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Abstract—Efficient processing of similarity joins is important
for a large class of data analysis and data-mining applications.
This primitive finds all pairs of records within a predefined
distance threshold of each other. However, most of the existing
approaches have been based on spatial join techniques designed
primarily for data in a vector space. Treating data collections as
metric objects brings a great advantage in generality, because a
single metric technique can be applied to many specific search
problems quite different in nature.

In this paper, we concentrate our attention on a special form
of join, the Self Similarity Join, which retrieves pairs from the
same dataset. In particular, we consider the case in which the
dataset is split into subsets that are searched for self similarity
join independently (e.g, in a distributed computing environment).
To this end, we formalize the abstract concept of ε-Cover, prove
its correctness, and demonstrate its effectiveness by applying it
to two real implementations on a real-life large dataset.

I. INTRODUCTION

Similarity join between two datasets is a database primitive
that retrieves all pairs of objects whose distance does not
exceed a given threshold ε. This search paradigm has been
successfully applied to a large class of applications such as
data analysis, data mining, location-based applications, and
time-series analysis. Moreover it has been generalized into
a model in which a set of objects can only be pairwise
compared through a distance measure satisfying the metric
space properties [1].

The problem of similarity join emerges naturally in a variety
of applications where the user is not only interested in the
properties of single data objects but also in the properties of
the data set as a whole, as, for instance, in data mining appli-
cations. Considering the typical clustering task of data mining,
many of the state-of-the-art algorithms require to process all
pairs of data items which have a distance not exceeding a user-
given parameter ε. Consequently, many of these algorithms can
be directly performed on top of a similarity join as proposed
in [2].

An important special case, which is the focus of this
research, is the self join where duplicate, near-duplicate, or
very similar items within a single dataset are identified. Appli-
cations like data cleaning, data integration, and copy detection,
typically rely on such a join. For instance, various Internet
services often require an integration of heterogeneous sources
of data. Such sources are typically unstructured whereas the
intended services often require structured data. The main

challenge is to provide consistent and error-free data, which
implies the data cleaning [3], typically implemented by a
sort of similarity join. The goal of data cleaning is to match
records that refer to the same real-world entity while not
being syntactically equivalent. In order to perform such a task,
similarity rules are specified to decide whether specific pieces
of data may actually be the same things or not. A similar
approach can also be applied to the copy detection as, for
instance, in applications that have been proposed to safeguard
intellectual property [4].

Though the similarity join has always been considered as a
basic similarity search operation, there are only few indexing
techniques, most of them concentrating on vector spaces and
designed for centralized systems. In this paper, we consider the
problem from a much broader perspective and assume distance
measures as metric functions. Such a view extends the range
of possible data types to the multimedia dimension, which is
typical for modern information retrieval systems.

However, the quadratic computational complexity of sim-
ilarity joins prevents from applications on large data collec-
tions. To give an idea, let us consider a database of one million
records. For computing the self similarity join, we need a
number of distance evaluations of the order of one thousand
billion. This scenario clearly requires an approach that exploits
some form of preprocessing or data structure so that the query
is answered efficiently. Recent studies [5], [6], [7] tried to
approach the problem by recursively dividing the data until
each partition contains few objects, at which point a nested-
loop join (or some other optimized strategy) is used. In order
to prevent that significant portion of the desired results will be
missed since objects in one partition might need to be joined
with objects in another partition, these techniques require that
the data is replicated into the partitions.

Although this idea is quite intuitive, to the best knowledge
of the author, its correctness has never been formally proven.
Moreover, the data can be partitioned using a variety of
techniques, such as ball partitioning, which divides the data
on the basis of their distance to a single pivot (i.e., a random
object), or the Voronoi-like partitioning which assigns every
object to its closest pivot. For these reasons in this work we
first formally define the abstract concept of ε-Cover that is
valid in any continuous metric space and it is independent from
the technique adopted for partitioning the dataset. We prove
its correctness, and demonstrate its effectiveness by applying



it to two real implementations.
The remainder of our paper is organized as follows: in

Section II, we discuss related work. In Section III, we define
principles of the similarity join search in metric spaces and
give some definitions. In Section IV, we introduce the concept
of ε-Cover and prove its suitability in solving the problem
of similarity self join. Then, we introduce the problem of
duplicates and propose an approach for dealing with it, in
Section V. An experimental evaluation of our approach is
presented in Section VI. Finally, in the conclusive section, we
analyze the scalability of the proposed strategy. The proofs of
the theorems are given in appendix A.

II. RELATED WORK

The problem of similarity join has been studied in a variety
of contexts. Most of the proposed approaches use specialized
techniques for specific data types. For instance in [8] an
approximate string join algorithm is proposed. This approach
is based on segmenting strings into q-grams and introduces
an additional overhead for building lists of q-grams. Another
paper [9] proposes the neighborhood join algorithm, which
uses the difference of lengths of compared strings as the
simplified distance function for the pre-filtering rule.

Many techniques have been proposed on finding similar
pairs of objects in high-dimensional spaces (e.g, [10], [11],
[12], [13], [14]), while [15] offers a latest, comprehensive
survey on spatial join techniques.

Concerning the problem of computing the join in parallel,
other research studies propose methods of parallelizing high-
dimensional proximity joins [16], [17], [18] and spatial joins
[19], [20]. In [21] an approach to support similarity queries
on structured data in a distributed system is presented. This
system uses the edit distance for strings and the Euclidean
distance for numerical values to express similarity and imple-
ments a form of similarity join

The extension of distributed data structures to support
similarity search in metric spaces is studied in four different
approaches recently proposed: the first two, the GHT* [22] and
the VPT* [23], are native metric index structures whereas the
other two, MCAN [24] and the M-Chord [25], transform the
metric search issue into a different problem and take advantage
of some well-known solutions.

As far as the author knows, this work represents the first
attempt to formalize and study the problem of similarity
join in metric space in a distributed environment. This work
generalizes to any type of Cover the principle of overlapping
partitions proposed in prior work [5] for self similarity joins
in metric spaces using a Content-Addressable Network.

III. PRELIMINARIES

In this section, we present the preliminaries for metric
spaces and self similarity join algorithm, the notation we use
in this work, and the notion of self completeness up to ε.

A. Metric spaces

Metric spaces formalize the notion of similarity by applying
a metric function to decide the closeness of objects as a pair-
wise distance, which can be seen as a measure of the objects
dis-similarity. A metric space M = (D, d) is defined by a
domain of objects (elements, points) D and a total (distance)
function d – a non negative (d(x, y) ≥ 0 with d(x, y) = 0
iff x = y) and symmetric (d(x, y) = d(y, x)) function, which
satisfies the triangle inequality (d(x, y) ≤ d(x, z) + d(z, y),
∀x, y, z ∈ D).

Given a dataset of metric objects X ⊆ D and a query object
q ∈ D, two fundamental similarity queries can be defined. A
range query retrieves all elements within distance r to q, that
is the set {x ∈ X, d(q, x) ≤ r}. A k-nearest neighbor query
retrieves the k closest elements to q, that is a set R ⊆ X such
that |R| = k and ∀x ∈ R, y ∈ X − R, d(q, x) ≤ d(q, y).

B. Partitions and Covers

Throughout the paper, we will often exploit the notions of
Partition and Cover of a metric space (D, d), which are given
in the following definitions

Definition 1: Given a set X ⊆ D, a partition

P(X) = {P1(X), . . . ,PN (X)}
is a collection of disjoint subsets whose union is X ; that is,⋃N

i=1 Pi(X) = X and ∀i �= j Pi(X) ∩ Pj(X) = ∅.
The concept of cover is a generalization of the partition

concept, in which we relax the constraint that subsets must be
pairwise disjoint.

Definition 2: Given a set X ⊆ D, a cover

C(X) = {C1(X), . . . , CN (X)}
is a collection of subsets whose union is X ; that is,⋃N

i=1 Ci(X) = X .
In practice, we are allowing the subsets Ci(X) to “overlap”
one each other, | ⋃N

i=1 Ci(X)| ≤ ∑N
i=1 |Ci(X)|, in other words

the objects in the original set X can be found replicated in
more than one subset Ci(X).

In this paper, we will use a calligraphic capital symbol
to denote a subset Pi(X) ∈ P(X), and when we omit the
argument X , it is just meant X = D, the whole metric
space. Partitions and covers will be typically defined through a
boolean predicate that decides if an object x ∈ D belongs to a
subset. Formally, the subset Pi(X) = {x ∈ X | pi(x) = true}
where pi is the boolean predicate defined as pi : D →
{true, false}. For instance, a closed ball Pb(X) can be defined
as {x ∈ X | d(x, x0) ≤ r}, where r is a non negative real
number and x0 ∈ D the center of the ball. In this paper, subsets
of D are referred to as cells.

Another important definition we need is the notion of cover
inclusion.

Definition 3: Given two covers of the set X C(X) =
{C1(X), . . . , CN(X)} and Q(X) = {Q1(X), . . . ,QN (X)},
we say that cover Q includes C, i.e., C(X) ⊆ Q(X) if

∀i Ci(X) ⊆ Qi(X).



C. Self Similarity Join

Here we give the definition of self similarity join (SSJ):
Definition 4: The self similarity join up to ε (with ε > 0) of

a finite set of metric objects X ⊆ D is defined as the following
collection of pairs

SSJε(X) � {〈x, y〉 ∈ X × X | d(x, y) ≤ ε}
We now come to the central definition of our approach.

Definition 5: We say that the cover C = {C1, . . . , CN} is
self complete up to ε if

∀X ⊆ D : SSJε(X) =
N⋃

i=1

SSJε(Ci(X))

In practice, this property ensures that if we compute the SSJ
up to ε on each subset Ci(X), it is guaranteed that we do not
miss any pair that is in the SSJ applied to the whole dataset
X . As it is easy to understand, this is not true in general, since
objects in one subset might need to be joined with objects in
another subset. It is trivial to prove that any partition P is
guaranteed to be self complete up to 0.

IV. ε−COVER

In this section we define a special type of cover: the
ε−Cover of a continuous metric space (D, d). In general D
can be any subspace of continuous metric space S, in this case
we only require that D is convex1.

Definition 6: Given an arbitrary partition P= {P1, . . . ,
PN} of the metric space (D, d), the corresponding ε−Cover
Oε(P) = {Pε

1, . . . ,Pε
N} is defined as

Pε
i � {x ∈ D | d(x,Pi) ≤ ε

2
} (1)

Where the distance between a set and an object is defined as
d(x, X) = inf{d(x, y) | y ∈ X}, as the intuition suggests.
In practice, this technique consists of defining a basic partition
{P1, . . . ,PN} and a corresponding cover in which we expand
the sets of a “strip” of width ε/2 from which the i-th subset
borrows objects from the k-th subset. Figure 1 shows an
illustration of a ε−Cover in R

2. It is worth noting that, in
principle a subset Pi is permitted to be open, i.e., can contain
only part of its boundary2. Therefore in general O0(P) �= P is
true.

Theorem 1: Any cover Q including an ε-Cover, i.e.
Oε(P) ⊆ Q, is self complete up to ε.

Now that we have given the notion of ε−Cover and proved
its suitability for the problem of SSJ, we are going, in the
next sections, to show two real examples of covers. In order
to prove that these approaches are self complete up to ε, it is
sufficient to prove that they include the general ε−Cover of
Definition 6.

1In general, a metric space is said to be convex if for any x �= y there
exists a point z different from x and y with d(x, y) = d(x, z)+d(z, y) [26].

2Suppose D is a metric space, X is a subset of D and x ∈ D. Then x is
called a boundary point of X in D if, and only if, d(x, X) = 0 = d(a, X).
Where X is the complement of X in D [27].
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Fig. 1. Example of ε−Cover in R
2 including four cells.

A. ε−Voronoi Cover

The ε−Voronoi Cover is based on a generalization of the
well–known homonymous tessellation (sometimes known as
Dirichlet tessellation). This approach is similar to the one used
in the Quickjoin technique presented by Jacox et al. in [6].

Definition 7: Given a set of N distinct reference objects
v1, . . . , vN of D. The Voronoi partition VN = {V1, . . . , VN}
is defined as in the following:

Vi � V̇i

⋃
V̂i. (2)

Where

V̇i � {x ∈ D | d(x, vi) < d(x, vj) ∀j �= i}, (3)

and
V̂i � {x ∈ D | d(x, vi) = d(x, vj) ∀j ≥ i}. (4)

Note that V̇i represents the interior of a cell of the Voronoi
decomposition [28] and V̂i is its boundary, in fact the condition
in Eq. (4) guarantees that any object x ∈ D belongs to just
one cell Vi.

Definition 8: Given a Voronoi partition VN = {V1, . . . ,
VN} the corresponding ε−Voronoi Cover Vε

N is a collection
of cells {Vε

1, . . . , Vε
N} for which

Vε
i �

⎧⎨
⎩

Vi if ε = 0

Vi +
⋃

∀k �=i Vε
ik if ε > 0

(5)

where the cells V ε
ik are defined as

Vε
ik � {x ∈ Vk | d(x, vi) − d(x, vk) ≤ ε} i �= k, (6)

Figure 2 illustrates an example of ε−Voronoi Cover on
R

2 including three cells. Note that the cells Vi represent the
typical Voronoi diagram, while, V ε

i can be seen as an extension
of a single cell for a “strip” of width ≥ ε/2.

Theorem 2: Any ε−Voronoi Cover Vε
N is self complete up

to ε.
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Fig. 2. Example of ε−Voronoi Cover in R
2 including three cells.

B. ε−Box Cover

ε−Box Cover is based on a cell obtained by intersecting
m ring-shaped regions, which assumes the form of hyper-
rectangle in the well-known transformed “pivot space”.

Definition 9: Given a set of m distinct reference objects
b1, . . . , bm of D, the Box partition BN is a collection of
cells {B1, . . . ,BN}, where the cell Bi (i.e., box), is given
by the cartesian product of closed interval of distances with
bj . More precisely, each box Bi is represented by two sets
of m non negative real numbers L i = {li1, . . . , lim} and
U i = {ui

1, . . . , u
i
m} be such that lij < ui

j , and is defined
as

Bi = {x ∈ D, 1 ≤ j ≤ m | lij ≤ d(x, bj) < ui
j}. (7)

The sets Li and Ui are chosen in order to guarantee that3

N⋃
i=1

Bi = D Bi

⋂
Bk = ∅ ∀i �= k (8)

Definition 10: Given a Box partition BN = {B1, . . . , BN}
the corresponding ε−Box Cover Bε

N is a collection of cells
{Bε

1, . . . , Bε
N} for which

Bε
i �

⎧⎨
⎩

Bi if ε = 0

Bi +
⋃

∀k �=i Bε
ik if ε > 0

(9)

where the cell Bε
ik is defined as follows (i �= k < N )

Bε
ik = {x ∈ Bk, 1 ≤ j ≤ m | lij −

ε

2
≤ d(x, bj) ≤ ui

j +
ε

2
}.

(10)
Figure 3 illustrates the idea behind of the above definitions.

Theorem 3: Any ε−Box Cover Bε
N is self complete up to ε.

3Note that, uN
j is permitted to be ∞.
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Fig. 3. Example of ε−Box Cover in R
2 including four cells.

V. DUPLICATE AVOIDANCE

An important issue arises in the application of the ε-Cover:
the problem of duplicate pairs in the result of the join query.
The problem of duplicates detection is, in general, not a
complex task, since the process that collects the result set can
easily identify duplicates provided that each object is uniquely
identified by a number. However, in case the pairs retrieved
must be sent over the network to a collector processing node,
this overhead can affect the performance of the whole SSJ
response time.

In this section, we try to approach this problem by building
a special boolean predicate ri(x, y) for each cell Ci that
permits to decide if a qualified 〈x, y〉 must be reported or not,
guaranteeing in this way that 〈x, y〉 is returned only once. It
is worth nothing that this technique is valid for any cover no
matter is ε-Cover or not (it does not guarantee correctness but
just absence of duplicates). If you are not interested in the
details of how these functions are implemented, skip now to
the next section.

Before defining ri(x, y), we need the following two defini-
tions.

Definition 11: Given a cover C = {C1, . . . , CN}, we define
the bijective function

α(Ci) : C → {1, . . . , N}
that assigns a distinct integer in the interval [1,N] to each cell
of the cover.

Definition 12: for each object x ∈ D we define the function
σ(x) as follows:

σ(x) : D → Θ({1, 2, . . . , N})
where Θ({1, 2, . . . , N}) is the collection of all possible sub-
sets of {1, 2, . . . , N} excluding the empty set, and σ(x) has
the following property

x ∈ Ci ⇔ α(Ci) ∈ σ(x) (11)
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Fig. 4. Example of ε−Cover in R
2 including four cells.

In practice, σ(x) is a function that returns the set of indexes
of the covers to which x belongs.

Definition 13: Given a cover C = {C1, . . . , CN}, for each
cell Ci and a pair of object x, y ∈ Ci, the function ri(x, y) :
D ×D → B is defined as:

ri(x, y) =

⎧⎨
⎩

true if min σ(x)
⋂

σ(y) = i

false otherwise
(12)

We can finally avoid duplicates in elaborating the self
similarity join by using the procedure SSJ ∗

ε given in the
following definition.

Definition 14: Let X ∈ D be a finite dataset of metric ob-
jects and C = {C1, . . . , CN} be an arbitrary cover. Assuming
Xi = Ci(X), the SSJ∗

ε(Xi) is defined as in the following

SSJ∗ε (Xi) � {〈x, y〉 ∈ Xi × Xi |

d(x, y) ≤ ε ∧ ri(x, y) = true}.
(13)

The idea behind the formal definitions is straightforward.
When a qualified pair 〈x, y〉 is found in subset Xi the
corresponding function ri(x, y) returns true either if the pair
〈x, y〉 is contained only in Xi or i is the smallest index of
the subsets that share the same pair 〈x, y〉. See Figure 4. This
concept is formalized by the following theorem.

Theorem 4: Let X ∈ D be an arbitrary finite dataset of
metric objects and let C(X) = {C1(X), . . . , CN(X)} be a
generic cover, then

∀i �= j SSJ∗ε (Xi)
⋂

SSJ∗ε (Xj) = ∅,
where Xi = Ci(X) and Xj = Cj(X).

VI. PERFORMANCE EVALUATION

A. Datasets and Problem Size

In order to test the Voronoi and Box methodologies pre-
sented above, we have conducted some experiments using a
large real-life dataset of MPEG-7 Scalable Color Descriptors
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Fig. 5. Performance evaluation of a sequential implementation of NL
algorithm.

(SCD) extracted from one million images of the CoPhIR
dataset [29]. The distance used for this visual descriptor is
the L1, as suggested by the MPEG-7 standard [30].

In the paper, we measure the computational complexity
through the number of distance evaluations. Assuming M
be the dataset size, the self similarity join can be evaluated
by a simple algorithm that computes M·(M−1)

2 distances
between all pairs of objects, referred in literature to as Nested
Loop (NL).

The challenge of the proposed approach is to address the
problem of the intrinsic quadratic complexity of similarity
joins, with the aim of limiting the computation time, by
involving an increasing number of computational nodes as the
dataset size grows. Indeed, consider that the time estimated
for the simple NL algorithm in sequential manner is more
than five days for the complete dataset of one million objects.
Figures 5 shows the number of pairs retrieved for increasing
values of ε for the dataset of one million objects. In all the
proposed experiments we implicitly assume to assign each cell
to an independent computational node.

The main aim of this experimentation is to study the
suitability of these methodologies to cope with the problem
of SSJ, with special regard to the scalability issues.

It is important to remark that, in a real scenario as the one
we are evaluating, the calculation of the distance function d
has typically a high computational cost. Therefore, the main
objective of a metric-based data structure is to reduce the
number of distance computations at query time. The number of
distance computations is typically considered as an indicator
of the structure efficiency. On the other hand, during the
evaluation of the SSJ∗

ε on a subset Xi = Pi(X) by means
of the NL algorithm, we can employ the knowledge of the
precalculated distances with respect to the reference objects to
get a lower bound of the distance d(x, y). In case this lower
bound exceeds the threshold ε we can discard the pair 〈x, y〉
without computing d(x, y). This technique is often known as
pivot filtering. For this reason, to give a fair comparison, in



the experimental evaluation we also report the number of pairs
of the subset Xi processed by NL, which is given by ≈ n2/2,
where n = |Xi|.

The latter amount can be seen as an upper bound for
the computational cost of the SSJ, while the former one
(pivot filtering) represents in some way a lower bound for the
computational cost. The actual computational time will fall in
between these two figures, in fact this cost may also depend
on the cost for pivot filtering, the cost for implementing the
duplicate avoidance. Moreover, in many cases metric access
methods can be employed, allowing us to obtain an average
run time complexity near to O(n log n), when ε is small.

Concerning the global costs, we use the following two
characteristics to measure the computational costs of a query:

• sequential distance computations – the sum of the number
of distance computations of SSJ ∗

ε on all subsets Xi,
• parallel distance computations – the maximal number of

distance computations among the SSJ ∗
ε performed on the

subsets Xi in parallel.
To give an example, consider a case of just three subsets

on which we execute a SSJ∗
ε with number of distance compu-

tations being respectively 200, 300, and 500. In this case, the
total distance computations would be 1,000 and the parallel
distance computations would be 500.

In this experimental evaluation we have build a ε-Voronoi
cover of cardinality N = 200 (i.e., employing 200 reference
objects), and a ε-Box cover of cardinality N = 128 that
employs 10 reference objects. In order to choose the reference
objects, we use the Incremental Selection algorithm described
in [31].

In Figure 6, we report the sequential costs of the SSJ using
the two approaches, in which we set ε to 10 and we varied
the SSJ threshold from 0 up to ε. In fact, the number of
distance computations can be significantly lower when the SSJ
threshold does not reach maximum value ε supported by the
covers.

As it can be seen, in the two cases, the performance of
Box cover is much better than the one obtained using Voronoi
cover. The rationale for this behavior mainly lies in the fact
the Box cover uses all 10 reference objects when employing
pivot filtering, while in Voronoi cover we can only exploit one
reference object in each cell.

This discrepancy is even more pronounced if we consider
the experiments concerning the parallel costs of Figure 7. This
is due to the fact that in considering the parallel costs, the
uniformness of the objects distribution over the cells strongly
affects the performance.

In this second set of experiments, we analyze the behavior of
the two methodologies by concentrating our attention on scal-
ability issues. Particularly, we have considered four collections
of objects (i.e., SCD) starting from 125 thousands of objects
and growing by doubling its size, that is 125,000, 250,000,
500,000, and 1000,000. The number of (computational) cells
is doubled accordingly and it is 25, 50, 100, and 200 for
the Voronoi covers and 16, 32, 64, and 128 for the Box
cover. Figure 8 shows the corresponding graphs for a SSJ
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Fig. 6. Sequential cost of SSJ for several values of the threshold and for
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with threshold equal to 10. We can see that in both cases
the costs grow linearly (both axis have logarithmic scales).
We will come back to this point in the conclusive section.

We also studied the replication factor R of the covers, which
is defined as the ratio M ∗/M , where M is the size of the
dataset and M ∗ the sum of cardinalities of all subsets, i.e.,∑ |Xi|. Therefore, R ≥ 1 (R = 1 means no duplicates).

Figure 9 shows the replication factor scalability, for the
same four datasets of the previous experiments. As it is
possible to note, the worst case is exhibited by the Voronoi
cover. However, it must be highlighted that the extra space
due to replication is scattered over an increasing number of
cells. Therefore, in a distribute environment this drawback is
tolerable.

Another interesting issue we can study is the degree of
overlapping among the subsets, which we call overlapping
factor. It is defined as the number of subsets that share
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Fig. 8. Sequential (left) and parallel (right) cost for the two type of covers with ε = 10, for a SSJ with threshold 10 (LB = “lower bound”, UB = “upper
bound”).
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Fig. 9. Replication factor for the two type of covers with ε = 10.

duplicate objects with a given subset, divided by the total
number of subsets. Figure 10 shows the average overlapping
factor over all subsets of a cover. This metric allows us to
see the percentage of the nodes (cells) that will be involved
during the creation of the network in a possible distributed
implementation of the ε-Cover. If, for instance, we have that
the overlapping factor is the 20% for a given ε-Cover this
means that during the insertion of an objects a cell must
communicate with the 20% of the network in order to allow
the overlapping cells to replicate it.

VII. SCALABILITY ANALYSIS AND CONCLUSION

The replication factor and especially the non-uniform dis-
tribution of the objects among the cells can strongly affect the
scalability of these types of strategies that share the idea of ex-
ploiting partition redundancy [5], [6], [7] to perform similarity
join. In principle, if we uniformly distribute a dataset of size
M into N cells, the time for performing the SSJ employing
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Fig. 10. Overlapping factor the two type of covers vs ε.

the NL strategy should be O(N
(

M
N

)2
) = O(M2

N ) for the
sequential approach and O( M2

N2 ) for the parallel approach.
Therefore if dataset size scales as k and we correspondingly
expand the cover cardinality by the same factor k, the total
sequential time should scale linearly with k and the parallel
time should remain constant, which is not exactly the case of
Figure 8.

This issue can be studied by the experiment of Figure 11, in
which we estimate the theoretical limits of the size scalability
of any type ε-Cover strategy of our dataset for different values
of ε.

The estimate is obtained with the following heuristic strat-
egy. For each object of the dataset we evaluate the number of
neighbors objects within a range of ε. We refer to these clusters
as atomic-clusters, since they will be reside entirely (due to
overlaps) in a cell of a any ε-Cover. The size of the greatest
atomic-cluster, nmax(ε), determines the limit of the parallel
time. Assuming for instance 20,000 be the maximum size we
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tolerate for a cell (which experimentally corresponds to about
2 minutes for the NL strategy) and hypothesizing a linear
scale-up of the size of the atomic-clusters with increasing
number of objects in the dataset, we obtain the scalability
limit of 20, 000/nmax(ε) ∗ 1, 000, 000 shown in Figure 11.
This experiment reveals that for instance for ε = 10, (for
this type of dataset, i.e., SCD) it is hard to scale (in parallel)
beyond 6 million objects.

Although the results presented in this paper shown the
intrinsic constraints of the ε-Cover strategies, we believe that
similarity join in metric spaces is the necessary complement
of more famous similarity range and nearest neighbor search
primitives. In view of the fact that, a scenario where a
specialized infrastructure created just to support only similarity
join is far to be realistic. Moreover, the replication will have
a positive impact to the number of cells involved during the
range and nearest neighbor query processing.
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APPENDIX A
THEOREMS PROOFS

A. Proof of the Theorem 1

Proof: Let us suppose that we have an arbitrary pair
of objects x, y ∈ D such that d(x, y) ≤ ε, we must prove
that there exists at least a subset Qε

i for which x, y ∈ Qε
i .

However since Qε
i ⊇ Pε

i it is sufficient to prove that there
exists a Pε

i such that x, y ∈ P ε
i . Since for definition of

partition the union of all sets Pi is D, the objects x and
y can either fall in distinct sets or in a single set. Let us
consider the former case, i.e., in which x ∈ P i and y ∈ Pj

with i �= j (if they were not distinct then the pair is already
included in a single partition). Moreover, since for definition
D is convex and continuous, there exists an object z such that
d(x, z) = d(y, z) = d(x, y)/2. Since d(x, y) ≤ ε, we have
that d(x, z) ≤ ε/2 and d(y, z) ≤ ε/2. Consequently, there can
be three cases, z ∈ Pi, z ∈ Pj , or z ∈ Pk (with k �= i, k �= j).
From definition of distance between a set and an object we
have that: in the first (second) case since z ∈ Pi (z ∈ Pj)
and d(y, z) ≤ ε/2 (d(x, z) ≤ ε/2), this implies that y ∈ P ε

i

(x ∈ Pε
j ) and hence both x, y lie on P ε

i (Pε
j ); in the third case,

x ∈ Pε
k and y ∈ P ε

k, hence, both x and y lie on P ε
k.

B. Proof of the Theorem 2

Proof: In order to prove this theorem, we must verify
that Vε

N includes the general ε−Cover of VN , i.e., that
Vε

N ⊇ Oε(VN ) is always true, which can be translated in
the following condition:

x ∈ Pε
i ⇒ x ∈ Vε

i , (14)

where P ε
i ∈ Oε(VN ) is defined as in (1), i.e.,

Pε
i � {x ∈ D | d(x,Vi) ≤ ε

2
} (15)

From (5) condition (14) can be expressed as

d(x,Vi) ≤ ε

2
⇒ ∃k �= i | x ∈ Vε

ik ∨ x ∈ Vi,

which can be also written as:

x /∈ Vi ∧ x /∈ Vε
ik ∀k �= i ⇒ d(x,Vi) >

ε

2
.

When x /∈ Vi and x /∈ Vε
ik from (6) we have that

d(x, vi) − d(x, vk) > ε. (16)

However, since the space is continuous there must exist an
object z for which

d(z, x) = inf{d(x, w) | d(w, vi) = d(w, vk)}.
The object z represents the nearest “point” of the generalized
hyperplane that separates cells Vi and Vk to an arbitrary object
x. Therefore, the distance d(x, z) is the distance between the

boundary of Vi and x. Using the triangle inequality we know
that

d(z, vi) + d(x, z) ≥ d(x, vi), (17)

and that
d(z, vk) − d(x, z) ≤ d(x, vk). (18)

By combining inequalities (17) and (18) with inequality (16),
we obtain

d(z, vi) + d(x, z) − (d(z, vk) − d(x, z)) > ε

and therefore since d(z, vi) = d(z, vk) we have that

d(x, z) >
ε

2
,

which is equivalent to

d(x,Vi) >
ε

2
.

C. Proof of the Theorem 3

To prove the theorem, we first introduce the following
lemma.

Lemma 1: Let Ψ be the space transformation given by the
following mapping: Ψ : (D, d) → (Rm, L∞). Where

Ψ(x) � (d(x, b1), . . . , d(x, bm)).

For which, we can bound the distance d(x, y)

L∞(Ψ(x), Ψ(y)) ≤ d(x, y),

where
L∞(a, b) � m

max
j=1

|aj − bj|.

Then we can straightforwardly bound the distance between
objects and subsets

L∞(Ψ(x),A) =
m

max
j=1

|d(bj , x) − d(bj ,A)| ≤ d(x,A). (19)

Proof: Since the triangle inequality holds also for the
distance between sets and objects [27], we can write

d(x,A) ≥ |d(bj , x) − d(bj ,A)| ∀j

and hence

d(x,A) ≥ m
max
j=1

|d(bj , x) − d(bj ,A)| = L∞(Ψ(x),A))

We can now prove the main Theorem 3.
Proof:

In order to prove this theorem, we must verify that B ε
N

includes the general ε-Cover of BN , i.e., that Bε
N ⊇ Oε(BN )

is always true, which can be translated in the following
condition:

x ∈ Pε
i ⇒ x ∈ Bε

i , (20)

where P ε
i ∈ Oε(BN ) is defined as in (1), i.e.,

Pε
i � {x ∈ D | d(x,Bi) ≤ ε

2
} (21)



From (9) condition (20) can be expressed as

d(x,Bi) ≤ ε

2
⇒ ∃k �= i | x ∈ Bε

ik ∨ x ∈ Bi,

which can be also written as:

x /∈ Bi ∧ x /∈ Bε
ik∀k �= i ⇒ d(x,Bi) >

ε

2
.

When x /∈ Bi and x /∈ Bε
ik from (10) we have that there must

exist a j for which either

d(x, bi
j) > ui

j + ε/2, (22)

or
d(x, bi

j) < lij − ε/2, (23)

is true. Let us consider the case the case in (22). Realizing that
ui

j = d(bi
j ,Bi), we can state that d(x, bi

j) − ui
j = d(x, bi

j) −
d(bi

j ,Bi) > ε/2 holds. This last inequality can be also written
as

L∞(Ψ(x), Bi) > ε/2.

However, because of (19), we can conclude

d(x, Bi) >
ε

2
.

Analogously, it is possible to prove that inequality (23) leads
to the same conclusion.

D. Proof of the Theorem 4

Proof: We prove this theorem by contradiction, by sup-
posing that exits i �= j such that 〈x, y〉 ∈ SSJ∗ε (Xi) and
〈x, y〉 ∈ SSJ∗ε (Xj). It easy to see from (13) that ri(x, y) =
true, and rj(x, y) = true both hold. However, from (12), we
have that min σ(x)

⋂
σ(y) = i and min σ(x)

⋂
σ(y) = j that

implies that i = j, which is in contradiction with the initial
assumption i �= j.


