
Let The Puppets Move!
Automated Testbed Generation for Service-oriented Mobile Applications

Antonia Bertolino, Guglielmo De Angelis, Francesca Lonetti, Antonino Sabetta
Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”

Consiglio Nazionale delle Ricerche, Pisa, Italy
{antonia.bertolino, guglielmo.deangelis, francesca.lonetti, antonino.sabetta}@isti.cnr.it

Abstract

There is a growing interest for techniques and tools fa-
cilitating the testing of mobile systems. The movement of
nodes is one of the relevant factors of context change in
ubiquitous systems and a key challenge in the validation
of context-aware applications. An approach is proposed to
generate a testbed for service-oriented systems that takes
into account a mobility model of the nodes of the network
in which the accessed services are deployed. This testbed
allows a tester to assess off-line the QoS properties of a
service under test, by considering possible variations in the
response of the interacting services due to node mobility.

1 Introduction

Advances in networking technologies make available an
open wireless environment where services can be provided
anytime and anywhere to mobile users.

The proper functioning of a service depends on the re-
sources and services provided in the current configuration
of a network. Changes in network connectivity and loca-
tions may lead to unpredictable variations in contextual in-
formation. As a device moves across the network, the en-
vironment that surrounds it changes as well: new services,
offered by mobile nodes may become available, whereas
other services that where used previously, may no longer
be reachable. This dynamic transformation of the network
topology and, consequently, of the configuration of the en-
vironment must be taken into account when developing a
networked service, especially in the testing phase.

Context-awareness and adaptation are key features for
services that are to be deployed in different environments
and on hardware platforms with different characteristics.
Applications must be able to react to context changes and
to adapt themselves so as to continue to provide services
within the levels of Quality of Service (QoS) that were pre-

viously agreed. Therefore, in order to construct an efficient
and effective application, developers should test it in ad-
vance in all possible network scenarios. However, at devel-
opment time it is difficult to anticipate all possible configu-
rations in which a service will be executed. A solution for
off-line testing is to provide a testbed in which the behavior
of the underlying platform and network can be simulated
in a realistic way. In a mobile network, the most typical
context change is due to the movement of nodes.

We have investigated for some time the design of an off-
line validation framework enabling extra functional testing
of service-oriented systems. At the core of our approach
is a model-based stub generator, called PUPPET (Pick UP
Performance Evaluation Testbed) [2].

PUPPET supports the validation of service-oriented ap-
plications, aiming at evaluating the desired QoS character-
istics for a specific service under development before it is
deployed. PUPPET can automatically derive stubs for the
invoked services from their published functional and extra
functional specifications, thus generating an environment
within which the composite service can be run and tested.

In this work we “let the PUPPETs move”: we equip PUP-
PET with the capability to simulate the runtime movement
of the nodes that host the generated stubs. To this end, we
exploit the mobility models obtained with the NS-2 network
simulator [1]. NS-2 is an open source tool widely used
in the networking research community to simulate wired
and wireless network scenarios and to produce timestamped
movement traces of each network node for the whole simu-
lation time.

The contribution of this paper is thus the automated gen-
eration of a testing environment whose QoS properties de-
pend on the mobility models of the devices where the ser-
vices of the testbed are deployed. The benefit of introducing
a mobility model in PUPPET is twofold. On the one hand,
the proposed approach is able to validate the QoS features
of the Service Under Test (SUT) by taking into account the
availability of the other interacting services (in earlier works
we did not consider mobility and we assumed services were

always available). We assume that a service is available in a
network scenario if, according to the used mobility model,
the node where this service is deployed is reachable. On the
other hand, our testbed generator permits to use in the test-
ing phase the same mobility model that can be used during
the design and analysis phases.

In the next section, we provide a general scenario moti-
vating our proposal, then after describing the PUPPET tool
and the NS-2 simulator in Sec. 3 and Sec. 4 respectively, we
illustrate our approach in Sec. 5. An exploratory example
is presented in Sec. 6, while related work is summed up in
Sec. 7. Finally, we draw some conclusions in Sec. 8.

2 Motivating Example

This section illustrates a motivating example that we re-
fer in the rest of the paper to illustrate the proposed ap-
proach. Specifically, the scenario refers to an ideal service-
oriented system used in an hospital in order to forward (non
critical) assistance requests from patients to doctors. Three
kinds of entities are involved in the proposed example: the
doctors, the patients, and the Hospital Operator Service
(HOS) (see Fig. 1).

Each doctor is equipped with a PDA. Each PDA hosts a
set of services1 according to the role of the doctors in the
hospital and the kind of assistance they can give. Also each
patient has a mobile device that can be used to request as-
sistance from a doctor. In particular, the patient queries the
HOS for a doctor. Depending by the kind of the request,
the HOS starts invoking the services offered by each doctor
looking for a match between the patient request and the doc-
tor availability. When a match is found, the HOS informs
the patient that the request has been successfully scheduled.

Let us assume that the interactions between the HOS and
the services deployed on the doctor’s wearable device are
regulated by QoS agreements that impose constraints on the
latency of replies and on the reliability of the services. QoS
agreement may also be established between patients and the
HOS.

In this scenario we realistically consider that a doctor
moves within the hospital. Furthermore, he/she is not al-
ways present (i.e., reachable) or could be busy in some ac-
tivities. Thus the set of available services varies according
to some mobility models. As introduced above, we consider
that doctors play different roles in this scenario; thus we
also assume that the maximum tolerated response latency
of a service offered by a doctor’s PDA may vary.

Now, the behavior (both functional and extra functional)
of the HOS depends on the run-time behavior of doctors.
The more the doctors are available, the higher is the proba-
bility to find a doctor matching a patient request. Hence, the

1In the remaining of the paper we refer to Web Services indifferently
using both “Web Service” and “service” terms.

Figure 1. The Example Scenario

agreement on the response time that the HOS can offer to
patients varies depending on the roles played by the doctors
that are available.

Furthermore, the latency of a doctor’s response may be
also influenced by the network connectivity between the
HOS and the doctor (for example at a certain point in time,
a doctor can be far away from an access point). In order to
verify the actual QoS level that the HOS can deliver in such
varying real-life conditions, it is fundamental to be able to
model and measure the influence of all the above factors.

In the rest of the paper, we consider the interactions
among a patient, an HOS and the services offered by three
different doctors’ PDAs (i.e. D1, D2, D3 in Fig. 1).
The services provide the same functionalities, but the QoS
agreements between the HOS and each of them are differ-
ent. The HOS interface exposes a requestDoctor opera-
tion, while all the services exported by the doctors expose
the checkDoctor operation. When the HOS’s requestDoc-
tor operation is invoked by a patient, the HOS invokes the
checkDoctor operation on D1, D2, D3 successively.

To illustrate our approach, we suppose that the web ser-
vice implementing the HOS is under development. Further-
more, we put ourselves in the role of the team that develops
the HOS and needs to test the implementation in an envi-
ronment that is as close as possible to the run-time environ-
ment. As developers, we would like to reduce the effort to
be spent in developing a testbed for the HOS.

The PUPPET tool as presented in [4] addresses this is-
sue by automatically generating stubs that simulate the re-
quired external services that for different reasons could not
be available during the testing phase. Such stubs are capa-
ble of reproducing both the functional and extra functional
behavior of the missing services, and are ready-for-use in
mocking up the QoS testing environment. Nevertheless, the
previous version of the tool did not consider that the mobil-
ity of the services in the testbed may affect the QoS experi-
enced at the port of the SUT.

In the following of this paper we present an extended
version of PUPPET that can emulate also the mobility of
the devices on which the stubbed services are deployed. In
this way, our approach is able to derive realistic values for
the QoS offered by the HOS to the patients, by capturing
the effects of mobility and context (i.e. mutual position) on
service latency and reliability.

3 Puppet

In this section, we introduce PUPPET illustrating first the
main characteristics of the approach and then the logical
architecture of the implemented tool. As described above,
the idea of PUPPET is general and could be applied to any
instantiation of the Service Oriented Architecture (SOA).
However, the current implementation focuses on the Web
Services technology.

3.1 PUPPET: The Approach

In SOAs, services collectively interact to execute a unit
of programming logic [3]. Service composition allows for
the definition of complex applications at higher levels of
abstractions. Nevertheless, since services are always part
of a larger aggregation, their executions often rely on the
interaction with other/external services.

In such a cooperating scenario, let us consider the exam-
ple of a service provider who develops a composite service
SUT, which is intended to interact with several other exist-
ing services (e.g. the services S1, S2, and S3 deployed on
PDAs D1, D2, and D3). In general, we can suppose that the
service provider needs to test the implementation of SUT
but he/she does not own or control the externally invoked
services: for example interactions may have a cost that is
not affordable for testing purposes, or the external services
are being developed in parallel with SUT.

The approach proposed by PUPPET is to automatically
derive stubs for the externally accessed services Si from
published functional and extra functional specifications of
the external services. PUPPET generates an environment
(the services stubs) within which the composite service can
be run and tested (see Fig. 2).

While various kinds of testbed can be generated accord-
ing to the purposes of the validation activities, PUPPET aims
specifically at providing a testbed for reliable estimation of
the exposed QoS properties of the SUT. Concerning the ex-
ternally accessed services, PUPPET is able to automatically
derive stub services that expose a QoS behavior conform-
ing to the extra functional specifications such as agreements
among the interacting services.

Once the QoS tested is generated, the service provider
may test the SUT by deploying it on the real machine used
at run-time. This would help in providing realistic QoS

Figure 2. General idea of PUPPET

measures preventing the problem of recreating a fake de-
ployment platform; in particular, the QoS evaluations will
also take into account the other applications running on the
same machine that compete for resources with the service
under test (it is worth noting that handling this case would
be extremely difficult using analytical techniques).

3.2 PUPPET: The Tool

The logical architecture of PUPPET is structured in lay-
ered modules, whereby each module plays a specific role
within the stub generation process (see Fig. 3).

The most external module focuses on converting the ab-
stract part of a WSDL representation into a collection of
Java classes and interfaces. In PUPPET such transformation
is performed exploiting the Apache-Axis WSDL2Java util-
ity [15]. For each generated set of Java classes, the WSDL-
2Java tool generates also an “axis-dependent” deployment
specification. (i.e. the WSDD files [15])

Assuming that a service is characterized by means of
some extra functional properties, the second module of the
PUPPET generation process fills the stubs with the code sim-
ulating the extra functional behavior. We assume that the
desired QoS properties of a service are expressed according
to the WS-Agreement specification [9].

For each kind of term in the agreement, PUPPET imple-
ments a specific interpretation by means of a given opera-
tional semantics. Specifically, PUPPET interprets the QoS
statements into a parametric portion of Java code [4]. This
can be a quite complex and effort-prone task, but given a
specific set of QoS properties, the mapping of the related
concepts has to be done only once and for all. During
the generation of the code emulating the QoS properties,
the WSDD specifications are exploited in order to link the
proper Java files.

The stubs developed thus far include the set of operations
they export and the emulation code for the extra functional
behaviors as specified in the WS-Agreement. Next, PUPPET
can includes a module to link each stub with code emulating
the supposed functional behavior [4].

Figure 3. PUPPET Logical Architecture

The functional behavior of a service is modeled us-
ing an automata model called Symbolic Transition System
(STS) [7]. PUPPET inserts into the stubs parametric code
able to wrap an STS simulator [2]. Specifically, for each
invocation to a service the stub can call the STS simulator
package, choose one of the possible functionally correct re-
sults, and send it back to answer the service client request.
The STS simulator can keep track of the symbolic states in
which the STS can currently be. Thus, to supply the emula-
tion of the functional behavior, PUPPET would demand that
the external services carry on the STS specification corre-
sponding to their provided interface.

The new contribution of this paper concerns the module
that finally plugs into the obtained stubs the emulation of the
mobility. The detailed description of this module is given in
Sec 5.

In the end of the generation process, the developers can
collect the generated service stubs mocking up the environ-
ment they would emulate by deploying the generated stub
on any Axis platform.

4 The NS-2 Simulator

The NS-2 simulator is an open source network simula-
tion tool widely used in the networking research commu-
nity [1]. The first version of the Network Simulator was
developed by the Network Research Group at the Lawrence
Berkeley National Laboratory (LBNL). The second version
(NS-2) is now part of the Virtual InterNetwork Testbed

(VINT) project. NS-2 is an object-oriented, discrete-event
driven network simulator; it is implemented in C++ and
uses OTcl (Object Tool Command Language) for building
command and configuration interfaces. It was first aimed
at simulating large TCP/IP networks, and further enhanced
to integrate wireless extensions like IEEE 802.11, ad hoc
networks and, more recently, cellular communications.

In the approach proposed in this paper, we take advan-
tage of a simple functionality of NS-2, that is the gen-
eration of a mobility model for the network nodes. For
defining a simple movement of nodes we use the setdest
tool integrated within NS-2. For example, the following
line in the network scenario configuration file means that at
4.5 seconds, the node 1 starts to move toward the location
(210, 16) at the speed of 1.5m/s.
...
$ns at 4.5 ”$node (1) setdest 210 16 1.5”
...

Clearly, more complex or randomly generated movements
can be defined in the NS-2 simulator.

Results of NS-2 simulations are shown in a tabular form
by means of trace files. In a trace file, a timestamped line is
produced for each data packet that travels on the network. In
particular, the trace file can report the location of each node
at a given time interval (for example each second). Thus,
specifying for each node the initial position, and its speed,
it is possible to trace the movement of the node during the
whole simulation. For example, the following portion of an
output trace file reports the x, the y and the z coordinates
of the node 1 (i.e. -Ni 1) at the seconds 1, 2, and 3 of the

simulation time (i.e. -t).
...
... −t 1.000000000 ... −Ni 1 −Nx 601.29 −Ny 760.77 −Nz 0.00 ...
... −t 2.000000000 ... −Ni 1 −Nx 602.57 −Ny 761.54 −Nz 0.00 ...
... −t 3.000000000 ... −Ni 1 −Nx 603.86 −Ny 762.32 −Nz 0.00 ...

...

For sake of clearness, we report that this file is obtained
by specifying an initial position of the (x, y, z) node’s co-
ordinates equal to (600.00, 760.00, 0.00) respectively, and
imposing a speed of the node of 1.5m/s.

The NS-2 simulator can be used during the analysis and
the design of a service oriented application. As described in
Sec. 5, the PUPPET tool uses the trace files produced by the
NS-2 simulator as models for the mobility of nodes. Thus,
the mobility models generated during the phases of analysis
and design can be reused in order to reproduce the consid-
ered mobility scenarios also in the testing phase of the SUT.

5 The Puppets in Motion

In this section we describe the module that plugs into
the stubs code statements emulating services deployed on
mobile devices (Module 4 in Fig. 3). Mobility of devices
on which software services are deployed has a significant
impact during the assessment of the QoS properties of a
SUT. In particular, in a mobile environment where actors
can move, and services may appear or disappear, it is no
longer possible to rely simply on the agreement contracted
at the port of each service provider. The mobility of the
nodes may in fact give rise to different perceptions of QoS
properties even though all the services in the scenario are
respecting the contractual agreements. For example, the
availability that a client perceives of a service may vary ac-
cording to their relative position, even though the reliability
provided at service-side is always the same.

PUPPET emulates the mobility of the remote services
equipping the generated stub with a hook able to interact
with a mobility oracle. A mobility oracle is a service that
takes in input a mobility model produced by the NS-2 simu-
lator described in Sect. 4. This service exports an operation
that taking in input the name of the nodes where two ser-
vice are deployed, returns an index in [0..1] measuring the
damping factor in the QoS levels due to their relative dis-
tance. The index is 0 if the nodes are in the same position,
else it is 1 if the two nodes (and the services deployed on
them) are not visible each other. Values in (0..1) give indi-
cations on their relative distance.

PUPPET injects into the generated stub a portion of Java
code that interprets the damp index received from the mo-
bility oracle. If the returned damp index is 1, a failure is
generated as an exception raised by the platform hosting
the Web Service stub. In this manner, the reliability of the
SUT will depend not only on the reliability exposed in the
QoS agreements by the composed services, but also on the

availability of the services it composes, as simulated by the
mobility model of a given scenario.

When the damp index returned by the mobility oracle is
included in (0..1), the Java code injected into the stub be-
haves emulating an additional latency that is function of the
damp index. In this manner, the interactions between ser-
vices deployed on different nodes that can move in a space,
will affect the response time. The delta introduced in the
latency is function of the damp index.

Finally, the mobility oracle returns a 0 damp index when
two mobile devices are in the same location. In this case,
the extra functional behavior defined in the agreement is not
modified.

Note that both the functions computing the metric for the
visibility and the damping factor can be specifically defined
for each scenario. For example, in Sec. 6 we will imple-
ment the visibility function in terms of euclidean distance
between the two nodes. Two nodes will be visible if and
only if their relative distance is below a given threshold.
Also, the damping index influencing the QoS agreed by the
services will increase linear to the euclidean distance of the
nodes.

For the sake of completeness, we note that in this version
of PUPPET one only instance of the mobility oracle is shared
among all the stubs of a testing scenario.

6 Experimental Results

In this section we present some experimentations we
made on the motivating example we gave in Sec. 2, in order
to illustrate the usefulness of mobility models in the assess-
ment of QoS properties of a composite service. PUPPET
was used in order to generate and to mock up testing en-
vironments for the chosen SUT, i.e. the HOS. Thus, we
compare here the QoS properties measured at the port of
the HOS assuming different execution scenarios. We as-
sume that across the examined scenarios the composed ser-
vices always respect the agreed QoS properties; the scenar-
ios vary only in terms of their mobility models.

In particular, referring to the motivating example, PUP-
PET automatically derived stubs for the services S1, S2,
S3, assumed as deployed on the doctors’ PDAs D1, D2,
D3 respectively. In the following we show how the mobil-
ity of doctors influences the HOS’s estimated QoS proper-
ties. The results are provided in terms of service latency,
and reliability of HOS in responding to a patient request. In
a first experiment we measured the QoS properties of the
HOS when no mobility was associated with the PDA (base-
line model referred to as No Mobility). Then we repeated
the same test execution adding to the simulated devices in
the scenarios differing mobility models, to which we refer
as Mobility Model 1, and Mobility Model 2. For illustra-
tive purposes, Mobility Model 1 was defined to show vari-

(a) Distances of the Nodes from the HOS

(b) Response Time of the HOS

Figure 4. Testing with the Mobility Model 1

ations in the latency of the HOS; while Mobility Model 2
was defined to emphasize the variation in the reliability of
the HOS.

Note that, in this example, we used only deterministic
movements of the nodes. However, as already described in
Sec. 4, more complex or randomly generated movements
can be used.

As already introduced in Sec. 2, the HOS invokes con-
secutively the services S1, S2, and S3 looking for the first
one that is available. The services S1, S2, S3 behave ac-
cording to their respective WS-Agreement specifications.
In particular, the response times R1, R2, and R3 of the ser-
vices S1, S2, and S3 are different with R1 > R2 > R3.
Also we consider that the WS-Agreement specifies that
each service guarantees a reliability of max 3 failures in any
time window of 1 minute. If no mobility models are used,
both the latency and the reliability of HOS descend directly
from the QoS provided by the accessed services S1, S2,
and S3. We now introduce the mobility models; we assume

that two services are mutually visible if the relative distance
of the devices on which they are deployed is shorter than
400 ms. Furthermore, we assume that the latency of the in-
teracting services is affected by a factor that is proportional
to the distance of the nodes.

Fig. 4.a plots the distances of the doctors’ PDAs from the
HOS in the Mobility Model 1. Fig. 4.b depicts the measured
response time of the HOS comparing the scenario without
mobility models with the scenario with the Mobility Model
1. We can observe that initially the response time of the
HOS with Mobility Model 1 is close to the one measured
with the No Mobility model: the HOS tries to invoke service
S1 which is available and which replies with a response
time that is lower than the one of the other services. Around
second 40, the service S1 becomes unavailable because of
the PDA D1 is assumed to move away from the scope of
the HOS device. Then, the HOS invokes service S2 which
response time R2 is higher than R1. This can be also ob-
served in the plots after second 60, when the response time
of HOS grows as the only service available is S3, which
has the highest response time. Note that, around second 60,
either considering mobility or not, the response time of the
HOS increases anyway as the HOS generates an error when
none of the services invoked is available. Such failure was
due to the simulation of the reliability conditions that the
considered agreement includes.

Fig. 5.b, shows the HOS’s reliability, computed as the
number of failures in the unit of time. In particular, we com-
pare the reliability obtained by considering Mobility Model
2, depicted in Fig. 5.a, in comparison with No Mobility. In
both cases, around second 5, we see a low reliability value
due to an error occurred in the invoked service S3. On the
contrary, in the interval between seconds 20 and 80, while
the exposed HOS’s reliability is high if no mobility is con-
sidered, its value goes well below 100% when the doctors’
PDAs move according with the Mobility Model 2. This hap-
pens because of within such mobility model a service is not
always available in that time interval.

Although preliminary, the above examples show how the
new version of PUPPET can be used to realistically test the
QoS assessments of composite services in the context of
mobile environments.

7 Related Work

The testing for QoS evaluation is approached in many
works [6, 17] by addressing the derivation of a testing suite
representative of the real usage scenario. In this direction,
techniques considering context-changes in context-aware
applications are recently developed [11, 16, 20]. In particu-
lar, the authors of [20], propose an approach for improving
the test suite for ubiquitous applications. They aim at iden-
tifying context changes that can occur and affect the ap-

(a) Distances of the Nodes from the HOS

(b) Measured Reliability of the HOS

Figure 5. Testing with the Mobility Model 2

plication’s behavior at any time during the execution, then
they dynamically direct the application execution towards
the generated context sequences.

Another research area focuses on the ad-hoc develop-
ment of testing environments aimed at emulating mobility
for evaluating performances of specific protocols and ap-
plications for mobile networks. Examples of such testing
environments are presented in [13, 18, 19].

In this paper, we work at application level and we are
interested in the automatic generation of testbed for QoS
validation of context-aware service oriented systems. In
particular, we focus on context changes due to movement
of networked nodes. With reference to the generation of
testbeds for validation of QoS, a work presenting some sim-
ilarities with the approach presented here is [10] in which
a performance testbed generator for service-oriented sys-
tems is presented. The main difference with our proposal is
that the system proposed in [10] makes no use of any kind
of contract or agreement specification, differently from the

proposed approach which is based on QoS agreements as
described in [4].

The interesting issue addressed in this paper, not ap-
proached in [4], is how the location changes of network
nodes on which the interacting services are deployed, affect
the QoS of the SUT. Indeed, the extra functional correct-
ness of a service running on a networked device not only
depends on its internal execution environment but also the
external environments provided by the network where it is
deployed. As amply discussed in the paper, the movement
of nodes can change dynamically the interacting environ-
ment for the SUT.

Mobility in service-oriented testing research is still an
open issue. Many works on mobile computing [8, 12, 14],
propose solutions of logical mobility involving software,
such as mobile code and mobile agents, that move between
different servers and may use different sets of services on
each of them. In particular, the author of [14] proposes a
testing framework, called the Flying Emulator, where the
physical mobility is emulated through logical mobility, by
means of mobile agents.

As in our work, the main intent in [14] is the testing of
a software in a mobile environment. Specifically, the au-
thor defines a framework that is able to migrate the SUT
through different interconnected networks where various
kind of services could be available. Thus, [14] assumes
that the implementations of all the services are available at
testing time. However, as we discussed, in SOA 3rd-party
services may not always available for testing purposes. Dif-
ferently, PUPPET includes the automatic generation of the
stubs for these kind of services.

In this paper we consider a mobility model generated by
NS-2 simulator and used by our testbed to emulate the mo-
bility of the remote services. However, our approach does
not impose any restriction in the definition of the mobility
models. In [5] the authors propose the Connectivity Trace
Generator (CTG). CTG infers the mobility models from the
traces of movements collected from scenarios already “in
use”. Such traces can be used as mobility test cases. In
particular, as future work we could integrate the two ap-
proaches using the output traces from CTG in order to de-
fine the movements of the nodes in NS-2.

8 Conclusions

When dealing with mobile environments, the extra func-
tional properties of a composite service may depend not
only on the QoS features offered by the accessed services,
but also on the configuration and on the movement of the
nodes that host such services.

PUPPET is an environment for the automatic generation
of stubs simulating the behavior of external services in-
voked by a SUT. The service developer can test the SUT,

without having to access the real surrounding services. In
fact, it is often not possible to actually use third-party ser-
vices for testing purposes (e.g. services not available, usage
costs, unwanted side effects).

Nevertheless, an effective testbed generator that realisti-
cally emulates the runtime environment has to capture the
mobility of the nodes. To achieve this, we assume that dur-
ing the analysis and the design of a service-oriented applica-
tion, the mobility models of the most interesting scenarios
are specified. Each of such mobility models describes how
the devices that host the relevant services are supposed to
move at runtime.

The contribution of this work is an extension of PUPPET
that includes a module for the emulation of device mobil-
ity. Specifically, the PUPPET tool links each generated stub
with a mobility oracle. The mobility oracle determines the
effects on the QoS properties emulated by the stubs as a
function of the relative distance between nodes where the
stubs are deployed.

Thus, in addition to the models describing the functional
and the extra functional behavior of each service that is
generated, PUPPET takes into account mobility models ob-
tained with the NS-2 network simulator.

The NS-2 simulator is an open source network simula-
tion tool widely used in the analysis and the design of pro-
tocols and applications for interacting network nodes. In the
approach proposed in this paper, we used NS-2 only to sim-
ulate the movement of the nodes in a given space. As a fu-
ture work, we intend to extend the integration between PUP-
PET and the NS-2 simulator by exploiting the more complex
and advanced modeling functionalities of NS-2 in order to
give a more precise characterization of the effects of mo-
bility on QoS and to better address the testing of adaptable
context-aware applications.
Acknowledgements. The authors wish to thank Andrea
Polini for his important contribution to the research on PUP-
PET. This work was supported in part by the PLASTIC
Project (EU FP6 STREP n. 26955) and in part by the TAS3

Project (EU FP7 CP n. 216287).

References

[1] The network simulator NS-2 homepage.
http://www.isi.edu/nsnam/ns/.

[2] Plastic tools homepage.
http://plastic.isti.cnr.it/wiki/doku.php/tools.

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.
Web Services–Concepts, Architectures and Applications.
Springer–Verlag, 2004.

[4] A. Bertolino, G. De Angelis, L. Frantzen, and A. Polini.
Model-based Generation of Testbeds for Web Services. In
Proc. of the 20th IFIP Int. Conference on Testing of Commu-
nicating Systems (TESTCOM 2008), LNCS. Springer Ver-
lag, 2008. – to appear.

[5] R. Calegari, M. Musolesi, F. Raimondi, and C. Mascolo.
CTG: a connectivity trace generator for testing the perfor-
mance of opportunistic mobile systems. In Proc. of the 6th
joint meeting ESEC/FSE, pages 415–424, September 2007.

[6] G. Denaro, A. Polini, and W. Emmerich. Early performance
testing of distributed software applications. In Proc. of the
4th International Workshop on Software and Performance
(WOSP), pages 94–103, January 2004.

[7] L. Frantzen, J. Tretmans, and T. Willemse. A Symbolic
Framework for Model-Based Testing. In Formal Approaches
to Software Testing and Runtime Verification – FATES/RV
2006, number 4262 in LNCS, pages 40–54. Springer, 2006.

[8] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding
code mobility. IEEE Transactions on Software Engineering,
24(5):342–361, May 1998.

[9] Global Grid Forum. Web Services Agreement Specification
(WS–Agreement), version 2005/09 edition, September 2005.

[10] J. Grundy, J. Hosking, L. Li, and N. Liu. Performance
engineering of service compositions. In Proc. of Interna-
tional Workshop on Service-oriented Software Engineering
(SOSE), pages 26–32, May 2006.

[11] H. Lu, W. K. Chan, and T. H. Tse. Testing context-aware
middleware-centric programs: a data flow approach and an
RFID-based experimentation. In Proc. of the 14th Interna-
tional Symposium on Foundations of Software Engineering,
pages 242–252, 2006.

[12] G. C. Roman, G. P. Picco, and A. L. Murphy. Software en-
gineering and mobility: A roadmap. In Proc. of the Confer-
ence on The Future of Software Engineering (ICSE), pages
241–258, June 2000.

[13] S. Sanghani, T. Brown, S. Bhandare, and S. Doshi. EWANT:
the emulated wireless ad hoc network testbed. In Proc.
of Wireless Communications and Networking Conference
(WCNC), volume 3, pages 1844–1849, March 2003.

[14] I. Satoh. A testing framework for mobile computing
software. IEEE Transactions on Software Engineering,
29(12):1112–1121, December 2003.

[15] The Apache Software Foundation. Axis User’s Guide.
http://ws.apache.org/axis/java/user-guide.html.

[16] T. H. Tse, S. S. Yau, W. K. Chan, H. Lu, and T. Y. Chen.
Testing context-sensitive middleware-based software appli-
cations. In Proc. of the 28th International Computer Soft-
ware and Applications Conference, pages 458–465, 2004.

[17] E. J. Weyuker and F. I. Vokolos. Experience with perfor-
mance testing of software systems: Issues, an approach, and
case study. IEEE Transactions on Software Engineering,
26(12):1147–1156, December 2000.

[18] Y. Zhang and W. Li. An integrated environment for testing
mobile ad-hoc networks. In Proc. of 3rd International Sym-
posium on Mobile ad Hoc Networking & Computing (MO-
BIHOC), pages 104–111, June 2002.

[19] J. Zhou, Z. Ji, and R. Bagrodia. TWINE: A hybrid emula-
tion testbed for wireless networks and applications. In Proc.
of the 25th International Conference on Computer Commu-
nications (INFOCOM), pages 1–13, April 2006.

[20] Z.Wang, S. Elbaum, and D. S. Rosenblum. Automated gen-
eration of context-aware tests. In Proc. of the 29th Interna-
tional Conference on Software Engineering (ICSE), pages
406–415, May 2007.

View publication stats

https://www.researchgate.net/publication/220964157

