79 categories, 45 are leaf node categories and the other 34 are

internal node categories, none of which has ‘‘own’’ documents. The ICD-9-CM hierarchy

(or, at least, that part of it that is used for labelling our training data) is again four levels

deep (including the root, to which we conventionally assign level 0); there are seven

internal nodes at level 1, and the leaves are all at the levels 2 and 3. The average number of

positive examples per leaf category is 27.1, ranging from a minimum of 1 and a maximum

of 266. One peculiar feature of this dataset is that some nodes are single children, i.e., have

no siblings. This makes it impossible to adopt our standard policy of choosing, as negative

training examples of a category, the positive training documents of the father category. In

these cases we merge father and child categories into a single node, since they always have

the same positive and negative examples.

5.2 Averaging effectiveness across categories

As a measure of effectiveness that combines the contributions of precision (p) and recall
(q) we have used the well-known F1 function, defined as

F1 ¼
2pq

pþ q
¼ 2TP

2TPþ FPþ FN
ð11Þ

which corresponds to the harmonic mean of precision and recall, where TP stands for true

positives, FP for false positives, and FN for false negatives. Note that F1 is undefined when

TP = FP = FN = 0; in this case, consistently with most other works in the literature, we

take F1 to equal 1.0, since the classifier has correctly classified all documents (as negative

examples).

In text classification it is customary to average the category-specific F1 scores by

computing both microaveraged F1 (denoted by F1
l) and macroaveraged F1 (F1

M). F1
l is

obtained by (i) computing the category-specific values TPi, (ii) obtaining TP as the sum of

the TPi’s (same for FP and FN), and then (iii) applying Eq. 11. F1
M is obtained by first

computing the F1 values specific to the individual categories, and then averaging them

across the cj’s.

However, in HTC one should specify exactly which categories the average is computed

across. Should this average be computed across leaf categories only, or should it involve

internal node categories too? It might seem reasonable that also the internal nodes that

have ‘‘own’’ positive examples (see Sect. 3.1) are considered, since these nodes are not to

be viewed as merely routing documents to the subtrees below them. However, the presence

of ‘‘bubbled-up’’ positive test examples within internal node categories means that, if

averages involve these categories too, they will involve classification decisions that are not

12 http://www.cdc.gov/nchs/about/otheract/icd9/abticd9.htm

Inf Retrieval

123

independent of each other. For instance, the fact that test document di has been correctly

classified under a leaf category cj entails that di has also been correctly classified under all

the categories in * ðdiÞ; which means that this decision will count as n true positives

(where n is the depth of cj) instead of a single true positive.

The approach we take to averaging is intermediate between these two extremes, and

involves distinguishing, for each internal node cj, the roles of ‘‘own’’ and ‘‘bubbled-up’’

positive test examples. In turn, this corresponds to distinguishing the roles of internal nodes

as ‘‘routers’’ towards its subordinate nodes or as ‘‘repositories’’ of documents in their own

right (a distinction already addressed in Ruiz and Srinivasan 2002]).

The approach consists in

1. mapping the original hierarchy C into a modified hierarchy C0 such that, for each

internal node category cj [C with ‘‘own’’ positive training examples, C0 contains a

‘‘dummy’’ child (leaf) node c0j appended to cj;

2. moving into c0j all of cj’s ‘‘own’’ positive test examples.

This simple mapping, originally proposed in Cheng et al. (2001), produces a hierarchy C0

semantically equivalent to C in which all documents are contained in at least one leaf

category.13 For evaluation purposes we then use the modified hierarchy C0 instead of the

original hierarchy C (even if learning and classification have indeed used C), and average

across leaf nodes only. The net effect is that we do take into consideration the ability of the

system to correctly classify documents as ‘‘own’’ documents of internal nodes (in the

modified hierarchy, this is represented by the system’s effectiveness on ‘‘dummy’’ nodes),

and at the same time we remove the dependence between classification decisions due to

inherited examples.

5.3 The experiments

In all the experiments discussed in this section, punctuation has been removed, all letters

have been converted to lowercase, numbers have been removed, stop words have been

removed using the stop list provided in Lewis (1992, pp. 117–118), and stemming has been

performed by means of Porter’s stemmer.

In a first experiment we have compared ADABOOST.MH and TREEBOOST.MH using a full

feature set.

We have then performed a number of experiments using feature selection; however,

these have been run on REUTERS-21578 and RCV1-V2 only, due to the fact that the original

feature set of ICCCFT has a very limited size already (1,294 terms only). Reduced feature

sets were obtained according to a ‘‘global’’ feature selection policy in which (i) feature-

category pairs have been scored by means of information gain, defined as

IGðtk; ciÞ ¼
X

c2fci;cig

X

t2ftk ;tkg
Pðt; cÞ � log

Pðt; cÞ
PðtÞ � PðcÞ

and (ii) the final set of features has been chosen according to Forman’s round robin
technique, which consists in picking, for each category cj, the v features with the highest

IG(tk, cj) value, and pooling all of them together into a category-independent set (Forman

13 Note that many real-world classification schemes (e.g. the ACM Classification Scheme) are of this latter
type, since their internal nodes usually have a special child category (called General; or Other) which
contains all documents belonging to the node but to none of its descendant leaves.

Inf Retrieval

123

2004). This set thus contains a number of features q B vm, where m is the number of

categories; it usually contains strictly fewer than vm, since it is usually the case that some

features are among the best v features for more than one category. We have set v to 60 for

REUTERS-21578 and to 43 for RCV1-V2, which are the values that, for each corpora, best

approximate a total number of features of 2,000; in fact, the reduced feature sets consist of

2,012 features for REUTERS-21578 (11% of the 18,177 original ones) and 2,029 for

RCV1-V2 (3.7% of the 55,051 original ones).

We have also run an experiment in which we have used the ‘‘glocal’’ feature selection

policy described in Sect. 3.3, consisting in selecting a different subset of features (of the

same cardinalities as in the global policy) for the set of children of each different internal

node. Note that, for each corpus, the results obtained by means of this policy are

reported only for TREEBOOST.MH, since this policy obviously is not applicable to

ADABOOST.MH.

5.4 Effectiveness

The results of our experiments are reported in Table 2.

We will now comment on the REUTERS-21578 results;14 the RCV1-V2 and ICCCFT

results are qualitatively similar. The first observation we can make is that, in switching

from ADABOOST.MH to TREEBOOST.MH, effectiveness improves substantially. F1
l improves

from +2.3% to +17.2%, depending on the number S of boosting iterations. F1
M improves

even more substantially, from +22.0% to +197.4%; this means that TREEBOOST.MH is

especially suited to categorization problems in which the distribution of training examples

across the categories is highly skewed. For both F1
l and F1

M, the improvements tend to be

more substantial for low values of S, showing that TREEBOOST.MH converges to optimum

performance more rapidly than ADABOOST.MH. Altogether, these effectiveness improve-

ments are somehow surprising, since it is well-known that hierarchical TC can introduce a

deterioration of effectiveness due to classification errors made high up in the hierarchy,

which cannot be recovered at the lower levels (Koller and Sahami 1997; McCallum et al.

1998). The improvements thus show that the ‘‘filters’’ placed at the internal nodes work

well, likely due to the fact that they their training benefits from using only the ‘‘quasi-

positive’’ examples of local interest as negative training examples.

Concerning the RCV1-V2 dataset, note that the results obtained by both ADABOOST.MH

and TREEBOOST.MH are inferior to the ones reported in Lewis et al. (2004) and obtained, on

the same dataset, by SVM-based classification systems. One of the reasons is certainly the

fact that F1 is (micro- and macro-)averaged across different sets of categories. In fact,

while the authors of Lewis et al. (2004) choose to include internal node categories in the

average, as mentioned in Sect. 5.2 we only include their associated dummy nodes. By

doing so we avoid ‘‘watering down’’ the evaluation by considering nodes (the internal

ones) that are both ‘‘easy’’ (since they typically have many training examples, of the

‘‘bubbled-up’’ type) and scarcely significant from an application point of view (since their

14 The reader might notice that the best performance we have obtained from ADABOOST.MH on REUTERS-
21578 (F1

l = .808) is inferior to the one reported in Schapire and Singer (2000) for the same algorithm
(F1

l = .851). There are several reasons for this: (a) Schapire and Singer (2000) actually uses a different,
much older version of this collection, called REUTERS-21450 (Apté et al. 1994); (b) Schapire and Singer
(2000) only uses the 93 categories which have at least 2 positive training examples and 1 positive test
example, while we also use the categories that have just 1 positive training example and those that have no
positive test example. This makes the two sets of ADABOOST.MH results difficult to compare.

Inf Retrieval

123

T
a

b
le

2
A

D
A

B
O

O
S

T
.M

H
an

d
T

R
E

E
B

O
O

S
T
.M

H
o

n
R

E
U

T
E

R
S
-2

1
5

7
8

(t
o

p
5

ro
w

s)
,

R
C

V
1

-V
2

(m
id

5
ro

w
s)

an
d

IC
C

C
F

T
(b

o
tt

o
m

tw
o

ro
w

s)

5
It

er
at

io
n
s

1
0

It
er

at
io

n
s

2
0

It
er

at
io

n
s

5
0

It
er

at
io

n
s

1
0
0

It
er

at
io

n
s

2
0
0

It
er

at
io

n
s

5
0
0

It
er

at
io

n
s

1
,0

0
0

It
er

at
io

n
s

R
E

U
T

E
R

S
-

2
1
5
7
8

A
D

A
B

O
O

S
T
.M

H
(f

u
ll

fe
at

u
re

se
t)

.5
3
3

.5
9
7

.6
6
4

.7
2
4

.7
8
3

.7
9
8

.8
0
4

.8
0
8

.0
3
3

.0
7
5

.1
6
0

.2
5
5

.3
3
2

.3
6
1

.3
7
7

.3
7
9

3
4
.0

6
8
.1

1
3
6
.3

3
4
0
.7

6
8
1
.5

1
3
6
2
.9

3
4
0
7
.3

6
8
1
4
.6

1
1
.1

1
4
.3

1
8
.2

3
5
.1

6
6
.2

1
2
9
.9

2
7
4
.0

4
6
4
.3

T
R

E
E
B

O
O

S
T
.M

H
(f

u
ll

fe
at

u
re

se
t)

.5
9
6

(+
1
1
.9

%
)

.6
9
9

(+
1
7
.2

%
)

.7
4
5

(+
1
2
.2

%
)

.7
9
5

(+
9
.9

%
)

.8
1
0

(+
3
.5

%
)

.8
2
7

(+
3
.7

%
)

.8
3
0

(+
3
.1

%
)

.8
2
6

(+
2
.3

%
)

.1
0
0

(+
1
9
7
.4

%
)

.1
8
7

(+
1
4
8
.4

%
)

.2
8
6

(+
7
8
.9

%
)

.4
1
6

(+
6
2
.6

%
)

.4
2
5

(+
2
8
.2

%
)

.4
5
4

(+
2
5
.6

%
)

.4
6
0

(+
2
2
.0

%
)

.4
7
9

(+
2
6
.4

%
)

1
6
.9

(-
5
0
.4

%
)

3
3
.8

(-
5
0
.4

%
)

6
7
.6

(-
5
0
.4

%
)

1
6
9
.0

(-
5
0
.4

%
)

3
3
7
.9

(-
5
0
.4

%
)

6
7
5
.8

(-
5
0
.4

%
)

1
6
8
9
.4

(-
5
0
.4

%
)

3
3
7
8
.9

(-
5
0
.4

%
)

1
3
.0

(+
1
6
.8

%
)

1
2
.6

(-
1
1
.8

%
)

1
7
.2

(-
5
.5

%
)

2
0
.6

(-
4
1
.4

%
)

2
9
.9

(-
5
4
.9

%
)

4
8
.5

(-
6
2
.7

%
)

9
6
.6

(-
6
4
.7

%
)

1
5
1
.3

(-
6
7
.4

%
)

A
D

A
B

O
O

S
T
.M

H
(g

lo
b
al

F
S

)
.5

3
3

.5
9
7

.6
6
4

.7
2
4

.7
8
3

.7
9
9

.8
1
1

.8
0
1

.0
3
4

.0
7
5

.1
6
0

.2
5
6

.3
3
2

.3
5
4

.3
7
3

.3
6
2

2
4
.6

4
9
.2

9
8
.4

2
4
6
.1

4
9
2
.1

9
8
4
.3

2
4
6
0
.8

4
9
2
1
.5

8
.8

1
2
.4

1
7
.0

3
2
.8

5
9
.6

1
1
2
.2

2
5
5
.2

3
8
6
.0

T
R

E
E
B

O
O

S
T
.M

H
(g

lo
b
al

F
S

)
.5

9
6

(+
1
1
.9

%
)

.6
9
9

(+
1
7
.2

%
)

.7
4
4

(+
1
1
.9

%
)

.8
0
0

(+
1
0
.5

%
)

.8
0
9

(+
3
.4

%
)

.8
1
5

(+
2
.0

%
)

.8
2
8

(+
2
.1

%
)

.8
2
1

(+
2
.5

%
)

.1
0
0

(+
1
9
7
.4

%
)

.1
8
7

(+
1
4
8
.4

%
)

.2
8
5

(+
7
8
%

)
.4

3
7

(+
7
0
.8

%
)

.4
2
7

(+
2
8
.7

%
)

.4
5
7

(+
2
8
.8

%
)

.4
5
7

(+
2
2
.4

%
)

.4
7
3

(+
3
0
.6

%
)

1
1
.5

(-
5
3
.4

%
)

2
3
.0

(-
5
3
.4

%
)

4
5
.9

(-
5
3
.4

%
)

1
1
4
.7

(-
5
3
.4

%
)

2
2
9
.5

(-
5
3
.4

%
)

4
5
9
.0

(-
5
3
.4

%
)

1
1
4
7
.4

(-
5
3
.4

%
)

2
2
9
4
.7

(-
5
3
.4

%
)

9
.1

(+
3
.2

%
)

9
.6

(-
2
2
.1

%
)

1
1
.3

(-
3
3
.5

%
)

1
7
.2

(-
4
7
.7

%
)

2
6
.3

(-
5
5
.9

%
)

4
2
.4

(-
6
2
.2

%
)

8
2
.3

(-
6
7
.7

%
)

1
3
1
.3

(-
6
6
.0

%
)

T
R

E
E
B

O
O

S
T
.M

H
(g

lo
ca

l
F

S
)

.5
9
6

(+
1
1
.9

%
)

.6
9
9

(+
1
7
.2

%
)

.7
4
4

(+
1
1
.9

%
)

.7
9
4

(+
9
.7

%
)

.8
1
2

(+
3
.8

%
)

.8
1
7

(+
2
.2

%
)

.8
2
4

(+
1
.6

%
)

.8
2
5

(+
3
.0

%
)

.1
0
0

(+
1
9
7
.4

%
)

.1
8
7

(+
1
4
8
.4

%
)

.2
8
5

(+
7
7
.9

%
)

.4
0
1

(+
5
6
.9

%
)

.4
3
0

(+
2
9
.8

%
)

.4
6
0

(+
2
9
.8

%
)

.4
6
5

(+
2
4
.7

%
)

.4
6
5

(+
2
8
.3

%
)

1
2
.1

(-
5
0
.7

%
)

2
4
.2

(-
5
0
.7

%
)

4
8
.5

(-
5
0
.7

%
)

1
2
1
.2

(-
5
0
.7

%
)

2
4
2
.5

(-
5
0
.7

%
)

4
8
5
.0

(-
5
0
.7

%
)

1
2
1
2
.4

(-
5
0
.7

%
)

2
4
2
4
.8

(-
5
0
.7

%
)

1
0
.7

(+
2
1
.6

%
)

1
4
.9

(+
2
0
.9

%
)

1
4
.1

(-
1
6
.7

%
)

2
3
.0

(-
2
9
.8

%
)

2
8
.3

(-
5
2
.4

%
)

4
6
.2

(-
5
8
.9

%
)

9
4
.6

(-
6
2
.9

%
)

1
4
2
.9

(-
6
3
.0

%
)

Inf Retrieval

123

T
a

b
le

2
co

n
ti

n
u

ed

5
It

er
at

io
n
s

1
0

It
er

at
io

n
s

2
0

It
er

at
io

n
s

5
0

It
er

at
io

n
s

1
0
0

It
er

at
io

n
s

2
0
0

It
er

at
io

n
s

5
0
0

It
er

at
io

n
s

1
,0

0
0

It
er

at
io

n
s

R
C

V
1
-V

2
(O

R
IG

IN
A

L

L
E

A
F

N
O

D
E

S

+
D

U
M

M
Y

N
O

D
E

S
)

A
D

A
B

O
O

S
T
.M

H
(f

u
ll

fe
at

u
re

se
t)

.0
2
6

.1
0
5

.1
8
7

.3
3
1

.4
1
5

.4
7
1

.5
2
1

.5
3
7

.0
0
5

.0
2
1

.0
7
2

.1
6
5

.2
3
9

.2
9
6

.3
3
3

.3
4
0

1
8
1
.3

3
6
2
.7

7
2
5
.3

1
8
1
3
.3

3
6
2
6
.5

7
2
5
3
.1

1
8
1
3
2
.7

3
6
2
6
5
.5

3
3
4
6
.2

3
5
7
6
.4

5
1
6
8
.2

9
5
2
4
.7

1
6
8
2
7
.2

3
3
6
0
8
.9

8
3
9
5
1
.2

1
7
0
7
2
0
.3

T
R

E
E
B

O
O

S
T
.M

H
(f

u
ll

fe
at

u
re

se
t)

.1
6
0

(+
5
1
9
.3

%
)

.2
7
4

(+
1
6
1
.9

%
)

.3
6
0

(+
9
3
.1

%
)

.4
8
8

(+
4
7
.5

%
)

.5
4
2

(+
3
0
.9

%
)

.5
7
9

(+
2
3
.0

%
)

.6
0
4

(+
1
6
.1

%
)

.6
1
5

(+
1
4
.4

%
)

.0
4
5

(+
7
6
2
.0

%
)

.0
9
3

(+
3
3
5
.0

%
)

.1
5
4

(+
1
1
3
.9

%
)

.2
7
0

(+
6
3
.8

%
)

.3
3
0

(+
3
7
.9

%
)

.3
6
7

(+
2
3
.7

%
)

.3
8
8

(+
1
6
.6

%
)

.3
9
9

(+
1
7
.3

%
)

7
8
.3

(-
5
6
.8

%
)

1
5
6
.5

(-
5
6
.8

%
)

3
1
3
.1

(-
5
6
.8

%
)

7
8
2
.7

(-
5
6
.8

%
)

1
5
6
5
.3

(-
5
6
.8

%
)

3
1
3
0
.6

(-
5
6
.8

%
)

7
8
2
6
.6

(-
5
6
.8

%
)

1
5
6
5
3
.1

(-
5
6
.8

%
)

2
7
7
4
.5

(-
1
7
.1

%
)

2
8
1
3
.5

(-
2
1
.3

%
)

3
0
8
1
.1

(-
4
0
.4

%
)

3
9
6
3
.2

(-
5
8
.4

%
)

6
0
4
4
.2

(-
6
4
.1

%
)

9
3
2
8
.3

(-
7
2
.2

%
)

2
1
8
4
7
.4

(-
7
4
.0

%
)

3
8
3
4
2
.9

(-
7
7
.5

%
)

A
D

A
B

O
O

S
T
.M

H
(g

lo
b
al

F
S

)
.0

2
6

.1
0
5

.1
8
7

.3
3
1

.4
1
9

.4
7
3

.5
2
6

.5
4
5

.0
0
5

.0
2
1

.0
7
2

.1
6
5

.2
4
3

.3
0
0

.3
4
1

.3
5
4

1
0
7
.8

2
1
5
.5

4
3
1
.1

1
0
7
7
.7

2
1
5
5
.5

4
3
1
0
.9

1
0
7
7
7
.3

2
1
5
5
4
.7

1
5
9
8
.4

2
2
2
3
.7

3
7
4
1
.0

8
0
1
2
.8

1
6
2
0
6
.9

3
1
9
0
7
.7

7
4
2
9
2
.3

1
4
7
3
5
4
.1

T
R

E
E
B

O
O

S
T
.M

H
(g

lo
b
al

F
S

)
.1

6
0

(+
5
1
9
.3

%
)

.2
7
3

(+
1
6
1
.5

%
)

.3
6
0

(+
9
2
.7

%
)

.4
8
6

(+
4
6
.9

%
)

.5
4
0

(+
2
8
.8

%
)

.5
7
8

(+
2
2
.2

%
)

.6
0
4

(+
1
4
.9

%
)

.6
0
8

(+
1
1
.7

%
)

.0
4
5

(+
7
6
2
.0

%
)

.0
9
3

(+
3
3
3
.9

%
)

.1
5
5

(+
1
1
4
.4

%
)

.2
7
3

(+
6
5
.1

%
)

.3
3
4

(+
3
7
.0

%
)

.3
7
1

(+
2
3
.5

%
)

.4
0
2

(+
1
7
.7

%
)

.4
0
6

(+
1
4
.6

%
)

3
3
.8

(-
6
8
.7

%
)

6
7
.5

(-
6
8
.7

%
)

1
3
5
.1

(-
6
8
.7

%
)

3
3
7
.6

(-
6
8
.7

%
)

6
7
5
.3

(-
6
8
.7

%
)

1
3
5
0
.5

(-
6
8
.7

%
)

3
3
7
6
.4

(-
6
8
.7

%
)

6
7
5
2
.8

(-
6
8
.7

%
)

1
8
3
0
.2

(+
1
4
.5

%
)

1
4
2
2
.0

(-
3
6
.1

%
)

1
9
0
1
.0

(-
4
9
.2

%
)

2
7
7
2
.1

(-
6
5
.4

%
)

4
8
3
6
.0

(-
7
0
.2

%
)

8
1
5
6
.6

(-
7
4
.4

%
)

1
8
3
8
4
.5

(-
7
5
.3

%
)

3
3
6
4
8
.3

(-
7
7
.2

%
)

T
R

E
E
B

O
O

S
T
.M

H
(g

lo
ca

l
F

S
)

.1
6
0

(+
5
1
9
.1

%
)

.2
7
5

(+
1
6
2
.8

%
)

.3
6
5

(+
9
5
.5

%
)

.4
8
7

(+
4
7
.1

%
)

.5
3
7

(+
2
8
.3

%
)

.5
7
8

(+
2
2
.2

%
)

.6
0
4

(+
1
4
.9

%
)

.6
1
3

(+
1
2
.7

%
)

.0
4
5

(+
7
6
2
.0

%
)

.0
9
3

(+
3
3
7
.6

%
)

.1
5
9

(+
1
1
9
.7

%
)

.2
6
4

(+
6
0
.1

%
)

.3
2
6

(+
3
3
.9

%
)

.3
6
4

(+
2
1
.1

%
)

.3
8
9

(+
1
4
.1

%
)

.4
0
1

(+
1
3
.4

%
)

4
1
.3

(-
6
1
.7

%
)

8
2
.6

(-
6
1
.7

%
)

1
6
5
.3

(-
6
1
.7

%
)

4
1
3
.1

(-
6
1
.7

%
)

8
2
6
.3

(-
6
1
.7

%
)

1
6
5
2
.6

(-
6
1
.7

%
)

4
1
3
1
.4

(-
6
1
.7

%
)

8
2
6
8
.9

(-
6
1
.7

%
)

2
3
7
4
.9

(+
4
8
.6

%
)

2
4
3
2
.7

(+
9
.4

%
)

2
4
9
9
.9

(-
3
3
.2

%
)

3
6
4
5
.9

(-
5
4
.5

%
)

5
0
2
0
.3

(-
6
9
.0

%
)

8
3
7
2
.9

(-
7
3
.8

%
)

1
8
1
7
3
.9

(-
7
5
.5

%
)

3
3
1
4
9
.0

(-
7
7
.5

%
)

Inf Retrieval

123

T
a

b
le

2
co

n
ti

n
u

ed

5
It

er
at

io
n
s

1
0

It
er

at
io

n
s

2
0

It
er

at
io

n
s

5
0

It
er

at
io

n
s

1
0
0

It
er

at
io

n
s

2
0
0

It
er

at
io

n
s

5
0
0

It
er

at
io

n
s

1
,0

0
0

It
er

at
io

n
s

IC
C

C
F

T
A

D
A

B
O

O
S

T
.M

H
(f

u
ll

fe
at

u
re

se
t)

.6
3
0

.7
0
4

.8
0
6

.8
1
3

.8
2
7

.8
2
3

.8
2
7

.8
1
9

.0
8
4

.1
5
9

.3
0
3

.3
4
5

.4
0
9

.4
1
6

.4
3
2

.4
3
3

6
0
2
.8

1
2
0
5
.7

2
4
1
1
.3

6
0
2
8
.3

1
2
0
5
6
.6

2
4
1
1
3
.2

6
0
2
8
2
.9

1
2
0
5
6
5
.9

5
.9

9
.8

1
1
.7

1
7
.6

2
1
.5

3
3
.3

4
8
.9

7
8
.2

T
R

E
E
B

O
O

S
T
.M

H
(f

u
ll

fe
at

u
re

se
t)

.7
0
4

(+
1
1
.7

%
)

.7
5
7

(+
7
.5

%
)

.8
0
3

(-
0
.4

%
)

.8
2
4

(+
1
,4

%
)

.8
3
0

(+
0
.4

%
)

.8
3
1

(+
1
.0

%
)

.8
2
8

(+
0
.1

%
)

.8
1
3

(-
0
.7

%
)

.2
1
2

(+
1
5
2
.4

%
)

.2
8
4

(+
7
8
.6

%
)

.3
6
5

(+
2
0
.5

%
)

.4
0
3

(+
1
6
.8

%
)

.4
2
9

(+
4
.9

%
)

.4
7
1

(+
1
3
.2

%
)

.4
7
0

(+
8
.8

%
)

.4
6
9

(+
8
.3

%
)

3
1
7
.4

(-
4
7
.3

%
)

6
3
4
.9

(-
4
7
.3

%
)

1
2
6
9
.7

(-
4
7
.3

%
)

3
1
7
4
.3

(-
4
7
.3

%
)

6
3
4
8
.7

(-
4
7
.3

%
)

1
2
6
9
7
.4

(-
4
7
.3

%
)

3
1
7
4
3
.4

(-
4
7
.3

%
)

6
3
4
8
6
.9

(-
4
7
.3

%
)

2
.9

(-
5
0
%

)
3
.9

(-
6
0
%

)
8
,8

(-
2
5
.0

%
)

9
.8

(-
4
4
.4

%
)

1
0
.8

(-
5
0
.0

%
)

1
2
.7

(-
6
1
.8

%
)

1
5
.6

(-
6
8
.0

%
)

2
0
.5

(-
7
3
.8

%
)

In
ea

ch
sq

u
ar

e,
th

e
fi

rs
t

fi
g
u
re

fr
o
m

to
p

is
F

1l
,

th
e

se
co

n
d

is
F

1M
,

th
e

th
ir

d
is

tr
ai

n
in

g
ti

m
e

s(
T

r)
(i

n
cl

u
si

v
e

o
f

th
e

ti
m

e
re

q
u
ir

ed
to

p
er

fo
rm

fe
at

u
re

se
le

ct
io

n
,

if
an

y
),

an
d

th
e

fo
u
rt

h
is

te
st

in
g

ti
m

e
s(

T
e)

.
T

h
e

b
es

t
ef

fe
ct

iv
en

es
s

re
su

lt
s

o
b
ta

in
ed

o
n

ea
ch

co
ll

ec
ti

o
n

ar
e

in
d
ic

at
ed

in
b
o
ld

fa
ce

Inf Retrieval

123

most important role is as routers towards the leaves, rather than as categories in their own

right).

Obviously, this means that the classification problem we tackle is more difficult that the

one tackled in Lewis et al. (2004); in fact, easy nodes are now removed from consider-

ation, while ‘‘hard’’ ones (i.e., the dummy ones, which have very few training examples)

are introduced. This is best appreciated by looking at Tables 3 and 4, in which the

effectiveness of the classifiers is computed separately for original leaves (Table 3) and

dummy nodes (Table 4). The fact that effectiveness is very, very low on dummy nodes

shows that including them in the averages from which Table 2 was computed has con-

siderably reduced the resulting values of effectiveness.

5.5 Significance testing

In order to check whether these results are statistically significant we have subjected them

to thorough statistical significance testing, by applying to the results reported in Table 2

(we use those for S = 1,000 boosting iterations) all the significance tests defined for text

classification systems in Yang and Liu (1999), Sect. 4) i.e.:

1. the s-test: a sign test (Spiegel and Stephens 1999, Chapter 17) which compares two

classifiers Û1 and Û2 by analysing their binary decisions on each document/category

pair;

2. the S-test on F1: a sign test which compares two classifiers Û1 and Û2 by analysing the

paired F1 scores on individual categories;

3. the T-test on F1: at-test (Spiegel and Stephens 1999, Chapter 11) which compares two

classifiers Û1 and Û2 by analysing the paired F1 values on individual categories;

4. the T0-test on F1: a ‘‘t-test after rank transformation’’ which compares two classifiers

Û1 and Û2 by analysing the rank positions (1st or 2nd) that the two systems have

obtained, in terms of F1, on each individual category;

5. the p-test on pl and ql: a t-test which compares two classifiers Û1 and Û2 by analysing

the microaveraged precision and recall values that the two systems have obtained.

Tests 1 and 5 are designed to evaluate the two systems at the (‘‘micro’’) level of individual

classification decisions, while Tests 2, 3 and 4 are designed to evaluate them at the

(‘‘macro’’) level of individual categories, i.e., by analysing the performance scores that the

two systems have obtained on such categories. We refer the interested reader to (Yang and

Liu 1999, Sect. 4] for full mathematical definitions and for a discussion of the strengths

and weaknesses of these five tests; we here only note, along with (Yang and Liu 1999, p.

47), that ‘‘none of the tests is ‘perfect’ for all the performance measures, or for

performance analysis with respect to a skewed category distribution, so using them jointly

instead of using one test alone would be a better choice’’.

Table 5 clearly shows that the results reported in Table 2 are statistically significant. In

fact, in 33 out of 42 tests (6 significance tests times the 7 different scenarios in which

TREEBOOST.MH and ADABOOST.MH are compared) TREEBOOST.MH turns out to be statis-

tically significantly better than ADABOOST.MH at a p-value B 0.01 ADABOOST.MH (this

corresponds to the cells marked (‘‘�’’), while in other 4 tests this holds only at a p-value

B 0.05 (cells marked ‘‘\’’); only in the remaining 5 tests no statistically significant dif-

ference is found at p-values [0.05 (cells marked ‘‘*’’).

Note that this result becomes even stronger if we restrict ourselves to the largest of the

tested collection (namely, RCV1-V2), on which TREEBOOST.MH turns out to be statistically

Inf Retrieval

123

T
a

b
le

3
A

D
A

B
O

O
S

T
.M

H
an

d
T

R
E

E
B

O
O

S
T
.M

H
o

n
R

C
V

1
-V

2
;

av
er

ag
in

g
is

p
er

fo
rm

ed
ac

ro
ss

al
l

o
ri

g
in

al
le

af
ca

te
g

o
ri

es
(i

.e
.,

‘‘
d

u
m

m
y

’’
ca

te
g

o
ri

es
ar

e
n

o
t

co
n

si
d

er
ed

)

5
It

er
at

io
n
s

1
0

It
er

at
io

n
s

2
0

It
er

at
io

n
s

5
0

It
er

at
io

n
s

1
0
0

It
er

at
io

n
s

2
0
0

It
er

at
io

n
s

5
0
0

It
er

at
io

n
s

1
,0

0
0

It
er

at
io

n
s

R
C

V
1
- V

2

(O
R

IG
IN

A
L

L
E

A
F

C
A

T
E

G
O

R
IE

S

O
N

L
Y
)

A
D

A
B

O
O

S
T
.M

H

(f
u
ll

fe
at

u
re

se
t)

.0
0
8

.0
8
6

.2
1
1

.3
9
3

.4
9
2

.5
4
8

.5
9
7

.6
1
4

.0
0
2

.0
1
8

.0
7
3

.1
8
3

.2
7
2

.3
3
5

.3
7
5

.3
8
3

T
R

E
E
B

O
O

S
T
.M

H

(f
u
ll

fe
at

u
re

se
t)

.1
6
5

(+
2
0
5
6
.8

%
)

.2
8
8

(+
2
3
4
.8

%
)

.3
9
8

(+
8
8
.8

%
)

.5
3
3

(+
3
5
.5

%
)

.5
8
9

(+
1
9
.7

%
)

.6
2
2

(+
1
3
.4

%
)

.6
4
4

(+
7
.9

%
)

.6
5
4

(+
6
.4

%
)

.0
4
8

(+
2
6
3
2
.1

%
)

.1
0
4

(+
4
7
1
.9

%
)

.1
7
2

(+
1
3
6
.2

%
)

.3
0
3

(+
6
5
.5

%
)

.3
6
9

(+
3
5
.7

%
)

.4
0
7

(+
2
1
.6

%
)

.4
3
2

(+
1
5
.3

%
)

.4
4
4

(+
1
6
.1

%
)

A
D

A
B

O
O

S
T
.M

H

(g
lo

b
al

F
S

)

.0
0
8

.0
8
6

.2
1
1

.3
9
3

.4
9
5

.5
5
3

.6
0
2

.6
2
1

.0
0
2

.0
1
8

.0
7
3

.1
8
3

.2
7
7

.3
4
0

.3
8
5

.3
9
8

T
R

E
E
B

O
O

S
T
.M

H

(g
lo

b
al

F
S

)

.1
6
5

(+
2
0
5
6
.8

%
)

.2
8
5

(+
2
3
2
.1

%
)

.3
9
7

(+
8
8
.2

%
)

.5
3
3

(+
3
5
.6

%
)

.5
8
6

(+
1
8
.4

%
)

.6
2
1

(+
1
2
.3

%
)

.6
4
5

(+
7
.1

%
)

.6
4
8

(+
4
.5

%
)

.0
4
8

(+
2
6
3
2
.1

%
)

.1
0
4

(+
4
7
0
.6

%
)

.1
7
2

(+
1
3
6
.1

%
)

.3
0
5

(+
6
6
.6

%
)

.3
7
5

(+
3
5
.2

%
)

.4
1
5

(+
2
1
.9

%
)

.4
4
9

(+
1
6
.5

%
)

.4
5
3

(+
1
3
.7

%
)

T
R

E
E
B

O
O

S
T
.M

H

(g
lo

ca
l

F
S

)

.1
6
5

(+
2
0
5
6
.3

%
)

.2
8
6

(+
2
3
3
.3

%
)

.3
9
8

(+
8
8
.6

%
)

.5
3
2

(+
3
5
.3

%
)

.5
8
2

(+
1
7
.7

%
)

.6
2
1

(+
1
2
.4

%
)

.6
4
5

(+
7
.2

%
)

.6
5
4

(+
5
.4

%
)

.0
4
8

(+
2
6
3
2
.0

%
)

.1
0
5

(+
4
7
5
.1

%
)

.1
7
3

(+
1
3
7
.6

%
)

.2
9
6

(+
6
1
.4

%
)

.3
6
5

(+
3
1
.7

%
)

.4
0
6

(+
1
9
.3

%
)

.4
3
4

(+
1
2
.8

%
)

.4
4
8

(+
1
2
.5

%
)

In
ea

ch
sq

u
ar

e,
th

e
fi

rs
t

fi
g
u
re

fr
o
m

to
p

is
F

1l
an

d
th

e
se

co
n
d

is
F

1M
.

T
h
e

b
es

t
ef

fe
ct

iv
en

es
s

re
su

lt
s

o
b
ta

in
ed

ar
e

in
d
ic

at
ed

in
b
o
ld

fa
ce

Inf Retrieval

123

T
a

b
le

4
A

D
A

B
O

O
S

T
.M

H
an

d
T

R
E

E
B

O
O

S
T
.M

H
o

n
R

C
V

1
-V

2
;

av
er

ag
in

g
is

p
er

fo
rm

ed
ac

ro
ss

‘‘
d
u
m

m
y
’’

ca
te

g
o
ri

es
o
n
ly

5
It

er
at

io
n

s
1

0
It

er
at

io
n

s
2

0
It

er
at

io
n

s
5

0
It

er
at

io
n

s
1

0
0

It
er

at
io

n
s

2
0

0
It

er
at

io
n

s
5

0
0

It
er

at
io

n
s

1
,0

0
0

It
er

at
io

n
s

R
C

V
1

- V
2

(D
U

M
M

Y

C
A

T
E

G
O

R
IE

S

O
N

L
Y

)

A
D

A
B

O
O

S
T
.M

H
(f

u
ll

fe
at

u
re

se
t)

.0
5

8
.1

3
3

.1
4

6
.2

0
5

.2
3

4
.2

7
0

.3
1

5
.3

2
8

.0
1

8
.0

3
3

.0
7

0
.0

9
5

.1
1

5
.1

5
0

.1
7

2
.1

7
8

T
R

E
E
B

O
O

S
T
.M

H
(f

u
ll

fe
at

u
re

se
t)

.1
4

5
(+

1
4

8
.1

%
)

.2
3

5
(+

7
6

.3
%

)
.2

6
1

(+
7

8
.4

%
)

.3
4

7
(+

6
9

.3
%

)
.3

8
8

(+
6

5
.7

%
)

.4
2

4
(+

5
6

.7
%

)
.4

5
4

(+
4

4
.1

%
)

.4
6

5
(+

4
1

.7
%

)

.0
3

0
(+

6
3

.5
%

)
.0

4
9

(+
4
8

.0
%

)
.0

8
7

(+
2

4
.8

%
)

.1
4

4
(+

5
1

.1
%

)
.1

8
1

(+
5

7
.8

%
)

.2
1

3
(+

4
1

.6
%

)
.2

1
9

(+
2

7
.8

%
)

.2
2

7
(+

2
7

.1
%

)

A
D

A
B

O
O

S
T
.M

H
(g

lo
b

al
F

S
)

.0
5

8
.1

3
3

.1
4

6
.2

0
5

.2
3

9
.2

6
8

.3
2

0
.3

3
7

.0
1

8
.0

3
3

.0
7

0
.0

9
5

.1
1

6
.1

4
7

.1
7

4
.1

8
5

T
R

E
E
B

O
O

S
T
.M

H
(g

lo
b

al
F

S
)

.1
4

5
(+

1
4

8
.1

%
)

.2
4

0
(+

8
0

.1
%

)
.2

6
1

(+
7

8
.6

%
)

.3
4

0
(+

6
6

.0
%

)
.3

8
5

(+
6

1
.0

%
)

.4
2

2
(+

5
7

.2
%

)
.4

5
0

(+
4

0
.5

%
)

.4
5

5
(+

3
5

.2
%

)

.0
3

0
(+

6
3

.5
%

)
.0

4
9

(+
4
7

.5
%

)
.0

8
9

(+
2

7
.8

%
)

.1
4

7
(+

5
4

.3
%

)
.1

7
7

(+
5

3
.2

%
)

.2
0

3
(+

3
8

.1
%

)
.2

2
3

(+
2

8
.0

%
)

.2
2

5
(+

2
1

.7
%

)

T
R

E
E
B

O
O

S
T
.M

H
(g

lo
ca

l
F

S
)

.1
4

5
(+

1
4

8
.1

%
)

.2
4

2
(+

8
2

.2
%

)
.2

7
8

(+
9

0
.3

%
)

.3
4

7
(+

6
9

.3
%

)
.3

8
7

(+
6

2
.0

%
)

.4
2

1
(+

5
7

.0
%

)
.4

5
0

(+
4

0
.6

%
)

.4
5

8
(+

3
6

.2
%

)

.0
3

0
(+

6
3

.5
%

)
.0

4
9

(+
4
9

.3
%

)
.1

0
3

(+
4

8
.1

%
)

.1
4

4
(+

5
0

.5
%

)
.1

7
8

(+
5

4
.1

%
)

.2
0

2
(+

3
7

.3
%

)
.2

1
8

(+
2

5
.2

%
)

.2
2

4
(+

2
0

.9
%

)

In
ea

ch
sq

u
ar

e,
th

e
fi

rs
t

fi
g

u
re

fr
o

m
to

p
is

F
1l

an
d

th
e

se
co

n
d

is
F

1M
.

T
h
e

b
es

t
ef

fe
ct

iv
en

es
s

re
su

lt
s

o
b
ta

in
ed

ar
e

in
d
ic

at
ed

in
b
o
ld

fa
ce

Inf Retrieval

123

T
a

b
le

5
S

ta
ti

st
ic

al
si

g
n

ifi
ca

n
ce

te
st

s
o

n
th

e
re

su
lt

s
o

f
T

ab
le

2

Û
1

Û
2

s-
te

st
S
-t

es
t

o
n

F
1

T
-t

es
t

o
n

F
1

T
0 -

te
st

o
n

F
1

p
-t

es
t

o
n

p
l

p
-t

es
t

o
n

ql

R
E

U
T

E
R

S
-2

1
5

7
8

A
D

A
B

O
O

S
T
.M

H
(f

u
ll

)
T

R
E

E
B

O
O

S
T
.M

H
(f

u
ll

)
\

�
�

�
�

�
A

D
A

B
O

O
S

T
.M

H
(g

lo
b
)

T
R

E
E
B

O
O

S
T
.M

H
(g

lo
b

)
*

�
\

\
�

�
A

D
A

B
O

O
S

T
.M

H
(g

lo
b
)

T
R

E
E
B

O
O

S
T
.M

H
(g

lo
c)

*
�

�
�

�
�

T
R

E
E
B

O
O

S
T
.M

H
(g

lo
c)

T
R

E
E
B

O
O

S
T
.M

H
(g

lo
b

)
*

*
*

*
*

*

R
C

V
1

-V
2

A
D

A
B

O
O

S
T
.M

H
(f

u
ll

)
T

R
E

E
B

O
O

S
T
.M

H
(f

u
ll

)
�

�
�

�
�

�
A

D
A

B
O

O
S

T
.M

H
(g

lo
b
)

T
R

E
E
B

O
O

S
T
.M

H
(g

lo
b

)
�

�
�

�
�

�
A

D
A

B
O

O
S

T
.M

H
(g

lo
b
)

T
R

E
E
B

O
O

S
T
.M

H
(g

lo
c)

�
�

�
�

\
�

T
R

E
E
B

O
O

S
T
.M

H
(g

lo
c)

T
R

E
E
B

O
O

S
T
.M

H
(g

lo
b

)
�

*
*

*
�

�
IC

C
C

F
T

A
D

A
B

O
O

S
T
.M

H
(f

u
ll

)
T

R
E

E
B

O
O

S
T
.M

H
(f

u
ll

)
*

�
�

\
\

�

A
ll

te
st

s
ar

e
co

n
d

u
ct

ed
o

n
th

e
re

su
lt

s
o

b
ta

in
ed

w
it

h
S

=
1

,0
0
0

b
o

o
st

in
g

it
er

at
io

n
s;

‘‘
fu

ll
’’

,
‘‘

g
lo

b
’’

an
d

‘‘
g

lo
c’

’
st

an
d

fo
r

n
o

fe
at

u
re

se
le

ct
io

n
,
g

lo
b

al
fe

at
u

re
se

le
ct

io
n

,
an

d
g

lo
ca

l
fe

at
u
re

se
le

ct
io

n
,
re

sp
ec

ti
v
el

y
;

‘‘
�

’’
(r

es
p

.,
‘‘\

’’
)

m
ea

n
s

th
at

cl
as

si
fi

er
Û

2
is

st
at

is
ti

ca
ll

y
si

g
n

ifi
ca

n
tl

y
b

et
te

r
th

an
cl

as
si

fi
er

Û
1

at
a

p
-v

al
u

e
B

0
.0

1
(r

es
p
.,

B
0

.0
5
);

‘‘
*

’’
m

ea
n
s

th
at

cl
as

si
fi

er
Û

2
is

n
o

t
st

at
is

ti
ca

ll
y

si
g
n
ifi

ca
n
tl

y
b
et

te
r

th
an

cl
as

si
fi

er
Û

1
at

p
-v

al
u

es
[

0
.0

5

Inf Retrieval

123

significantly better than ADABOOST.MH at a p-value B 0.01 in 17 out of 18 tests. The

strength of these results is also witnessed by the fact that these tests have been run on the

results obtained with S = 1,000 boosting iterations, i.e., the scenario in which (see

Table 2) the difference between the two systems is smallest.

Finally, note (see 4th and 8th rows of Table 5) that no statistically significant difference

is found between the global and ‘‘glocal’’ feature selection policies (however, note that

global consistently scores better than glocal on micro-level tests on RCV1-V2), thereby

reinforcing the impression that no significant advantage is to be gained by using the latter

instead of the former.

5.6 Efficiency

In terms of efficiency, we can observe that training time is +50.4% smaller, irrespectively

of the number of iterations, a reduction that confirms the theoretical findings discussed in

Sect. 4 (and that might likely be even more substantial in classification problems char-

acterized by a deeper, more articulated hierarchy). Classification time is also generally

reduced; aside from an isolated case in which it increases by 16.8%, it is reduced from

+5.5% to +67.4%, with higher reductions being obtained for high values of S; this is likely

due to the fact that, since high values of S bring about more effective classifiers, the

classifiers placed at internal nodes are more effective at ‘‘blocking’’ unsuitable documents

from percolating down to leaves which would reject them anyway.

The experiments run after global feature selection qualitatively confirm the results

above. Note that the effectiveness values are practically unchanged with respect to the full

feature set experiment; this is especially noteworthy for the RCV1-V2 experiments, in

which more than 96% of the original features have been discarded with no loss in effec-

tiveness. Effectiveness does not change also when using ‘‘glocal’’ feature selection. This is

somehow surprising, since an effectiveness improvement might have been expected here,

due to the generation of feature sets customized to each internal node. It is thus likely that

the values of v chosen when applying the global policy were large enough to allow the

inclusion, for each internal node, of enough features customized to it. We plan to carry out

further experiments in order to check whether, at more aggressive levels of reduction (i.e.

smaller values of v), the glocal policy will indeed prove superior to the global one.

6 Related work

HTC was first tackled in Wiener et al. (1995), in the context of a TC system based on

neural networks and latent semantic indexing. The intuition that it could be useful to

perform feature selection locally by exploiting the topology of the tree is originally due to

Koller and Sahami (1997). However, this work dealt with 1-of-n text categorization, which

means that feature selection was performed ‘‘collectively’’, i.e., relative to the set of

children of each internal node; given that we are in an m-of-n classification context, we

instead do it ‘‘individually’’, i.e., relative to each child of any internal node. The intuition

that the negative training examples for training the classifier for category cj could be

limited to the positive training examples of categories topologically close to cj is due to Ng

et al. (1997) and Wiener et al. (1995). The notion that, in an m-of-n classification context,

classifiers at internal nodes act as ‘‘routers’’ informs much of the HTC literature, and is

explicitly discussed at least in Ruiz and Srinivasan (2002), which proposes a HTC system

based on neural networks.

Inf Retrieval

123

Other works in hierarchical text categorization have focused on other specific aspects of

the learning task. For instance, the ‘‘shrinkage’’ method presented in McCallum et al.

(1998) is aimed at improving parameter estimation for data-sparse leaf categories in a 1-of-

n HTC system based on a naı̈ve Bayesian method; the underlying intuitions are specific to

naı̈ve Bayesian methods, and do not easily carry over to other contexts. Incidentally, the

naı̈ve Bayesian approach seems to have been the most popular among HTC researchers,

since several other HTC models are hierarchical variations of naı̈ve Bayesian learning

algorithms (Chakrabarti et al. 1998; Gaussier et al. 2002; Toutanova et al. 2001; Vin-

okourov and Girolami 2002); SVMs have also recently gained popularity in this respect

(Cai and Hofmann 2004; Dumais and Chen 2000; Liu et al. 2005; Yang et al. 2003).

Evaluation measures from flat classification are the most popular choices for evaluating

HTC systems. Some other researchers (Ceci and Malerba 2007; Sun and Lim 2001) have

proposed that evaluation measures specific to the hierarchical case should be used in HTC,

so that credit is given to ‘‘partially correct’’ classification, i.e., to the misclassification of a

document into a category topologically close to the correct one. We think that these

measures are difficult to judge in the abstract, since whether a user would gain any more

benefit from a ‘‘partially correct’’ classification than from a ‘‘completely wrong’’ classi-

fication remains open to question, and fundamentally dependent on the particular

application. We also believe that such proposals may be interesting, if at all, only in 1-of-m
classification, in which there is such a notion as the correct category to which a document

belongs. For the evaluation of our systems we have thus stuck to using ‘‘traditional’’

evaluation measures.

7 Conclusion

We have presented TREEBOOST.MH, a recursive algorithm for hierarchical text categori-

zation that uses ADABOOST.MH as its base step and that recurs over the category tree

structure. We have given complexity results in which we show that TREEBOOST.MH, by

leveraging on the hierarchical structure of the category tree, is exponentially cheaper to

train and to test than ADABOOST.MH. These theoretical intuitions have been confirmed by

thorough empirical testing on three standard benchmarks, on which TREEBOOST.MH has

brought about substantial savings at both learning time and classification time. TREE-

BOOST.MH has also shown to bring about substantial improvements in effectiveness with

respect to ADABOOST.MH, especially in terms of macroaveraged effectiveness; this feature

makes it extremely suitable to categorization problems characterized by a skewed distri-

bution of the positive training examples across the categories.

Acknowledgements This work has been partially supported by Project ‘‘Networked Peers for Business’’
(NeP4B), funded by the Italian Ministry of University and Research (MIUR) under the ‘‘Fondo per gli
Investimenti della Ricerca di Base’’ (FIRB) funding scheme.

References

Apté, C., Damerau, F. J., & Weiss, S. M. (1994). Automated learning of decision rules for text categori-
zation. ACM Transactions on Information Systems, 12(3), 233–251.

Cai, L., & Hofmann, T. (2004). Hierarchical document categorization with support vector machines. In
Proceedings of the 13th ACM International Conference on Information and Knowledge Management
(CIKM’04), pp. 78–87.

Inf Retrieval

123

Ceci, M., & Malerba, D. (2007). Classifying Web documents in a hierarchy of categories: A comprehensive
study. Journal of Intelligent Information Systems, 28(1), 37–78.

Chakrabarti, S., Dom, B. E., Agrawal, R., & Raghavan, P. (1998). Scalable feature selection, classification
and signature generation for organizing large text databases into hierarchical topic taxonomies. Journal
of Very Large Data Bases, 7(3), 163–178.

Cheng, C.-H., Tang, J., Wai-Chee, A., & King, I. (2001). Hierarchical classification of documents with error
control. In Proceedings of the 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD’01) (pp. 433–443). Hong Kong, CN.

Dumais, S. T., & Chen, H. (2000). Hierarchical classification of web content. In Proceedings of the 23rd
ACM International Conference on Research and Development in Information Retrieval (SIGIR’00)
(pp. 256–263). Athens, GR.

Fagni, T., & Sebastiani, F. (2007). On the selection of negative examples for hierarchical text categorization.
In Proceedings of the 3rd Language & Technology Conference (LTC’07) (pp. 24–28). Poznań, PL.

Forman, G. (2004). A pitfall and solution in multi-class feature selection for text classification. In Pro-
ceedings of the 21st International Conference on Machine Learning (ICML’04). Banff, CA.

Gaussier, É., Goutte, C., Popat, K., & Chen, F. (2002). A hierarchical model for clustering and categorising
documents. In Proceedings of the 24th European Colloquium on Information Retrieval Research
(ECIR’02) (pp. 229–247). Glasgow, UK.

Koller, D., & Sahami, M. (1997). Hierarchically classifying documents using very few words. In Pro-
ceedings of the 14th International Conference on Machine Learning (ICML’97) (pp. 170–178).
Nashville, US.

Lewis, D. D. (1992). Representation and learning in information retrieval. PhD thesis, Department of
Computer Science, University of Massachusetts, Amherst, US.

Lewis, D. D., Li, F., Rose, T., & Yang, Y. (2004). RCV1: A new benchmark collection for text categori-
zation research. Journal of Machine Learning Research, 5, 361–397.

Liu, T. Y., Yang, Y., Wan, H., Zeng, H. J., Chen, Z., & Ma, W. Y. (2005). Support vector machines
classification with a very large-scale taxonomy. SIGKDD Explorations, 7(1), 36–43.

McCallum, A. K., Rosenfeld, R., Mitchell, T. M., Ng, A. Y. (1998). Improving text classification by
shrinkage in a hierarchy of classes. In Proceedings of the 15th International Conference on Machine
Learning (ICML’98) (pp. 359–367). Madison, US.

Ng, H. T., Goh, W. B., Low, K. L. (1997). Feature selection, perceptron learning, and a usability case study
for text categorization. In Proceedings of the 20th ACM International Conference on Research and
Development in Information Retrieval (SIGIR’97) (pp. 67–73). Philadelphia, US.

Rose, T., Stevenson, M., & Whitehead, M. (2002). The Reuters Corpus Volume 1—from yesterday’s news
to tomorrow’s language resources. In Proceedings of the 3rd International Conference on Language
(LREC’02) Resources and Evaluation (pp. 827–832). Las Palmas, ES.

Ruiz, M., & Srinivasan, P. (2002). Hierarchical text classification using neural networks. Information
Retrieval, 5(1), 87–118.

Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions.
Machine Learning, 37(3), 297–336.

Schapire, R. E., & Singer, Y. (2000). BOOSTEXTER: A boosting-based system for text categorization.
Machine Learning, 39(2/3), 135–168.

Schapire, R. E., Singer, Y., & Singhal, A. (1998). Boosting and Rocchio applied to text filtering. In
Proceedings of the 21st ACM International Conference on Research and Development in Information
Retrieval (SIGIR’98) (pp. 215–223). Melbourne, AU.

Sebastiani, F., Sperduti, A., & Valdambrini N. (2000). An improved boosting algorithm and its application
to automated text categorization. In Proceedings of the 9th ACM International Conference on Infor-
mation and Knowledge Management (CIKM’00) (pp. 78–85). McLean, US.

Spiegel, M. R., & Stephens, L. J. (1999). Statistics (3rd ed.). New York, US: McGraw-Hill.
Sun, A., & Lim, E.-P. (2001). Hierarchical text classification and evaluation. In Proceedings of the 1st IEEE

International Conference on Data Mining (ICDM-01) (pp. 521–528). San Jose, US.
Toutanova, K., Chen, F., Popat, K., & Hofmann, T. (2001). Text classification in a hierarchical mixture

model for small training sets. In Proceedings of the 10th ACM International Conference on Infor-
mation and Knowledge Management (CIKM’01) (pp. 105–113). Atlanta, US.

Vinokourov, A., & Girolami, M. (2002). A probabilistic framework for the hierarchic organisation and
classification of document collections. Journal of Intelligent Information Systems, 18(2/3), 153–172.

Weigend, A. S., Wiener, E. D., & Pedersen, J. O. (1999). Exploiting hierarchy in text categorization.
Information Retrieval, 1(3), 193–216.

Inf Retrieval

123

Wiener, E. D., Pedersen, J. O., & Weigend, A. S. (1995). A neural network approach to topic spotting. In
Proceedings of the 4th Annual Symposium on Document Analysis and Information Retrieval
(SDAIR’95) (pp. 317–332). Las Vegas, US.

Yang, Y., & Liu, X. (1999). A re-examination of text categorization methods. In Proceedings of the 22nd
ACM International Conference on Research and Development in Information Retrieval (SIGIR’99)
(pp. 42–49). Berkeley, US.

Yang, Y., Zhang, J., & Kisiel, B. (2003). A scalability analysis of classifiers in text categorization. In
Proceedings of the 26th ACM International Conference on Research and Development in Information
Retrieval (SIGIR’03) (pp. 96–103). Toronto, CA.

Inf Retrieval

123

	Boosting multi-label hierarchical text categorization
	Abstract
	Introduction
	An introduction to boosting and AdaBoost.MH
	Choosing the weak hypotheses
	Implementing AdaBoost.MH

	A hierarchical version of AdaBoost.MH for multi-label TC
	Notation, definitions, and the semantics of hierarchies
	The rationale
	The algorithm

	The computational cost of TreeBoost.MH
	Experimental results
	Datasets
	Averaging effectiveness across categories
	The experiments
	Effectiveness
	Significance testing
	Efficiency

	Related work
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

