
1

Designing UML Models with UMC

(ref. UMC V3.6 build p - April 2009)

Franco Mazzanti

Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo"
ISTI-CNR

Via A.Moruzzi 1 56124 Pisa, Italy
franco.mazzanti@isti.cnr.it

1 Introduction

The goal of the UMC project under development at ISTI is to experiment in several directions:

- We are interested in exploring and exploiting the advantages given by the "on the fly" approach
to model construction and checking [1,2,3,4].

- We are interested in investigating the kind of user interface which might help a non-expert user
in taking advantage of formal specifications and verification techniques.

- We are interested in testing the appropriateness of the UML [5,6] methodology (and in
particular in the statecharts technology) for the specification and verification of the dynamic
behaviour of a system.

- We are interested in experimenting with several flavours of temporal logics which allow to take
into consideration both the state-oriented and the event-oriented aspects of a system, together
with distribution and mobility aspects.

This experimentation is carried out through the actual development of a sevral verification tools
(FMC,UMC,CMC), specifically tailored to the aims of the project. In this paper we will describe
how UMC can be used to generate system models according to the UML paradigm, models which
can later be explored in their evolutions, abstracted, minimized and checked w.r.t. formal temporal
properties (expressed in UCTL).
We anticipate that the immediate purpose of the UMC project is definitively not that one of
building a commercial verification product (e.g. targeting the verification of systems with a very
large number of states), even if the gained experience might certainly be useful for possible future
extensions moving also in this direction.
So far the emphasis of the prototype development has been concentrated on the investigation of the
desirable supported features, and not yet on the quantatitive optimizations of them (in terms of
complexity, memory resources, performance, stability). As such the prototype in its current proof-
of-concept status is good for education purposes and academic experimentations, but definitely not
ready for an official public release or for use in a real industrial environment. Also in terms of
future plans, the emphasis is more towards the experimentation of new features than towards to the
freezing and optimization of the current release.
In the case of UMC, the model under investigation is specified by a textual description of a set of
UML statechart diagrams - one for each class of objects which constitutes the system - by a set of
objects instantiations, and by a set of abstraction rules.

2

In Section 2 we describe in more detail the main syntactic model components, namely classes,
objects, basic types, expressions and abstraction rules; in Section 3 we describe an overview of
semantics of the modelled UML behaviour. In Section 4 we describe the structure and semantics of
the observation rules. In Section 5 we show a BNF grammar for the umc language, and in Section 6
we show some examples.

We anticipate that the language of UMC defined for the encoding of an UML system actually
suffers a problem of schizophrenia.. In fact, from one side "UMC" should ideally be seen as a target
language of a translation from other higher levels (maybe graphical) design/modelling languages
like Java/UML (indeed Java has many important notions like private/public methods, strong type
checking , and all these aspects would require an high degree of checking which should be
perfomed statically at the Java or UML definition level and not at the UMC level). On the other
side, since currently there is no such translator from higher level Java/UML, in practice what
happens is that users directly uses UMC for writing their model specification; for this reason some
essential checks and syntactic suger have been introduced into UMC, but not as much as if UMC
were considered a real specification language. As a consequence, the overall shape of the UMC
language is definitely not as clean as it should be if it were thought to be precisely either an internal
encoding language (like java bytecode) an high level self-standing user-centered design language.

2 The structure of UMC models

A complete umc model description is given by providing:

 - a set of class declarations
 - a set of object instatiations
 - a set of abstraction rules.

Hence, the template of a umc model is the following:

 Class classname_1 is
 ...
 end classname_1 ;
 ...
 Class classname_n is
 ...
 end classname_n ;

 Objects
 objname_1: classname_1 ... ;
 objname_n: classname_n ... ;

 Abstractions {
 Action ... -> ...
 State ... -> ...
 ...
 }

Class declarations represent a template for the set of active or non-active objects of the system. In
the case of active objects the states and transitions associated to class are used to describe the
dynamic behaviour of the corresponding objects.

3

A state machine (with its events queue) is associated to each active object of the system. Non-
active objects play the role of "interfaces" towards the outside of the system, and can only be the
target of signals.
A system is in the end constituted by static set of objects (no dynamic object creation), and it must
be an “input closed” system, i.e. the input/stimulating source must modelled as an active object
interacting with the rest of the system (e.g. modelling a service).
At least one active object must be defined.
The abstraction rules do not play any role from the point of view of the ground behavioural
semantics of the model under analysis; they define instead what we are interested to observe w.r.t.
the overall system behaviour. From this point of view their role is essential for constructing trace
minimizations of the graph illustrating all the possible system evolutions, and for verifying system
properties through model checking.

Class declarations

Classes define the structure and dynamic behaviour of the objects which compose the system.
Classes are defined by class declarations which introduce:
 - the class name

 - the list of events which trigger the transitions of the objects of the class
 (signals or call operations)

 - the list of attributes (variables) local to the objects of the class
 - the structure of the states of the class (nodes of a statechart diagram)
 - the transitions of the objects of the class (edges of a statechart diagram)

The template of class declaration is shown below:

 Class classname is

 Signals
 ... -- list of asychronous events accepted by the class objects

 Operations
 ... -- list of synchronous operation calls accepted

 Vars
 ... -- list of local, private, attributes of the class objects

 State ... = ...
 State ... = ... -- the structure of statechart nodes and subnodes
 State ... = ...

 ... -> ... {...}
 ... -> ... {...} -- the definition of the edges of the statechart
 ... -> ... {...}

 end classname;

There is a predefined non-active OUT Class, and a predefined OUT object, which can be used to
model the sending of signals to the outside of the system, and there is a predefined non-active ERR
Class, and a predefined ERR object, which can be used to model the notification or error signals to
the outside of the system.
In the case of non-active objects, the corresponding class declarations can only define the list of
accepted Signals and Operations (no Vars, State or Transitions can be introduced).

4

There is a predefined non-active Token Class whose objects play the role of static literal names.

Basic Types, Literal Values, Expressions

There are three main basic types, namely int (with default value 0, bool (with default value
False), and obj (with default value null).
Of these types there is also the corresponding vectorial version int[], bool[], obj[] (all with
default value “[]” denoting the empty vector).
Class names can also be used as specialized object type names in place of the more generic obj.

The operators over integer values are just the basic binary "+" (plus), "-" (minus)1, "*" (times), "/"
(integer division) and "mod" (modulus) operators. Composite arithmetic expressions can be written
using paranthesis.(“(“ “)”).

The operators over boolean values are just the basic "and", "or" and "not" operators.
The basic boolean literals are "True" and "False". There is also a special name "emptyqueue"
which denotes the value "True" if the queue of object evaluting it is currently empty, and denotes
the "False"otherwise.
The relational operators "=, /=, >, <, >=, <=" allow to compare two integer values returning a
boolean value2. The relational operators "=" and "/=" allow to compare for equality any two
element of the same type (hence also vectors and class objects).

There are no operators for obj or classname objects. The special literals “self” and “this” both
denote the executing object when evaluated at runtime. “null” denotes no object. The global
names of the objects consituting the system declared in the Objects: section can be used as literal
values of obj or class type.

The expression “[]” denotes the empty vector, the expression “[value1 , ... , value_n]” is used
to denote array literals, and the operator “+” can be used to join two arrays (e.g. [1]+[2] =
[1,2]). The “.head” selector applied to a vector variable name returns the first element of the
vector, and the “.tail” selector returns the remaining part of the vector one the first element has
been removed (e.g.if v1=[1,2] and v2=[3,4], [v1.head] + v2.tail = [1,4]).
The selector “.length” returns the number of elements of a vector variable.
The expression vectorvar[i] allows to select the i-th+1 element of the vector variable (e.g. if
v1=[3,4,5], v1[0] = 3, v1[1] = 4, v2[2] = 5). The selection of the i-th element of a
vector contains less than i elements returns the default value for the vector elements type.
 The i-th+1 element of a vector variable can be changed by assigning to the selected component
(e.g. v1[1] := 4). It is an error to try to perform an assignent to the i-th element of a vector
which contains less than i elements. Errors of this kind do not interrupt the tool execution but just
the single evolution path sending a “Runtime_Error” signal to the predefined ERR object.

Event declarations

The Signals and Operations sections define the set of asynchronous or synchronous events
accepted by the class objects.

1 notice that currently there is no unary minus.
2 the relational operator "<" is also extended to cover all kind of types, e.g. objects or vectors, in an
implementation dependent way. This is done to reduce the generation of Runtime_Error signals
which may terminate the specific execution trace. Specification relaying on this implementation
dependent aspect are however considered not well written.

5

Signal declarations may have the template:

 -- signal with no parameters
 signal_name;

 -- signal with n parameters
 signal_name (arg_1, ... , arg_n: type_n);

Operation declarations may have the template:

 -- operation with no parameters and no result value
 op_name;

 -- operation with n parameters and result type.
 op_name (arg_1, ... , arg_n: type_n): result_type;

The typing of a signal or operation parameter or operation result is not strictly required, however it
is definitevely recommended to allow some degree of static checking and to enable a more
meanininful display of the runtime value of the parameters exchanged messeges (which otherwise
are displayed just using the internal integer encoding of their values).
All the parameters of signals and operations have an implicit in mode (in the sense that assignments
to them are not propagated back to the sender/caller).

Local Variable declarations

The Vars section introduces the list of attributes of the objects of the class. Notice that all these
attributes are local to the object (not shared among all objects of the class) and private (not
accessible by other objects). For these reasons they are often called as "local variables". Indeed they
have the role of local, private variables of the class objects, with the exception of the Priority
and RANDOMQUEUE cases in which play a rather different role (as described in Section3).

Vars declarations may have the template:

 -- untyped, initialized by default, multiple local variable
 varname1; varname2; varname3;

 -- expicitly typed local variable
 varname: int;

 -- explicilty typed, expliciltly initialized, local array 3
 varname1: int[] := [1,2,3];

As for the case of event parameters, the typing of a local variable is not strictly required even if it is
definitevely recommended to allow some degree of static checking and to enable a more
meanininful display of the runtime value of the object attributes (which otherwise are displayed just
using the internal integer encoding of their values).

The local variable “Priority: int;” when declared as first variable of the Vars: section has
a special meaning w.r.t. system scheduling issues (this occurs only when all active classes have
such variable defined). The local variable "RANDOMQUEUE" when declared immediately after the

3 currently multi-var declarations cannot have explit initial values.

6

"Priority" variable (or as first variable of the Vars: section of a class declaration) has the
meaning of specifying that the events queue for the objects of that class should behave as
RANDOM queue and not as a FIFO queue, as it happens by default. These two aspects are
presented in more detail in Section 3.

States Structure Definition

The active dynamic behaviour of the objects of a class is described as an UML statechart diagram
by a set of rules (State ... rules) wich describe the set of nodes which constitute the statechart,
and by a set or rules (Transitions: ...) which define the edges of the statechart.

The definition of the nodes of a statechart diagram starts from the definition of the top level state
(usually called “Top”, but just as a convention)
The definition of nested substates be must preceded the definition of the outer substates.
The states can be classified in simple-state, composite-sequential-state and composite-parallel-
state, initial-pseudostate, final-state..

A composite sequential state acts as a container for a nested statechart diagram.
The template for its declaration is the following:

 State parentstate = substate_1, substate_2, ... , substate_n

Where parentstate univoquely denotes either the outmost top-level state or an already defined
nested substate. The names substate_1, substate_2, ... , substate_n denote the substates of the
parentstate state. If a substate represents a nested composite (poarallel or sequential) state, we need
to expliclty declare it as such later. If a substate denotes a simple state no further explicit
declaration is required.

 State Top = S1, S2
 State S2 = S1, s2
 State Top.S1 = s1
 State S2.S1 = s2

Usually, as a convention, composite state are written with initial letter in uppercase, while simple
states are written with initial letter in lowercase. Notice that disambiguation of parentstate names is
achieved by prefixing the actual state name with a sufficient sequence of the names of the outer
states in which it is included.

The first substate of a composite state is assumed to be its default initial substate unless an explicit
“initial” substate if defined. The name “initial” denotes the default initial pseudostate (and must
appear as first substate), if no “initial” pseudostate is explicitly provided, the first substate of the
sequence is implicitly assumed as default initial substate.

7

Formally, according the UML2.0 defintion, a composite sequential state actually includes an
implicit, anonymous internal region which in turn includes all the required substates; such implicit
region is never explicitly defined or shown by umc.

A composite parallel state is defined in UML2.0 as a composite state which contains more than one
region. In this case the number and names of the constituting regions must be explictly defined. For
each such region, moreover, we need to subsequently given an explicitly definition as we do for a
composite sequential state.
The template for the declaration of a composite parallel state is the following:

 State parentstate = region_1 / region_2 / ... / region_n

In the following example S1 is a parallel state, R1 and R2 are its two regions, s1 and s2 are simple
states.

 State Top = S1
 State S1 = R1 / R2
 State R1 = s1
 State R2 = s2

Deferrring states
A state definition can also define the set of events deferred while being active.
A Defers declaration allows to specify efines the list of events (matching those already declared as
Signals or Operations) deferred by a state, which can be either a simple or composite sequentai
state. The template for a deferring declaration is the following:

 State statename Defers event_1 , ... , event_n(arg1,...,argn)

Notice that the events appearing in the deferrring declaration must have exaclty the event name and
possibly sequence of parameters, as in their corresponding definition; the type of parameters can be,
on the contrary, omitted4.

Transitions Definition

The Transitions section of the class declaration allows to define the edges of the statechart
modelling the behaviour of the objects of the class
This sections contains a sequence of transition definitions, which in general have the template:

 source -> target { trigger [guard] / actions }
.

4 and thery are actually ignored if provided.

8

The source and target can either be a single name univoquely identifying a state, or a list of such
names (i.e. (name_1,..., name_n)). A transition with multiple sources is called a join transition.
A transition with multiple targets is called a fork transition. In both cases the multiple sources or
target must belong to different regions of the same parallel state, while the corresponding target or
source must be outside of the previously mentioned parallel state. In the case of join transitions, the
first state in the source list is required to be "the most transitively nested source state" in the sense
of UML(); in fact the first state univoquely determinates the priority of the transition.

The trigger and guard of a transition define the conditions under which the source state (which
miust be active) is exited and the target state entered.
The trigger of a transition is constituterd by an event name and possibly its sequence of formal
parameters as defined in the Signals or Operations Section. As for events appearing in deferred
declarations the type of parameters can be, on the contrary, omitted. The expression “-“ denotes
the absence of trigger. This means that the transition is what UML calls a “completion transition”.
If the trigger denotes an operation call the identity of the calling object can be accessed through the
implicit "_caller" parameter of the operatio; this value is also implicilty used by a "return"
action to notify the completion of the invoked behavior.
The guard component is optional. If present is should be a boolean expression involving trigger
parametrs and /or local variables.
The actions part defines a sequence (possibly empty) of basic action which are executes when the
transition is selected. The main examples of actions are the sending of a signal, the call of an
operation, an assignment to a variable.
The detailed semantics of how transitions are selected and fired according to the UML semantics is
rather complex and is described in Section 3.

Examples:

 s1 -> s2 -- a very simple completion transition with no guards nor effects

 s1 -> s2
 { myopcall(x,y)[_caller=obj1 and x>0] /
 v1:=x;
 returb; -- a full transition with trigger, guards and actions
 }

Actions

UMC supports several kind of actions: assignments, sending of events, conditionals and finite
loops.
Assignments have the form:

 varname := right_side; -- assignment to local variable
 varname[index]:= right_side; -- assignment to a component of vector

The right_side of an assignment can be an expression or an operation_call.
The varname must be the name of a local variable, or the name of the of the parameters of the
transition trigger, or the name of a local transition variable.

It is in fact possible to declare temporary variables inside the list of actions of a transition. In this
case the scope of the transition variable is the rest of the action sequence. Transition variables can
appear in the same places as local variables in the remaining part of the action sequence of the

9

tramnsition. The declaration of a transition variable has the same form as the declaration of a local
variable. An example is shown below:

 s1 -> s2 {-/ tmp:bool:= b1 and b2; b3:= tmp or b3 }

Asynchronous sending of signals is another important kind of action. It has the form:

 target_object.signal_name(expr_1,...,expr_n);

The target_object must be a name denoting one of the objects which constitute the system (hence
either a variable name,or a parameter name or a global static object name).
The signal_name must be the name of a signal event declared in the Signals: section of the class
of the target object5. The number of expressions following the signal name must match the number
of parameters of the signal profile6.
The execution of this action causes the enqueuing of the corresponding signal message in the event
queue of the target object. If no target_object is specified, then “self” is implicitly assumed.
If the target:_object does not denote one of the objects which constitute the system an error occurs.
which interrupt the particular evolution path sending a “Runtime_Error” signal to the predefined
ERR object.

Synchonous calling of an object operation is achieved through the operation_call action which has
the form:

 target_object.operation_name(expr_1,...,expr_n); -- plain operation call

 varname := target_object.operation_name(expr_1,...,expr_n); -- function call

Like the sending of an asynchrnous message, the sending of a synchronous operation_call message
involves the identification of the target_object, the operation_name, and possibly a list of
arguments. The operation_name must be the name of a operation event declared in the
Operations: section of the class of the target object. The number of expressions following the
operation name must match the number of parameters of the signal profile. The parameters always
have an “in” mode and, even if assigned by the target object, do not convey back any modified
value. The value returned by the operation call can be retrived by assigning it to a variable inside
and assignement. When a call-operation is accepted by an object, i.e. when one of the transition
triggered by the operation event is fired and the corresponding sequence of action is executed, the
execution of a return(return_expression) action causes the sending to the caller of an
operation_return message. If the operation declaration has no return type, and the execution of the
sequence of actions of a transition is completed without the execution of an explicit return, then a
final implicit return action is executed.
Examples:

 -- operation call with no return value
 c1 -> c2 { - / server.write_operation(123)} -- caller side

 -- operation execution with implicit return action

5 the checking performed on this kind of constraint is not very precise, because in general the class
of the target object is not statically detectable if untyped "obj" vars are used. A weaker check is
instead performed, i.e. that the signal sent is actually declared by some class.
6 no type checking is actually performed on the correspondence between actual value and formal
parameters type.

10

 s1 -> s2 {write_operation(val) / var := val} -- called side

 -- operation call execution explicit return action
 s1 -> s2 {write_operation(val) / var := val; return} -- called side

 -- function call
 c1 -> c2 { - / var := server.read_var_operation} -- caller side

 -- function call call execution explicit return action
 s1 -> s2 {read_var_operation / return(var)} -- called side

Composite actions are essentially conditionals and finite loops.
The form of a conditional is one of the following:

 if condition then { actions-list } else { actions-list };
 if condition then { actions-list };

Where condition is a boolean expresssion, and the actions-lists are sequences of actions.

The form of a finite loop is:

 for iterator in min_expre .. max_expr{ actions-list };

Where iterator acts as a transition variable initialized with min_expr and incremented at the end of
each cycle until it excedees max_expr. The actions-list is the sequence of actions which is
executed at each cycle. Both min_expr and max_expr are evaluated before the beginning of the
cycle.

Objects Declarations

Once the needed classes are have declared, we can define the actually deployed system as a set of
object instances. This is done inside the Objects: section of the model definition. Each object
instance is declared by an object declaration which has the following form:

 object_name: class_name -- an object declaration with initiaizations
 (obj_attribute_1 => initial_value_1,
 ...,
 obj_attribute_n => initial_value_n);

 object_name: class_name; -- an object declaration without initiaizations

Each object declaration introduces the object name, the name of its class, and possibly any specific
initial values for some its attributes.
These initial values can be literals or names of other objects (possibly also objects which will be
declared later in this section).
The object names introduced in these declaration act a gloabl literal names and are fully visible also
inside all the class decalations.

Abstraction Rules

Abstraction rules are introduced inside the specific

11

 Abstractions {
 ...
 }

section of the model specification. As already hinted, they do not play any role in the definition of
the ground dynamic behaviour of system. They have instead all to do with respect to what we want
to observe of the system evolutions. Hence they become essential when we want to state properties
to be verified over the system, when we want to generate minimized abstract views of all the
possible system behaviours, or when we want to explore and simulate the system execution.
For this reason their are not described here, but in Section 4, after the presentation of the dynamic
semantics of UMC models.

Other syntactic issues

Identifiers and keywords are case sensitive and built over letters, digits and ‘_’ (underscores).

Static type checking of the model is performed only in a limited way.
If some ot the vars or parameter types are not specified, sometimes an attempt is made to
statically/dynamically infer them. A system design containing structural type violations is
considered erroneous and it not guaranteed that such errors are detected either statically or
dynamically. Notice that a model might violate exploit the absence of explicit static typing rules
(e.g. defining and using a polimorphic queue) without actually generating any structural type
violation.

Line comments start with "-- " or "//" and end at the end of the line
/* ... */ can be used to encapsulate possibly multiline comments.

Several syntactic altarnatives are supported (though not encouraged) just to simplify the encoding
from other languages. In particular:

 "and" inside boolean expression can be substituted by "&" or "&&"
 "or" inside boolean expressiocan be substituted by "|" or "||"
 "not" inside boolean expressio can be substituted by "!"
 "/=" inside boolean expressio can be substituted by "!="
 "=" inside boolean expressio can be substituted by "=="
 ":=" in assignments can be substituted by "="
 "=>" in object instantiations can be substituted by "=" or "->"

The full adherence to the umc grammar is not always strictly enforced when the semantics of the
code remains clear (e.g. sometimes the “:” following a keyword can be omitted, as the class name
after the “end” keyword, or as the “;” following the last action of an action-lists).

Unsupported features

With respect to UML 1.4 there are several statechart features which are not supported by the current
release of UMC. The most relevant of these unsupported featues are Terminate / History / Deep-
History / Synch states, state Entry / Exit / Do activities, Dynamic Choice / Static Choice
transitions, Change and Time events. With respect to UML2.0 we currenty do not support state
refinements, inheritance in events structure, substatemachines and the possibility of having multiple
triggers for a transition.

12

We believe, however, that most of these features can still be quite easily encoded in our framework.
In UMC composite states always have a default initial state (which is the first substate of the list),
while in UML2.0 the legality and semantics of a composite state without any default initial substate
is a semantic variation point. None of the above limitations is intrinsic to the tool, and further
versions of the prototype are likely to overcome them

3 Overview of the Dynamic semantics of UMC models

In the UML-1.4 standard definition there is a first attempt to assign a reasonably defined dynamic
semantics (i.e. the possible behaviours) to the state machine associated with a statechart. the
pictures remains essentially the same also in UML2.0. The basic concept used in the standard to
define the possible evolutions of a the state machine configuration is the concept of "run to
completion" step .
UMC follows these standard indications, with a few simplifications due to the set of UML features
not yet supported by UMC. From a logic point of view , the possible evolutions of a given state
machine configuration can be discovered by performing the following substeps :

a) Dealing with active states, triggers and guards: It is identified the set of transitions whose source

states are active in the current configuration, whose trigger satisfies the current top event (if any)
of the state machine events queue, and whose guards evaluate to true in the current
configuration. The resulting set is called the set of enabled transitions (w.r.t. active states,
trigger, guards).

b) Dealing with priorities: According to the relative priority between transitions (which is a partial

ordering), we find a maximal subset of the transitions identified at the previous step so that:
 - there are no two transition inside the set, of which one has a priority lower than the priority of

the other.
 - there are no transitions inside the set with a priority which is lower than the priority of any

other transition outside the set.

c) Dealing with conflicts: Given the set of maximum priority enabled transitions (some of which

might be executed in parallel) we must find all its maximal subsets, such that no two transitions
in the subset are in conflict (two transitions are in conflict if the intersections of the set of states
they exit is not empty.

 Notice that if a statechart has no parallel substates then each of these subsets will contain exactly
one transition. These subsets represent a set of concurrently fireable transition.

d) Dealing with serialisation: For each subset identified at the previous step, if the subset contains

more than one transition, we generate the set of all the possible sequences of transitions deriving
from all the possible serialisations of the transitions in the subset.

 Each such sequence of transitions defines a possible evolution of the given machine
configuration.

e) Computing the target configuration: The next state-machine configuration resulting after this

evolution if obtained by:
 - removing the top event (if any) from state machine event queue.
 - modifying the values of the state machine variables as specified by the sequence of sequences

of actions as requested by the firing transitions.
 - modifying the events queue of the state machine by adding the signals specified by the

sequence of sequences of actions, in their order.

13

The above steps defines the possible effects of starting a nre “run-to-completion” step. Once such a
step is started it can atomically complete with the execution of all the involved actions or become
suspended over some synchronous call operation. In this second case the step will be resumed when
a return signal is received from the called object.

Notice also that implicit “completion events” are generated when the activity of a state is
terminated, and that these completion events have precedence over the other events possibly already
enqueued in the object events queue. In our model we suppose that all completion events are
dispatched all toghether in a unique step7.

The set of possible evolutions of an initial model are, in general, not finite.
In fact, even if we consider only limited integer types (which is a reasonable assumption), we can
still have infinitely growing queues of events of vectorial data elements. The following is an
example of very simple model presenting an infinite behaviour:

 Chart Main is
 Signals: a
 State Top = s1
 Transitions:
 s1 -> s1 { - / self.a; }
 end

When coming to give a formal framework to the above informal description of a run-to-completion
step, and when coming to model the parallel evolution of state machines, some aspects which are
not precisely and univoquely defined by the UML standard (often intentionally) have to be in some
way fixed.
With respect to this, UMC makes certain assumptions which, even if compatible with the UML
standard, are not necessarily the only possible choice.

1) The whole sequence of actions constituting the actions part of statechart transition is supposed to

be executed (with respect to the other concurrent transitions of the same object) as an indivisible
atomic activity. I.e. two parallel statechart transitions, fireable together in the current state-
machine configuration, cannot interfere one with the other, but they are executed in a sequential
way (in any order). Notice that this does not mean that statechart transition are atomic with
respect to the system behavior, since its activity can contain synchronous call causing
suspensions/resumptions of the activity.

2) Given a model constituted by more than one state machine, a single system evolution is

constituted by any single evolution of any single state machine. I.e. state-machine evolutions are
considered atomic and indivisible at system level when no synchronoes calls are involved.

 If priorities are defined (i.e. all active classes have as first variable of the “Vars:” list a variable
named “Priority” and with type “int”), then only the evolving objects of the highest
priority value are considered for defining the possible system evolutions.

3) The propagation of messages inside a state machine and among state machines is considered

instantaneous, and without duplication or losses of messages (this is an aspect intentionally left
as unspecified by the UML standard); the communication is direct and one-to-one (no
broadcasts).

7 From this poi of view the UML semantics is not very clear.

14

4) The events queue associated with a state machine is by default a FIFO way (this is an aspect
intentionally left as unspecified by the UML standard). If a class declaration has as first variable
declaration (or as second variable declaration, immediately following a Priority declaration) an
untyped entity named "RANDOMQUEUE" then the events queues for the objects of that class
are handled according to a RANDOM policy (i.e. any enqued event is elegible for being
dispatched, independendetly from its position in the queue).

 E.g. Vars:
 Priority:int :=2;
 RANDOMQUEUE; -- objects queue are RANDOM, not FIFO

5) The relative priority of a join transition is always well defined (identitied with the priority of the

first of its source states) and statically fixed.8

6) The return signal from an operation/function call is sent when the "return" statement is executed

inside the transition triggered by the operation-call. If more than one return statements are
executed by the run-to-completion step triggered by a call the last return event overrides the
previous events. . If no return statement is execution by the run-to-completion step triggered by
a call no return event is generated and the caller deadlocks.

4 Abstraction Rules

As already said in Section 2, abstractions do not play any role in the definition of the ground
dynamic behaviour of system since their role is to define what we want to observe of the system
evolutions. Abstracion rules are of two kind: Action: rules and State: rules.
The Action: rules allow to define which events occurring during the firing of a transition, we
want to observe. The State: rules allow to defined which structural aspect of a sytem state we
want to observe.

action abstractions

The general form of an action abstraction rule is the following:

 Action: source_obj:target_obj.event(arg_1,...,arg_n) -> main_label(flag,,..., flag)

Where source_obj and target_obj must either be an object name lietral, event must be either a signal
or operation name, or another predefined eventname, arg_1 ... arg_n must be literal values.
The mail_label and the associated flags are just free identifiers.
The Source_obj: and target_obj. prefixes can be omitted, as can be omitted the list of flags
associated to the main_label. Hence a minimal Action rule could just be:

8 This assumption is related to an ambiguity of the UML definition of priority of join transitions, in
which all the sources have the same "depth". In this cases the priority being defined as that of the
"deepest source" leaves some open space to multiple interprations when there is not a unique
"deepest source".

15

 Action: event -> main_label

Let us now see in more detail the meaning of these rules.

static pattern matching

The rule:

 Action: reset -> resetting_request

States quite generically, that whenever during a system evolution a “reset” message happens to
be sent, independently from the absence of presence of parameters, and independently from their
number, then that evolution is labelled with the abstract label “resetting_request”. While
the rule:

 Action: reset() -> resetting_request

States more specifically, that whenever during a system evolution a “reset” message with no
parameters happens to be sent, then that evolution is labelled with the abstract label
“resetting_request”.
The rule:

 Action: reset(soft) -> soft_resetting_request

States that whenever during a system evolution a “reset” message with exaclty one parameter
whose values is equal to the (token) literal “soft” happens to be sent, then that evolution is labelled
with the abstract label “softresetting_request”.
 The following rule:

 Action: obj1:reset -> obj1_asking_reset_request

States instead that whenever during a system evolution a “reset” message happens to be sent by
object obj1 to any other object, then that evolution is labelled with the abstract label
“obj1_asking_reset_request”.

 The following rule:

 Action: obj2.reset -> resetting_request_for_obj2

States instead that whenever during a system evolution a “reset” message happens to be sent by
some object to object obj2, then that evolution is labelled with the abstract label
“resetting_request_for_obj2”.

 The following rule:

 Action: obj1:obj2.reset -> obj1_sending_reset_request_to_obj2

States instead that whenever during a system evolution a “reset” message happens to be sent by
object obj1 to object obj2, then that evolution is labelled with the abstract label
“obj1_sending_reset_request_to_obj2”.

generic matching

16

Any literal or name if the left side of the rule can be replaced by an “*” symbol, meaning that
any dynamic value generared at runtime will satisfy the rule for that component.

E.g.

 Action: reset(*,0) -> resetting_request

The above rule establishes that whenever during a system evolution the signal “reset” is sent by
some object to another, and that signal has exactly two arguments, and the second of them is equal
to the numeric literal “0” then that evolution is labelled with the abstract label
“resetting_request”. Notice instead that

pattern matching with variables ans substutitions

Sometimes it is useful to convey in the abstract label of an evolution some dynamic information
information extracted from a specific occurred event. This can be done using $variables at the
place of names or literal inside the left side of rules,using pattern matching with the actually
occurring event to assign values to them and using and variable substitutions to assign then inside
the abstract labels at the right side of the rule. Let us consider for example, the rule:

 Action: $targetobj.reset -> kill_request($targetobj)

The above rules states that whenever during a system evolution a “reset” message happens to be
sent to some (any) object, then that evolution is labelled with the abstract label “killed” having
as flag precisely the name of the object to which the message is sent.
Let us see another example:

 Action: $src.*.reset(*,$arg) -> killedby($src,$arg)

The above rules states that whenever during a system evolution a “reset” message with exactly
two parametrs happens to be sent by some object, then that evolution is labelled with the abstract
label “killedby” having as flag precisely the name of the object which sent the message and the
second parameter of the message itself.

There is also a special variable notation for identifying a list of values, which ha the form “$*”.
The effect of using this variable is as exemplified below:

 Action: reset($*) -> kill_request($*)

The above rules states that whenever during a system evolution a “reset” message happens to be
sent, then that evolution is labelled with the abstract label “resetting_request” followed by a
sequence of flags which correspond exactly the the sequence of values (if any) used in the message.
Another possible use of this variable-list notation might be as below:
.
 Action: reset(*,$*) -> kill_request($*)

The above rules states that whenever during a system evolution a “reset” message happens to be
sent, then that evolution is labelled with the abstract label “resetting_request” followed by a
sequence of flags which correspond exactly the the sequence of values (if any) following the first
one (which is omitted) used in the message.

17

special events: accept, lostevent, Runtime_Errror, assign

The events shown so far correspond to effect of sending a message when a signal is sent of an
operation or fumnction is called. These indeed are the events which directly correspond the the
basic action of sending a signal or calling an operation. There are other “events”, however that
might be important to observe.
For example we might be interested in observing the fact that a certain message is removed from
the events queue of an objects, and either discarded because it does not trigger any transition, or
used to fire a set of enabled transitions. This fact can be observed using the “system defined” event
names “accept” and “lostevent”. Here follow some examples.
.
 Action: $obj1:accept(reset,$*) -> starting_reset($obj,$*)

In the above case whenever during a system evolution a “reset” message happens to removed
from the events queue and used (as trigger) to fire some transition, then that evolution is labelled
with the abstract label “starting_reset” and flagged with the name of the executing object
and the parameters (if any) of the reset message.
In the case of the accept pseudo-event at list the event name must be provided (i.e. it cannot appear
without any argument). The genric rule:
.
 Action: accept($e,$*) -> $e($*)

allows to observe (i.,e. labled the abstract evelutions) with the triggers (if present) of all the
transitions fired by the system.

When an event is instead removed by the events queue of an object and simply discarded because in
that object state there is no enabled transition which might fire (this is called a ”stuttering”
evolution), that can be observed using the “lostevent” pseudo event. as shown below.

 Action: lostevent($e,$*) -> discarded_message($e,$*)

 This kind of pseudo event is particularly useful because often its occurrence is the sign of the
presence of design errors in the specification (e.g. a message is sent to a worng object, or at a wrong
time).

.We have already sain that under certain circumstances an error message is generated and sent to the
default ERR object (e.g. when a message is sent to a non existing object, or when an assignment is
made to a nonexisting component of a vector). All these events can be captured by expliclty using
the name of this error event which is “Runtime_Error” as shown below:

 Action: $obj:Runtime_Error -> Design_Error($obj)

Currently the Runtime:_Error signal has no parameters.

Finally, we might be interested in observing that fact that a certain assign action is being executed
by some object. Thic can be done using the predenfined “assign” pseudo event which has three
parameters: the name of the variable being assigned, the index its component being assigned, and
the value being assigned. The fact the a specific object obj1 executes the assignament
x[i]:= somevalue; can than be observed by the following rule:

 Action: obj1:assign(x,$i,$v) -> obj_changing(x,$v)

18

where $i will match the index of the component being assigned, and $v the assigned value.

state abstractions

The form of a state abstraction rule is the following:

 State:
 ground_state_predicate_pattern and
 ...
 ground_state_predicate_pattern -> main_label(flag,,..., flag)

In the case of state abstractions the left side of an abstraction rule is allowed to be a conjunction of
ground state predicate patterns. A ground state predicate pattern can be either a predicate on the
active status of a substate of some object, or e relation involving the current values the local
variables of some object.
E.g. The following rule:

 State: inState(obj2.Top.s1) -> obj2_in_state_s1

States that whenever in a system configuration the object "obj2" is in the substate "Top.s1" then
that configuration is labelled with the abstract label obj2_in_state_s1.
No pattern matching valiables are allowed inside this kind of ground state predicate.

The other kind of ground state predicate may have the form:

 object_name.attribute relop object_nam.attribute
 object_name.attribute relop literal_value

Where object_name is the literal name of one of the objects which constitute the system.
attribute is the name of one the local variables declared for the object class,
relop is one of the relational operators which are used in relational expression (e.g. “=”, “>”),
and a literal_value can be a number, a boolean literal, or an object literal (e.g "null" or the
identifier of some static object). Notice that currently vector literals are not allowed as literal
values and compoenents of vectorial attributed are not allowed to be mentioned in State abstraction
rules (this limitation may be overcome in futures releases).
For example, the following rule:

 State: obj2.speed < 30 -> obj2_slow

States that whenever in a system configuration the object "obj2" has the local variable "speed"
holding a value which is smaller thehn 30, then that configuration is labelled with the abstract label
obj2_slow.
If the relational operator is the equality operator, then the right side of the comparison is allowed to
be pattern matching variable as shown by the following example;

 State: obj2.speed = $v -> speed($v)

There are two other special cases of relations which can be used as ground state predicate.
One is when the special name "maxqueuesize" is used in the left side of the relation. E.g.

 State: maxqueuesize > 10 -> Unfair_or_Diverging_Path

19

maxqueuesize denotes the maximum length of the event queues of the objects which consititute the
system. Observing this system property may sometime be useful to observe and check for the
boundness of the model.
A similar secial name is the "queuesize" identifier which can be used as if it were an object
attribute, and which denotes the current lentgh of an object queue. E.g.

 State: obj2.queuesize > 10 -> Unfair_or_Diverging_Path

default abstraction rules

If no Abstraction {...} section is provided in model specification the following one is
assumed by default:

 Abstractions {
 Action: $1($*) -> $1($*)
 }

rule handling

All rules of the Abstractions section are taken into consideration and applied to the current
state or evolution. As a result a null or multiple labelling may result, according to the number of
rules which successfully match the current state structure or current set of evolution events.
By applying the abstraction rules, all the possible evolutions of an UMC system can be abstractly
rrepresented as a bilabelled transition system (or directed graph), in which nodes and edges are
labelled with sets of abstract labels, according the underlying ground configuaration structure or
ground events occurring during the evolutions, and according to the abstraction rules specified.
We show below the specificiation of a very small system and its abstract evolutions doubly
labelled transition sysyem.

Class Counter is
Vars x:int;
State Top = s1
Transitions:
 s1 -> s1
 {- [x<3]/x:=x+1;OUT.incr}
 s1 -> s1
 {- [x>0]/x:=x-1;OUT.decr}
 s1 -> s1
 {- [x>2]/x := 0;OUT.reset}
end Counter;

Objects: OO: Counter;

Abstractions {
 State OO.x=$1 -> x($1)
 Action $1 -> $1
}

20

5 Some Examples

5.1 Completion Transitions

Edges which do not have an explicit event as trigger in UML are supposed to denote “completion
transitions”, i.e. transitions which can occur when source state is active and it has completed all its
internal activity. If the source state is a simple state it has no internal activity hence the outgoing
enabled triggerless transitions can immediately be fired at the next step.
if the source state is a composite state it is necessary that all its regions are completed, i.e. all their
active substates are either composite and completed, or the final pseudostate.
Notice that UMC does not directly support state internal “Do” activities, hence they cannot play
any role in defining the completed status of a state.
For example, in the following case:

Class Deadlock is
State Top = S1, s2
State S1 = s1
 S1 -> s2 {- /OUT.done}
end Deadlock ;

Objects: OO: Deadlock ;

The system would not have any evolution since the S1
composite state is not ufficially “completed”.

In the following case, instead,

Class Evolving is
State Top = S1, s2
State S1 = s1, final
 s1 -> final
 S1 -> s2 {- /OUT.done}
end Evolving ;

Objects: OO: Evolving ;

The system can evolve perfoming two steps: a
first step after which S1 becomes completed, and a
second step in which the system ,moves into the s2 state
generating the done signal.

5.2 Recursive Operation calls

The semantics of an operation call is that one of suspending the execution of a run-to-completion
step until a return event is received from the called object. This implies that no recursive operation
calls can be performed by one or more object because in this case they would deadlock as soon as
an operation call is performed targeting an object already suspended in an outer operation call.

21

The simplest case of deadlock will obviously occur when an object tries to call an operation of
"self".

5.3 Parallel Operation Calls

We have already seen that when several transitions can be fired in parallel (because belonging to
different concurrent regions) they are actually fired in any order but sequentially, as part of the
same, unique, run-to-completion step. This fact, together with the fact that an operation call
suspends the execution of the whole state machine until the return event is received, has a deep
influence in the case of (apparently) parallel operation calls. A failure of the called object to
correctly dispatch (and return to) one of the called operations in fact would suspend the initial state-
machine preventing further evolutions of it even if, apparently, some region might be able to
proceed in its execution flow. This is well shown by the following example:

Class ParallelClient is
Vars
 theserver: SequentialServer ;
State Top = S1, final
State S1 = R1 / R2
State R1 = c1, c2
State R2 = c3, c4
 c1 -> c2
 { -/ theserver.add(10)}
 c3 -> c4
 { -/ theserver.sub(3)}
 S1 -> final
 { - / OUT.done}
end ParallelClient

Class SequentialServer is
Vars
 total: int := 0;
Operations
 add(x:int);
 sub(y:int);
State Top = s1,s2
 s1 -> s2
 {add(x) /
 total := total + x;
 return}
 s2 -> s1
 {sub(x) /
 total := total - x;
 return}
end SequentialServer

Objects
 Server: SequentialServer
 Client: ParallelClient
 (theserver => Server)

In the above case the Client object apparently issues in parallel two call operations (add and sub),
and when both are completed sends the signal "done" to the standard OUT object.

22

Of the two possible system evolutions one of them actually terminate with the "done" signal being
sent to OUT, while the other execution (that one in which "sub" is attempted before "add") shows a
deadlock for the system (with no operation calls being successfully executed). Notice that in this
particular case the adiition in the SequentialServer class of a "Defers" clause for its operations
would solve the problem allowing the server to handle the two request also in the reverse order.

5.5 A Complex Case Study

For example, assume that while a driver is on the road with her/his car, the vehicle's diagnostic
system reports a low oil level. This triggers the in-vehicle diagnostic system to report a problem
with the pressure of the cylinder heads, which results in the car being no longer driveable, and to
send this diagnostic data as well as the vehicle's GPS coordinates to the repair server. Based on the
driver's preferences, the service discovery system identifies and selects an appropriate set
of services (garage, tow truck, and rental car) in the are. When the driver makes an appointment
with the garage,the results of the in-vehicle diagnosis are automatically sentalong, allowing the
garage to identify the spare parts needed to repair the car. Similarly, when the driver orders a tow
truck and a rental car, the vehicle's GPS coordinates are sent along. Obviously, the driver is
required to deposit a security payment before s/he is able to order any service.
Finally, each of these services can be denied or cancelled, causing an appropriate compensation
activity.

In this section, we introduce the case study that will be used throughout the paper to 
illustrate 
our verification methodology. It is one of the scenarios in the area of automotive 
systems defined and analysed within the EU project Sensoria [Koch 2007] and describes 
some functionalities that will be likely available in the near future. A brief description 
follows. 
While a driver is on the road with her/his car, the vehicle’s sensors monitor 
reports a severe failure, which results in the car being no longer driveable. The 
car’s discovery system then identifies garages, car rentals and towing truck 
services in the car’s vicinity. At this point, the car’s reasoner system chooses 
a set of adequate services, and tries to order them. Before being enable to order services, the 
owner of the car has to deposit a security payment, that 
will be given back if ordering the services fails. Other components of the invehicle 
service platform involved in this assistance activity are a GPS system, 
providing the car’s current location, and an orchestrator, coordinating all the 
described services. 
An UML‐like activity diagram of the orchestration of services using UML4SOA, an 
UML Profile for service‐oriented systems [Wirsing et al. 2006; Mayer et al. 2008], is 
shown in Figure 1. The orchestrator is triggered by a signal from the sensors monitor 
(concerning, e.g., an engine failure) and consequently contacts the other components to 
locate and compose the various services to reach its goal. The process starts with a request 
from the orchestrator to the bank to charge the driver’s credit card with the security deposit 
payment. This is modelled by the UML action CardCharge for charging the credit card 
whose number is provided as an output parameter of the action call. In parallel to the 
interaction 
with the bank, the orchestrator requests the current location of the car from the 
car’s internal GPS system. The current location is modelled as an input to the RequestLocation 

23

action and subsequently used by the FindServices interaction which retrieves a list 
of services. If no service can be found, an action to compensate the credit card charge will 
be launched. For the selection of services, the orchestrator synchronises with the reasoner 
service to obtain the most appropriate services. 
Service ordering is modelled by the UML actions OrderGarage, OrderTowTruck and 
RentCar. When the orchestrator makes an appointment with the garage, the diagnostic 
data are automatically transferred to the garage, which could then be able, e.g., to identify 
the spare parts needed to perform the repair. Then, the orchestrator makes an appointment 
with the towing service, providing the GPS data of the stranded vehicle and of the garage, 
to tow the vehicle to the garage. Concurrently, the orchestrator makes an appointment with 
the rental service, by indicating the location (i.e. the GPS coordinates either of the stranded 
vehicle or of the garage) where the car will be handed over to the driver. 
The workflow described in Figure 1 models the overall behaviour of the system. Besides 
interactions among services, it also includes activities using concepts developed for 
long running business transactions (in e.g. [Garcia‐Molina and Salem 1987; OASIS WSBPEL 
TC 2007]). These activities entail fault and compensation handling, kind of specific 
activities attempting to reverse the e ects of previously committed activities, that are an 
important aspect of SOC applications. According to UML4SOA Profile, the installation of 
a compensation handler is modelled by an edge stereotyped  compensationEdge , and 
its activation by an activity stereotyped  compensate . Since each compensation handler 
is associated to a single UML activity, we omit drawing the enclosing scope construct. 
Moreover, we use dashed boxes to represent compensation handlers. 
 
Specifically, in the 
considered scenario: 
—the security deposit payment charged to the driver’s credit card must be revoked if either 
the discovery phase does not succeed or ordering the services fails, i.e. both garage/tow 
truck and car rental services reject the requests; 
—if ordering a tow truck fails, the garage appointment has to be cancelled; 
—if ordering a garage fails or a garage order cancellation is requested, the rental car delivery 
has to be redirected to the stranded car’s actual location; 
—instead, if ordering the car rental fails, it should not a ect the tow truck and garage orders. 
These requirements motivate the fact that ordering garage/tow truck and renting a car are 
modelled as activities running in parallel. 
 
 

24

25

26

27

------------ CODE FROM SAC09 -----------------

Class Car is

 Signals:

 --- OUTGOING / INCOMING SIGNALS

 -- requestCardCharge(cust,cc,amount) -- request to Bank

28

 chargeResponseOK(chargeID:Token); -- response from Bank
 chargeResponseFail; -- response from Bank
 -- revokeCardCharge(cust,chargeID) -- cancel to Bank
 bankrevokeOK -- response from Bank

 -- requestGarage(cust,loc) -- request to GarageService
 garageResponseOK(garageData:Token); -- response from GarageService
 garageResponseFail -- response from GarageService
 -- revokeGarage(cust,garageData) -- cancel to GarageService
 garagerevokeOK -- responde from GarageService

 -- requestTowTruck(cust,loc) -- request to TowTruckService
 towResponseOK(towData:Token); -- response from TowTruckService
 towResponseFail -- response from TowTruckService
 towrevokeOK -- responde from TowService

 -- requestRentCar(cust,loc) -- request to Rent
 rentResponseOK(rentData:Token); -- from RentalCarService
 rentResponseFail -- from RentalCarService
 rentrevokeOK -- response from RentService

 --- INTERNAL SIGNALS

 engineFailure; -- Engine -> Orchestrator
 --
 reqLoc; -- Orchestrator -> GPS
 respLoc(mygps:Token); -- GPS -> Orchestrator
 --
 findServ(mygps:Token); -- Orchestrator -> LocalDiscovery
 found(mylist:Token); -- LocalDiscovery -> Orchestrator
 notFound; -- LocalDiscovery -> Orchestrator
 --
 choose; -- Orchestrator -> Reasoner
 chosen(myRA:RoadAssistance) -- Reasoner -> Orchestrator
 --
 bankcharge -- Orchestrator -> VehicleCommunicationGateway
 bankOK -- VehicleCommunicationGateway -> Orchestrator
 bankFail -- VehicleCommunicationGateway -> Orchestrator
 bankrevoke -- Orchestrator -> VehicleCommunicationGateway
 --
 orderGarage -- Orchestrator -> VehicleCommunicationGateway
 garageOK -- VehicleCommunicationGateway -> Orchestrator
 garageFail -- VehicleCommunicationGateway -> Orchestrator
 garagerevoke -- Orchestrator -> VehicleCommunicationGateway
 --
 orderTowTruck -- Orchestrator -> VehicleCommunicationGateway
 towOK -- VehicleCommunicationGateway -> Orchestrator
 towFail -- VehicleCommunicationGateway -> Orchestrator
 towrevoke -- unused
 --
 rentCar -- Orchestrator -> VehicleCommunicationGateway
 failedRentCar -- VehicleCommunicationGateway -> Orchestrator
 carRented -- VehicleCommunicationGateway -> Orchestrator
 rentrevoke -- Orchestrator -> VehicleCommunicationGateway

 Vars:
 --
 loc: Token := null; -- used by Orchestrator
 chargedID: Token;
 garageID: Token;
 rentID: Token;
 towID: Token;
 list: Token := null;
 ccId: Token := ccId1;
 amount: Token := amount1;
 theRA: RoadAssistance;
 bank: Bank := bank1;

 State Top=
 CarComponents(
 Engine[e1, e2] ,
 Orchestrator[
 o1,
 EnablingPhase(
 CardCharge[o2, o3, o4, final] ,
 FindServices[o6, o7, o8, o9, final]),
 ServiceSelection,
 OrderServices(
 o11,
 o12,

29

 o13,
 TowAndCar(
 OrderTow[
 o14,
 o15,
 CompensateAll(
 CompensateBank[x1, x4],
 CompensateGarage[x2, x5],
 CompensateRent[x3, x6]),
 final] ,
 OrderCar[o17, o18, o19, final]
)),
 final] ,
 LocalDiscovery[l1] ,
 GPS[p1] ,
 Reasoner[r1] ,
 VehicleCommunicationGateway[
 Procedures(
 GarageComm [g1, g2, g3, g4, g5, g6],
 TowComm [t1, t2, t3,t4, t5, t6],
 RentComm [n1, n2, n3, n4, n5, n6],
 BankComm [b1, b2, b3, b4, b5, b6]
)]
)

 State RentComm Defers rentrevoke
 State BankComm Defers bankrevoke

Transitions:

-- Engine
 e1 -> e2 {-/engineFailure}

-- Orchestrator
 o1 -> EnablingPhase {engineFailure}

 --- CardCharge
 o2 -> o3 {- / self.bankcharge} -- activate bank calling procedure
 o3 -> o4 {bankFail}
 o3 -> CardCharge.final {bankOK}

 --- FindServices
 o6 -> o7 {- / self.reqLoc} -- call GPS
 o7 -> o8 {respLoc(mygps) / -- response from GPS
 loc := mygps; self.findServ(mygps)} -- call LocalDiscoveryService
 o8 -> o9 {notFound / bankrevoke} -- FAILURE with bank compensation
 o8 -> FindServices.final {found(mylist:Token)} -- respond from local discovery

 EnablingPhase -> ServiceSelection {- / self.choose } -- activate reasoner

 ServiceSelection -> OrderServices
 {chosen(myRA) / -- response from reasoner
 theRA := myRA}

 --- OrderServices
 o11 -> o12 {-/ self.orderGarage} -- activate garagecomm
 o12 -> o13 {garageFail/ self.bankrevoke} -- FAILURE with bank compensation
 o12 -> TowAndCar {garageOK}

 --- OrderTow
 o14 -> o15 {- / self.orderTowTruck} -- activare towcomm
 o15 -> OrderTow.final {towOK}
 o15 -> CompensateAll {towFail} -- FAILURE with bank and garage and rent compensation

 -- CompensateAll
 x1 -> x4 {- / self.bankrevoke}
 x2 -> x5 {- / self.garagerevoke}
 x3 -> x6 {- / self.rentrevoke}

 --- OrderCar
 o17 -> o18 {- / self.rentCar}
 o18 -> OrderCar.final {carRented}
 o18 -> o19 {failedRentCar }

 OrderServices -> Orchestrator.final

-- LocalDiscovery
 l1 -> l1 {findServ(mygps) / self.found(list1) } -- uses loc not modelled
 l1 -> l1 {findServ(mygps) / self.notFound }

-- Reasoner
 r1 -> r1 {choose / self.chosen(ra1) }

30

-- GPS
 p1 -> p1 {reqLoc / self.respLoc(gps1)}

-- GarageProcedures
 g1 -> g2 {orderGarage / theRA.requestGarage(self,loc)} -- call external garage service
 g2 -> g3 {garageResponseOK(garageData) / garageID := garageData; self.garageOK }
 g2 -> g4 {garageResponseFail / self.garageFail } -- response Fail
 ---- compensations
 g1 -> g6 {garagerevoke}
 g3 -> g5 {garagerevoke/ theRA.revokeGarage(self, garageID) } -- cancel external request
 g5 -> g6 {garagerevokeOK} -- response from service
 g4 -> g6 {garagerevoke}

-- TowProcedures
 t1 -> t2 {orderTowTruck / theRA.requestTowTruck(self,loc)} -- call external garage service
 t2 -> t3 {towResponseOK(towData) / towID := towData; self.towOK } -- response OK
 t2 -> t4 {towResponseFail / self.towFail } -- response Fail

 t1 -> t6 {towrevoke}
 t3 -> t5 {towrevoke / theRA.revokeTowTruck(self,towID)} -- cancel external request
 t5 -> t6 {towrevokeOK} -- response from service
 t4 -> t6 {towrevoke}

 -- RentProcedures
 n1 -> n2 {rentCar / theRA.requestRentCar(self,loc)} -- call external rental service
 n2 -> n3 {rentResponseOK(rentData)/ rentID := rentData; self.carRented} -- response OK
 n2 -> n4 {rentResponseFail/ self.failedRentCar} -- response Fail
 ---- compensations
 n1 -> n6 {rentrevoke}
 n3 -> n5 {rentrevoke / theRA.revokeRentCar(self,rentID)} -- cancel external request
 n5 -> n6 {rentrevokeOK} -- response from service
 n4 -> n6 {rentrevoke}

-- BankProcedures
 b1 -> b2 {bankcharge / bank.requestCardCharge(self, ccId, amount)} -- call external service
 b2 -> b3 {chargeResponseOK(chargeID) / chargedID := chargeID; self.bankOK} -- response OK
 b2 -> b4 {chargeResponseFail/ self.bankFail} -- response Fail
 ---- compensations
 b1 -> b6 {bankrevoke}
 b3 -> b5 {bankrevoke/ bank.revokeCardCharge(self,chargedID)} -- cancel external service
 b5 -> b6 {bankrevokeOK} -- response from service
 b4 -> b6 {bankrevoke}

end Car

Class Bank is
 Signals:
 requestCardCharge(cust:Car, cc:Token, amount:Token);
 -- replies: cust.chargeResponseOK(chargeID)
 -- cust.chargeResponseFail
 --
 revokeCardCharge(cust:Car, chargeID:Token);
 -- replies: bankrevokeOK

 Vars: cu: obj;
 State Top = s1

Transitions:
 s1 -> s1 { requestCardCharge(cust,cc,amount) /
 cust.chargeResponseOK(bankopID); cu:=cust }
 s1 -> s1 { requestCardCharge(cust,cc,amount) / cust.chargeResponseFail }
 s1 -> s1 { revokeCardCharge(cust,chargeID) / cust.bankrevokeOK }
end Bank

Class RoadAssistance is
 Signals:
 ------- GARAGE SERVICES -------
 requestGarage(cust:Car,loc:Token);
 -- replies: garageResponseOK(garageData) to car
 -- garageResponseFail to car
 --
 revokeGarage(cust:Car,garageData:Token);
 -- replies: garagerevokeOK

 -------- TOWTRUCK SERVICES -------
 requestTowTruck(cust:Car,loc:Token);
 -- replies: towResponseOK(towData) to car
 -- towResponseFail to car

31

 --
 revokeTowTruck(cust:Car, towData:Token)
 -- replies: cust.towrevokeOK

 ------- RENTAL SERVICES -------
 requestRentCar(cust:Car,loc:Token);
 -- replies: rentResponseOK(rentData) to car
 -- rentResponseFail to car
 --
 revokeRentCar(cust:Car, rentData:Token)
 -- replies: cust.rentrevokeOK
 --

 State Top = Services
 State Services = GarageService / TowTruckService / RentalCarService
 State GarageService = g1
 State TowTruckService = t1
 State RentalCarService = r1

 Transitions:

 -- garage services
 g1 -> g1 { requestGarage(cust,loc) / cust.garageResponseOK(garageData1) }
 g1 -> g1 { requestGarage(cust,loc) / cust.garageResponseFail }
 g1 -> g1 { revokeGarage(cust,garageData) / cust.garagerevokeOK }

 -- tow truck
 t1 -> t1 { requestTowTruck(cust,loc) / cust.towResponseOK(towData1) }
 t1 -> t1 { requestTowTruck(cust,loc) / cust.towResponseFail }
 t1 -> t1 { revokeTowTruck(cust,towData) / cust.towrevokeOK }

 -- rental
 r1 -> r1 { requestRentCar(cust,loc) / cust.rentResponseOK(rentData1) }
 r1 -> r1 { requestRentCar(cust,loc) / cust.rentResponseFail }
 r1 -> r1 { revokeRentCar(cust,rentData) / cust.rentrevokeOK }

end RoadAssistance

Objects:

bankopID, rentData1, garageData1, towData1, ccId1, amount1, gps1, list1: Token;

car1: Car;
bank1: Bank;
ra1: RoadAssistance

Abstractions {
State: inState(car1.Orchestrator.o1) -> accepting_request(road_assistance)
Action: accept(engineFailure) -> request(road_assistance)
--
State: inState(bank1.s1) -> accepting_request(bankcharge)
Action: $1:requestCardCharge -> request(bankcharge,$1)
Action: $1.chargeResponseFail -> fail(bankcharge,$1)
Action: $1.chargeResponseOK -> response(bankcharge,$1)
State: inState(bank1.s1) and bank1.cu=$1 -> accepting_revoke(bankcharge,$1)
Action: $1:revokeCardCharge -> revoke(bankcharge,$1)
--
Action: $1:requestGarage -> request(garage,$1)
Action: $1.garageResponseFail -> fail(garage,$1)
Action: $1.garageResponseOK -> response(garage,$1)
Action: $1:revokeGarage -> revoke(garage,$1)
--
Action: $1.rentResponseOK -> response(rentalcar,$1)
--
Action: $1.towResponseOK -> response(towtruck,$1)
Action: $1.towResponseFail -> fail(towtruck,$1)
--
}

-- /* PROPERTIES

 ----- ROAD ASSISTANCE SERVICE - TOP LEVEL PROPERTIES -----
--
-- 1) It is a service always available until requested.
--
-- A[accepting_request(road_assistance) U {request(road_assistance)} true]
--
-- 2) It is a one-shot service (it cannot be triggered twice),
-- which is always activated in this scenario.

32

--
 -- AF {request(road_assistance)} AG not accepting_request(road_assistance)
--
-- ------ BANK SERVICE -------
-- 3) The Bank service is always available
--
-- AG accepting_request(bankcharge)
--
-- 4) After accepting a request always provides a unique Ok or Fail response
--
-- AG [request(bankcharge,$customer)]
-- AF {response(bankcharge,%customer) or
-- fail(bankcharge,%customer)}
-- not EF {response(bankcharge,%customer) or
-- fail(bankcharge,%customer)} true
--
-- 5) After a successful response to a creditcard charge request the bank
-- accepts revoke requests for the succeded transaction.
--
-- AG [response(bankcharge,$customer)]
-- A[accepting_revoke(bankcharge, %customer) W
-- {revoke(bankcharge,%customer)} true]
--
-- ----- ROAD ASSISTANCE SERVICE - ORCHESTRATION / COMPENSATION properties -----
--
--
-- 6) After the garage has been booked, if the tow service is not available then
-- the garage is revoked.
-- AG [response(garage,$customer)]
-- AF [fail(towtruck,%customer)]
-- AF {revoke(garage,%customer)} true
--
-- 7) After a successful deposit, either some services are booked, or
-- the deposit is revoked
--
-- AG [response(bankcharge,$customer)]
-- AF {revoke(bankcharge,%customer) or
-- response(towtruck,%customer) or
-- response(rentalcar,%customer)} true
--
-- 8) if the deposit is denied by the bank, then no services will be booked.
--
-- AG [fail(bankcharge,$customer)]
-- not EF {response(garage,%customer) or
-- response(rentalcar,%customer)} true
--
-- */
--

 Appendix : A grammar for UMC

Model ::= {Class}
 {Object}

Class ::= "class" ClassName "is"
 [Signature]
 [Behaviour]
 "end;" [ClassName]

Object ::= "Object" ObjName ":" ClassName [Values]

Values ::= "(" AttrName "=>" ")" StaticExpr { "," "(" AttrName "=>" ")" StaticExpr }

Signature ::= ["Signals" Signal, {"," Signal}]
 ["Operations" Operation, {"," Operation}]

Operation ::= Name "(" [Name [":" TypeName] {"," Name [":" TypeName]}] ")" [":" TypeName]

Signal ::= Name "(" [Name ":" TypeName {"," Name ":" TypeName}] ")"

Behaviour ::= ["Vars" Attribute {"," Attribute}]
 "State" "top" "=" Composite {Defer}
 {"State" Statepath "=" State }
 ["Transitions" {Transition}]

Attribute ::= AttrName [":" TypeName] [":=" StaticExpr] ";"

State ::= Composite | Parallel

Composite ::= StateName { "," StateName} ["Defer" Defer {"," Defer}]

33

StateName ::= Name | final | initial

Parallel ::= Name { "//" Name} ["Defer" Defer {"," Defer}]

Defer ::= Operation | Signal

Transition ::= Source "-(" Trigger [Guard] [Effect] ")->" Target

Source ::= Statepath | Join

Statepath ::= ["top."]Name{.Name}

Join ::= "(" Statepath {"," Statepath} ")"

Target ::= Statepath | Fork

Fork ::= "(" Statepath {"," Statepath} ")"

Trigger ::= "-" | Signal | Operation

Guard ::= "[" BoolBoolExpr "]"

Effect ::= "/" Stm {";" Stm}

Stm ::= Assignment | SignalSending | OperationCall | FunctionCall

Assignment ::= AttrName ":=" Expr

SignalSending ::= ObjExpr "." EventName ["(" Expr {"," Expr} ")"]

OperationCall ::= ObjExpr "." EventName ["(" Expr {"," Expr} ")"]

FunctionCall ::= AttrName ":=" ObjExpr "." EventName ["(" Expr {"," Expr} ")"]

Expr ::= BoolBoolExpr | IntExpr

BoolBoolExpr ::= BoolExpr {"and" BoolExpr}
 | BoolExpr {"or" BoolExpr}
 | "not" BoolExpr
 | BoolExpr

BoolExpr ::= "true"
 | "false"
 | BoolAttrName
 | ObjExpr “=” ObjExpr
 | ObjExpr “/=” ObjExpr
 | IntExpr relop IntExpr

relop ::= "=" | "/=" | ">" | ">=" | "<" | "<="

ObjExpr ::= “null” | ObjAttrName | ObjName | “self” | “this”

IntExpr ::= Number
 | IntAttrName
 | (Intexpr intop IntExpr ")"

StaticExpr ::= Number | ObjName | “null” | “self” | “this”

intop ::= "+" | "-" | "*" | "/" | "mod"

TypeName ::= "void" | "int" | "bool" | "obj" | ClassName

-- line comments start with "-- " or "//" and end at the end of the line

-------------------00-automotive.umc------------------

Class Car is

 Signals:

 --- OUTGOING / INCOMING SIGNALS

 -- requestCardCharge(cust,cc,amount) -- request to Bank
 chargeResponseOK(chargeID:Token); -- response from Bank
 chargeResponseFail; -- response from Bank
 -- revokeCardCharge(cust,chargeID) -- cancel to Bank

34

 bankrevokeOK -- response from Bank

 -- requestGarage(cust,loc) -- request to GarageService
 garageResponseOK(garageData:Token); -- response from GarageService
 garageResponseFail -- response from GarageService
 -- revokeGarage(cust,garageData) -- cancel to GarageService
 garagerevokeOK -- responde from GarageService

 -- requestTowTruck(cust,loc) -- request to TowTruckService
 towResponseOK(towData:Token); -- response from TowTruckService
 towResponseFail -- response from TowTruckService
 towrevokeOK -- responde from TowService

 -- requestRentCar(cust,loc) -- request to Rent
 rentResponseOK(rentData:Token); -- from RentalCarService
 rentResponseFail -- from RentalCarService
 rentrevokeOK -- response from RentService

 --- INTERNAL SIGNALS

 engineFailure; -- Engine -> Orchestrator
 --
 reqLoc; -- Orchestrator -> GPS
 respLoc(mygps:Token); -- GPS -> Orchestrator
 --
 findServ(mygps:Token); -- Orchestrator -> LocalDiscovery
 found(mylist:Token); -- LocalDiscovery -> Orchestrator
 notFound; -- LocalDiscovery -> Orchestrator
 --
 choose; -- Orchestrator -> Reasoner
 chosen(myRA:RoadAssistance) -- Reasoner -> Orchestrator
 --
 bankcharge -- Orchestrator -> VehicleCommunicationGateway
 bankOK -- VehicleCommunicationGateway -> Orchestrator
 bankFail -- VehicleCommunicationGateway -> Orchestrator
 bankrevoke -- Orchestrator -> VehicleCommunicationGateway
 --
 orderGarage -- Orchestrator -> VehicleCommunicationGateway
 garageOK -- VehicleCommunicationGateway -> Orchestrator
 garageFail -- VehicleCommunicationGateway -> Orchestrator
 garagerevoke -- Orchestrator -> VehicleCommunicationGateway
 --
 orderTowTruck -- Orchestrator -> VehicleCommunicationGateway
 towOK -- VehicleCommunicationGateway -> Orchestrator
 towFail -- VehicleCommunicationGateway -> Orchestrator
 towrevoke -- unused
 --
 rentCar -- Orchestrator -> VehicleCommunicationGateway
 failedRentCar -- VehicleCommunicationGateway -> Orchestrator
 carRented -- VehicleCommunicationGateway -> Orchestrator
 rentrevoke -- Orchestrator -> VehicleCommunicationGateway

 Vars:
 --
 loc: Token := null; -- used by Orchestrator
 chargedID: Token;
 garageID: Token;
 rentID: Token;
 towID: Token;
 list: Token := null;
 ccId: Token := ccId1;
 amount: Token := amount1;
 theRA: RoadAssistance;
 bank: Bank := bank1;

 State Top=
 CarComponents(
 Engine[e1, e2] ,
 Orchestrator[
 o1,
 EnablingPhase(
 CardCharge[o2, o3, o4, final] ,
 FindServices[o6, o7, o8, o9, final]),
 ServiceSelection,
 OrderServices(
 o11,
 o12,
 o13,
 TowAndCar(
 OrderTow[

35

 o14,
 o15,
 CompensateAll(
 CompensateBank[x1, x4],
 CompensateGarage[x2, x5],
 CompensateRent[x3, x6]),
 final] ,
 OrderCar[o17, o18, o19, final]
)),
 final] ,
 LocalDiscovery[l1] ,
 GPS[p1] ,
 Reasoner[r1] ,
 VehicleCommunicationGateway[
 Procedures(
 GarageComm [g1, g2, g3, g4, g5, g6],
 TowComm [t1, t2, t3,t4, t5, t6],
 RentComm [n1, n2, n3, n4, n5, n6],
 BankComm [b1, b2, b3, b4, b5, b6]
)]
)

 State RentComm Defers rentrevoke
 State BankComm Defers bankrevoke

Transitions:

-- Engine
 e1 -> e2 {-/engineFailure}

-- Orchestrator
 o1 -> EnablingPhase {engineFailure}

 --- CardCharge
 o2 -> o3 {- / self.bankcharge} -- activate bank calling procedure
 o3 -> o4 {bankFail}
 o3 -> CardCharge.final {bankOK}

 --- FindServices
 o6 -> o7 {- / self.reqLoc} -- call GPS
 o7 -> o8 {respLoc(mygps) / -- response from GPS
 loc := mygps; self.findServ(mygps)} -- call LocalDiscoveryService
 o8 -> o9 {notFound / bankrevoke} -- FAILURE with bank compensation
 o8 -> FindServices.final {found(mylist:Token)} -- respond from local discovery

 EnablingPhase -> ServiceSelection {- / self.choose } -- activate reasoner

 ServiceSelection -> OrderServices
 {chosen(myRA) / -- response from reasoner
 theRA := myRA}

 --- OrderServices
 o11 -> o12 {-/ self.orderGarage} -- activate garagecomm
 o12 -> o13 {garageFail/ self.bankrevoke} -- FAILURE with bank compensation
 o12 -> TowAndCar {garageOK}

 --- OrderTow
 o14 -> o15 {- / self.orderTowTruck} -- activare towcomm
 o15 -> OrderTow.final {towOK}
 o15 -> CompensateAll {towFail} -- FAILURE with bank and garage and rent compensation

 -- CompensateAll
 x1 -> x4 {- / self.bankrevoke}
 x2 -> x5 {- / self.garagerevoke}
 x3 -> x6 {- / self.rentrevoke}

 --- OrderCar
 o17 -> o18 {- / self.rentCar}
 o18 -> OrderCar.final {carRented}
 o18 -> o19 {failedRentCar }

 OrderServices -> Orchestrator.final

-- LocalDiscovery
 l1 -> l1 {findServ(mygps) / self.found(list1) } -- uses loc not modelled
 l1 -> l1 {findServ(mygps) / self.notFound }

-- Reasoner
 r1 -> r1 {choose / self.chosen(ra1) }

-- GPS
 p1 -> p1 {reqLoc / self.respLoc(gps1)}

36

-- GarageProcedures
 g1 -> g2 {orderGarage / theRA.requestGarage(self,loc)} -- call external garage service
 g2 -> g3 {garageResponseOK(garageData) / garageID := garageData; self.garageOK }
 g2 -> g4 {garageResponseFail / self.garageFail } -- response Fail
 ---- compensations
 g1 -> g6 {garagerevoke}
 g3 -> g5 {garagerevoke/ theRA.revokeGarage(self, garageID) } -- cancel external request
 g5 -> g6 {garagerevokeOK} -- response from service
 g4 -> g6 {garagerevoke}

-- TowProcedures
 t1 -> t2 {orderTowTruck / theRA.requestTowTruck(self,loc)} -- call external garage service
 t2 -> t3 {towResponseOK(towData) / towID := towData; self.towOK } -- response OK
 t2 -> t4 {towResponseFail / self.towFail } -- response Fail

 t1 -> t6 {towrevoke}
 t3 -> t5 {towrevoke / theRA.revokeTowTruck(self,towID)} -- cancel external request
 t5 -> t6 {towrevokeOK} -- response from service
 t4 -> t6 {towrevoke}

 -- RentProcedures
 n1 -> n2 {rentCar / theRA.requestRentCar(self,loc)} -- call external rental service
 n2 -> n3 {rentResponseOK(rentData)/ rentID := rentData; self.carRented} -- response OK
 n2 -> n4 {rentResponseFail/ self.failedRentCar} -- response Fail
 ---- compensations
 n1 -> n6 {rentrevoke}
 n3 -> n5 {rentrevoke / theRA.revokeRentCar(self,rentID)} -- cancel external request
 n5 -> n6 {rentrevokeOK} -- response from service
 n4 -> n6 {rentrevoke}

-- BankProcedures
 b1 -> b2 {bankcharge / bank.requestCardCharge(self, ccId, amount)} -- call external service
 b2 -> b3 {chargeResponseOK(chargeID) / chargedID := chargeID; self.bankOK} -- response OK
 b2 -> b4 {chargeResponseFail/ self.bankFail} -- response Fail
 ---- compensations
 b1 -> b6 {bankrevoke}
 b3 -> b5 {bankrevoke/ bank.revokeCardCharge(self,chargedID)} -- cancel external service
 b5 -> b6 {bankrevokeOK} -- response from service
 b4 -> b6 {bankrevoke}

end Car

Class Bank is
 Signals:
 requestCardCharge(cust:Car, cc:Token, amount:Token);
 -- replies: cust.chargeResponseOK(chargeID)
 -- cust.chargeResponseFail
 --
 revokeCardCharge(cust:Car, chargeID:Token);
 -- replies: bankrevokeOK

 State Top = s1

Transitions:
 s1 -> s1 { requestCardCharge(cust,cc,amount) / cust.chargeResponseOK(bankopID) }
 s1 -> s1 { requestCardCharge(cust,cc,amount) / cust.chargeResponseFail }
 s1 -> s1 { revokeCardCharge(cust,chargeID) / cust.bankrevokeOK }
end Bank

Class RoadAssistance is
 Signals:
 ------- GARAGE SERVICES -------
 requestGarage(cust:Car,loc:Token);
 -- replies: garageResponseOK(garageData) to car
 -- garageResponseFail to car
 --
 revokeGarage(cust:Car,garageData:Token);
 -- replies: garagerevokeOK

 -------- TOWTRUCK SERVICES -------
 requestTowTruck(cust:Car,loc:Token);
 -- replies: towResponseOK(towData) to car
 -- towResponseFail to car
 --
 revokeTowTruck(cust:Car, towData:Token)
 -- replies: cust.towrevokeOK

 ------- RENTAL SERVICES -------

37

 requestRentCar(cust:Car,loc:Token);
 -- replies: rentResponseOK(rentData) to car
 -- rentResponseFail to car
 --
 revokeRentCar(cust:Car, rentData:Token)
 -- replies: cust.rentrevokeOK
 --

 State Top = Services
 State Services = GarageService / TowTruckService / RentalCarService
 State GarageService = g1
 State TowTruckService = t1
 State RentalCarService = r1

 Transitions:

 -- garage services
 g1 -> g1 { requestGarage(cust,loc) / cust.garageResponseOK(garageData1) }
 g1 -> g1 { requestGarage(cust,loc) / cust.garageResponseFail }
 g1 -> g1 { revokeGarage(cust,garageData) / cust.garagerevokeOK }

 -- tow truck
 t1 -> t1 { requestTowTruck(cust,loc) / cust.towResponseOK(towData1) }
 t1 -> t1 { requestTowTruck(cust,loc) / cust.towResponseFail }
 t1 -> t1 { revokeTowTruck(cust,towData) / cust.towrevokeOK }

 -- rental
 r1 -> r1 { requestRentCar(cust,loc) / cust.rentResponseOK(rentData1) }
 r1 -> r1 { requestRentCar(cust,loc) / cust.rentResponseFail }
 r1 -> r1 { revokeRentCar(cust,rentData) / cust.rentrevokeOK }

end RoadAssistance

Objects:

bankopID, rentData1, garageData1, towData1, ccId1, amount1, gps1, list1: Token;

car1: Car;
bank1: Bank;
ra1: RoadAssistance

Abstractions {
Action: $1:engineFailure -> request(engineFailure,$1)
Action: $1:requestCardCharge -> request(charge,$1)
Action: $1.chargeResponseOK -> response (charge,$1)
Action: $1.requestGarage($2,$3) -> request (garage,$1,$2)
Action: $1:$2.garageResponseOK -> response (garage,$2,$1)
Action: $1:$2.garageResponseFail -> fail(garage,$2,$1)
Action: $1:$2.revokeGarage -> revoke(garage,$1,$2)
Action: $1:$2.requestRentCar -> request(rentalCar,$1,$2)
Action: $1:$2.rentResponseOK-> response(rentalCar,$2,$1)
Action: $1:$2.rentResponseFail-> fail(rentalCar,$2,$1)
State: inState(car1.Orchestartor.o1) -> accepting_request(engineFailure)
}

38

6 References

[1] S. Gnesi and F. Mazzanti: "On the Fly Verification of Networks of Automata"

 International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA'99), special session on Current limits to automated verification for distributed
systems, CSREA, 1999.

[2] S. Gnesi, F. Mazzanti: "On the fly model checking of communicating UML State Machines"

Second ACIS International Conference on Software Engineering Research Management and
Applications (SERA2004) (Los Angeles, USA, 5-7 May 2004).

[3] S. Gnesi, F. Mazzanti: "A Model Checking Verification Environment for UML Statecharts"

XLIII Congresso Annuale AICA, Udine 5-7 Ottobre 2005

[4] Maurice H. ter Beek, Stefania Gnesi, Franco Mazzanti: CMC-UMC: A Framework for the

Verification of Abstract Service-Oriented Properties Proceedings of the 24th Annual ACM
Symposium on Applied Computing (SAC'09), Honolulu, Hawaii, USA, ACM Press, 2009, 1844
- 1850

[5] Jacobson, I., Booch, G., Rumbaugh J. "The Unified Modeling Language Reference Manual."

Addison-Wesley, 1999.

[6] OMG Unified Modeling Language Specification,Version 1.4 beta R1, November 2000,

http://www.omg.org/technology/documents/formal/uml.htm).

